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Abstract. Mountainous grassland slopes can be severely af-
fected by soil erosion, among which shallow landslides are
a crucial process, indicating instability of slopes. We deter-
mine the locations of shallow landslides across different sites
to better understand regional differences and to identify their
triggering causal factors. Ten sites across Switzerland located
in the Alps (eight sites), in foothill regions (one site) and the
Jura Mountains (one site) were selected for statistical eval-
uations. For the shallow-landslide inventory, we used aerial
images (0.25 m) with a deep learning approach (U-Net) to
map the locations of eroded sites. We used logistic regres-
sion with a group lasso variable selection method to identify
important explanatory variables for predicting the mapped
shallow landslides. The set of variables consists of traditional
susceptibility modelling factors and climate-related factors
to represent local as well as cross-regional conditions. This
set of explanatory variables (predictors) are used to develop
individual-site models (local evaluation) as well as an all-
in-one model (cross-regional evaluation) using all shallow-
landslide points simultaneously. While the local conditions
of the 10 sites lead to different variable selections, consis-
tently slope and aspect were selected as the essential ex-
planatory variables of shallow-landslide susceptibility. Ac-
curacy scores range between 70.2 % and 79.8 % for individ-
ual site models. The all-in-one model confirms these findings
by selecting slope, aspect and roughness as the most impor-
tant explanatory variables (accuracy= 72.3 %). Our findings
suggest that traditional susceptibility variables describing ge-
omorphological and geological conditions yield satisfactory
results for all tested regions. However, for two sites with
lower model accuracy, important processes may be under-

represented with the available explanatory variables. The re-
gression models for sites with an east–west-oriented val-
ley axis performed slightly better than models for north–
south-oriented valleys, which may be due to the influence
of exposition-related processes. Additionally, model perfor-
mance is higher for alpine sites, suggesting that core explana-
tory variables are understood for these areas.

1 Introduction

Soil erosion is an issue affecting many regions of the world
and can have severe consequences for the environment and
humanity (e.g. water pollution or food production) (Pimentel
et al., 1995; Pimentel and Burgess, 2013; O’Mara, 2012;
Alewell et al., 2009, 2020). In Switzerland, grasslands of
mountain and hill slopes can be strongly affected by soil
erosion, which can be caused by natural (e.g. precipitation
events) and anthropogenic processes (e.g. land-use manage-
ment) (Tasser et al., 2003; Meusburger and Alewell, 2008;
Zweifel et al., 2019; Geitner et al., 2021; Lepeška, 2016).
The most visible form of erosion in grassland soils show-
ing bare soil areas can be categorised as shallow erosion
(Geitner et al., 2021) (Fig. 1). These shallow-erosion sites
are mainly triggered by prolonged and intense rainfall events
(shallow landslides) or through abrasion by snow (snow glid-
ing, avalanches) (Wiegand and Geitner, 2010; Geitner et al.,
2021). However, in many cases, a combination of these pro-
cesses can lead to shallow-erosion sites, and triggering pro-
cesses cannot be distinguished from aerial photos. There-
fore, we use the term shallow landslides in our regions and
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the frame of this study with no implication of the triggering
event.

The aim of our study is to statistically evaluate shallow-
landslide occurrence for 10 different sites (between 16 and
54 km2) across Switzerland. In the past, shallow-landslide
susceptibility studies have mainly focused on one or two
study sites while often testing multiple modelling techniques
(Gómez and Kavzoglu, 2005; Meusburger and Alewell,
2009; Vorpahl et al., 2012; Tien Bui et al., 2016; Oh and
Lee, 2017; Lee et al., 2020; Nhu et al., 2020b), except for
Persichillo et al. (2017), who evaluated four sites in differ-
ent catchments. For our shallow-landslide inventory we map
the eroded sites on aerial images (0.25 m resolution) using
a U-Net deep learning approach (Ronneberger et al., 2015).
The U-Net tool was trained by Samarin et al. (2020) to iden-
tify and map the extent of soil erosion features on grassland.
While this mapping tool is able to distinguish between dif-
ferent erosion processes and appearances (i.e. shallow land-
slides, livestock trails, sheet erosion and management ef-
fects; Samarin et al., 2020), here, we focus on shallow land-
slides as we aim to understand their causal factors and spatial
patterns better. With the U-Net mapping tool, we can iden-
tify locations of shallow landslides in a very efficient and
precise manner, increasing the possibilities for mapping but
also future model validation of soil erosion studies (Samarin
et al., 2020). The mapped shallow-landslide sites are sub-
sequently evaluated with a statistical model to identify the
most important explanatory variables and gain a better un-
derstanding of causal factors as well as regional differences.
For this purpose we use the group lasso approach for logis-
tic regressions (Tibshirani, 1996; Yuan and Lin, 2006; Meier
et al., 2008). The group lasso can deal with continuous and
categorical variables and is able to estimate coefficients of
classes within a categorical variable. In addition to estimat-
ing coefficients, the lasso can do variable selection simulta-
neously (Sect. 2.2). The lasso tends to yield sparse and inter-
pretable models, avoids overfitting, and is tolerant towards
possible collinearity of variables (Dormann et al., 2013). De-
spite these advantages, the lasso has only been applied a
small number of times for landslide susceptibility modelling
(Camilo et al., 2017; Lombardo and Mai, 2018; Amato et al.,
2019; Gao et al., 2020; Lombardo and Tanyas, 2021; Tanyaş
et al., 2021). We evaluate the shallow landslides within each
study site (10 models) and across all 10 study sites simulta-
neously (all-in-one model) and consider only grassland sur-
faces. Our aim is to identify explanatory variables that have
local importance but also identify variables which may ex-
plain regional differences in shallow-landslide occurrence.
The selected study sites are a combination of alpine (above
1500 ma.s.l.) and foothill regions (below 1500 ma.s.l.) as
well as one site in the Jura Mountains (below 1500 ma.s.l.).
The explanatory variables we use are the same for all sites
and consist of a combination of classic landslide susceptibil-
ity variables (Budimir et al., 2015) as well as climate-related
variables (Karger et al., 2017, 2018), which may aid in ex-

plaining regional differences in shallow-landslide occurrence
(Sect. 3.2). To understand how well the selected variables and
their coefficients perform, we evaluate the models on held-
out test data. We determine receiver–operator characteristic
(ROC) curves and the corresponding area under curve (AUC)
as well as the Brier score, which is suitable for binary vari-
ables (presence or absence of shallow landslides) (Sect. 2.3).

2 Study sites

A total of 10 sites were selected to produce shallow-landslide
inventories (mapping of shallow landslides) and perform
subsequent statistical evaluations of explanatory variables.
We only consider grassland areas, which were identified with
the aid of the surface cover information of the product Swis-
sTLM (Swisstopo, 2019). The sites were selected to repre-
sent different mountain and hill regions and different geo-
logical conditions, valley expositions and slope angles. Fig-
ure 2 shows the locations of all study sites within Switzer-
land, and Table 1 summarises important site information.
Most permanent grassland surfaces in Swiss mountain re-
gions are used for either grazing (pastures) or haying (mead-
ows) (FSO, 2013; Stumpf et al., 2020). Of the 10 sites, 9
are located across the Swiss Alps, and 1 was selected in
the Swiss Jura Mountains (Baulmes, below 1500 ma.s.l.).
The sites located in the Swiss Alps represent a range of
alpine (above 1500 ma.s.l.) regions as well as foothill regions
(Hornbachtal, below 1500 ma.s.l.). Val Cluozza is located in
the Swiss National Park and shows no signs of anthropogenic
influences and also contains only a small amount of grassland
area (8 %, the rest being mostly shrubs and rocks). For other
sites in the Alps, grassland covers 34 %–55 % of the valley.
The rest of the land cover consists of forest area, rock and de-
bris area, or in some cases urban areas. The shallow-landslide
densities (shallow-landslide-affected area in relation to total
grassland surfaces) range from 0.06 % (Baulmes) to 2.31 %
(Chrauchtal). Figure 2 shows the locations of all study sites
within Switzerland, and Table 1 summarises important site
information.

2.1 Shallow-landslide inventory

To identify the locations of shallow landslides across the
10 study sites, we use a deep learning approach based on the
U-Net architecture (Ronneberger et al., 2015). These mapped
shallow landslides are then used for statistical evaluations of
causal factors (Sect. 2.2). This fully convolutional neural net-
work approach for semantic segmentation in images allows
for objective and efficient mapping. The U-Net model was
trained to identify and map erosion sites on aerial images
(Swisstopo, 2010) with the aid of digital terrain model in-
formation (Swisstopo, 2014), as described in Samarin et al.
(2020), and can be obtained from Samarin (2021). The U-Net
model was trained on a small area of 9 km2 and tested on an

Nat. Hazards Earth Syst. Sci., 21, 3421–3437, 2021 https://doi.org/10.5194/nhess-21-3421-2021



L. Zweifel et al.: Causal factors of shallow landslides on grasslands 3423

Figure 1. Images showing examples of shallow landslides. Shallow-landslide sites show displaced topsoil layers and have a distinct boundary
to the vegetation. (a) Taken in the Urseren valley, showing a larger section of a south-east-facing slope area affected by many shallow
landslides (light-coloured patches). (b) Taken in Val Piora, showing a close-up of a shallow landslide facing south. (c) Showing an image
taken with a UAV in Val Piora with an approximate length of 10 m.

Figure 2. Map of Switzerland showing the 10 selected study sites (outlined in yellow). Colours of the map show lower elevations in dark and
higher elevations in lighter colours. Digital terrain model obtained from © swisstopo.

area of 17 km2 in the Urseren Valley (Samarin et al., 2020).
For this study we use the same U-Net model without further
training to map the new study sites and focus only on the ero-
sion class shallow landslides, as defined in the introduction.
The mapping results were carefully examined for all study
areas and corrected manually when necessary. The trained
U-Net used in this study has an overall precision of 73 %, a
recall of 84 % and an F1 score of 78 % (Samarin et al., 2020).
We only consider shallow landslides of at least 4 m2 located
on grassland (see Fig. 4 for examples of mapping results and

in Fig. S11 in the Supplement for an example of one fully
mapped study site).

2.2 Logistic regression with group lasso

With the statistical evaluation of the shallow-landslide sites,
we aim to understand possible causal factors. We evaluate
the 10 study sites individually (evaluation within each site)
as well as across all of the sites simultaneously (all-in-one
model). The aim of this is to test whether the same causal
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Table 1. List of study sites and descriptive information: elevation range, total area of the study site, grassland area within study site in per
cent, average slope of grassland area, orientation of the main valley axis, number of shallow landslides and shallow-landslide density in
grassland areas. The max precipitation events (monthly values) of the previous 5 and 10 years are averaged over the study site. Note that both
time spans might include the same events. GL: grassland; SLS: shallow landslides; P : precipitation.

Study site Year of Elevation Total GL GL slope Orientation No. SLS GL SLS P . max P . max
image (ma.s.l.) area % average of valley ≥ 4 m2 density 5 years 10 years

Arosa 2014 1613–2535 50 km2 34 % 20.8◦ NNE–SSW 896 0.24 % 281 mm 284 mm
Baulmes 2014 615–1512 21 km2 19 % 14.5◦ NE–SW 26 0.06 % 306 mm 306 mm
Chrauchtal 2014 1421–2432 32 km2 53 % 27.2◦ N–S 8073 2.31 % 378 mm 378 mm
Hornbach 2015 800–1256 17 km2 35 % 21.7◦ NW–SE 438 0.52 % 323 mm 368 mm
Rappetal 2015 1427–2533 16 km2 50 % 27.4◦ NE–SW 1023 0.54 % 384 mm 384 mm
Turbach 2013 1208–2367 28 km2 55 % 25.7◦ NNW–SSE 3010 0.97 % 432 mm 432 mm
Urseren 2013 1514–2840 54 km2 48 % 25.1◦ NE–SW 3702 0.70 % 293 mm 295 mm
Val Cluozza 2015 1643–2603 25 km2 8 % 30.5◦ N–S 177 0.46 % 181 mm 218 mm
Val d’Entremont 2013 1808–2823 50 km2 44 % 24.5◦ N–S 1823 0.41 % 410 mm 410 mm
Val Piora 2015 1848–2554 21 km2 43 % 20.8◦ E–W 1116 0.49 % 322 mm 347 mm

factors are important on different spatial scales. For each
of the 10 sites an equal number of shallow-landslide and
non-landslide points constitute the binary response variable
(no= 0, yes= 1) with a set of corresponding explanatory
variables (see Sect. 3). Our aim is to use a method that gener-
ates sparse models that are easy to interpret and avoid over-
fitting. To achieve this, we use a logistic regression estimated
with the least absolute shrinkage selection operator (lasso)
(Tibshirani, 1996). The lasso regression performs variable
selection and coefficient estimation simultaneously. This is
obtained by applying a penalty term (II) to the log-likelihood
function of the logistic regression (I) (Hastie et al., 2016):

`λ(β)

= x−

n∑
i=1

(
yizβ(xi)− log

(
1+ ezβ (xi )

))
︸ ︷︷ ︸

I.

+ λ

p∑
j=1
|βj︸ ︷︷ ︸

II.

|. (1)

We consider the linear model zβ(x)= β0+
∑p

j=1βjxj on
a data set of size n with p features, i.e. xi ∈ Rp, and binary
response yi ∈ {0,1}. The penalty term is determined by the
parameter λ, which is estimated by minimising the model er-
ror. The weight of λ determines how many variables are se-
lected, and in turn, the model shrinks coefficients of variables
that contribute to the error (Hastie et al., 2009, 2016). By
shrinking the coefficients of unimportant variables to zero,
they are removed from the model, and thereby variable se-
lection is performed. To achieve the least complex model in
terms of selected variables, we chose λ to be 1 standard er-
ror larger than the minimal mean square error (Hastie et al.,
2009). As some of the explanatory variables are categori-
cal (i.e. geology, aspect) we use the group lasso approach.
All levels within a categorical variable (encoded as dummy
variables) are treated as a group, and all coefficients within
that group become zero (dismissed) or non-zero (selected) si-

multaneously (Yuan and Lin, 2006; Hastie et al., 2016). This
leads to a new objective function with modified penalty term,

`λ(β)=−

n∑
i=1

(
yizβ(xi)− log

(
1+ ezβ (xi )

))
+ λ

G∑
g=1

αg||βg||Gg , (2)

where αg is a scaling factor depending on the number of pa-
rameters in βg , and ||η||K = (ηTKη)1/2 is a norm depending
on the group structure of the G different groups. For more
details on the mathematical extension of the group lasso we
refer to Meier et al. (2008). We implement the group lasso for
logistic regression with the R package grpreg (Breheny and
Huang, 2015). Due to the spatial relationship of geographic
data sets, we divide the data into spatially separated blocks
of 1 km2, randomly numbered from 1 to 5 (Valavi et al.,
2019) (see Fig. 3). These blocks are used for fivefold cross-
validation of the model. Every block is held out once for test-
ing, while the others are used for model training (e.g. while
blocks labelled with 2, 3, 4 or 5 are used for training, blocks
labelled with 1 are used for model testing). During each
fold, coefficients are estimated for the explanatory variables.
Note that the explanatory variables have been standardised
to allow for easier comparisons between variables. The esti-
mated values of the coefficients, therefore, give an indication
of their relative importance to model the response variable
(shallow-landslide and non-shallow-landslide points). With
higher absolute values of an estimated coefficient, the influ-
ence of this explanatory variable is stronger. A linear trans-
formation would be performed to ultimately get the coeffi-
cients for the variables on their original scale (Lombardo and
Mai, 2018). The process of coefficient estimation is repeated
20 times (bootstrapping) with different randomly selected
blocks, generating 100 estimates of coefficients for every
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Figure 3. Spatial blocks for fivefold cross-validation shown with
the example of Chrauchtal. Blocks have a size of 1 km2. Blocks
are assigned randomly and determined with the R package blockCV
(Valavi et al., 2019).

site (20 fivefold cross-validations) (Goetz et al., 2015; Steger
et al., 2016). We assess the model-selected coefficients by
evaluating the range of the coefficient estimates (boxplots)
as well as their inclusion rate (number of times selected by
models) as the number of ideal variables can vary in each
fold.

2.3 Model evaluation

To evaluate the accuracy and the predictive ability of the lo-
gistic regression models, we use performance measures de-
scribed in the following. All model performances are based
on test set estimations (predictions evaluated on held-out
test data blocks). The receiver–operator characteristic (ROC)
curve is a continuous curve showing the relationship between
the true positive rate (TPR) and false positive rate (FPR) for
every probability threshold of the model predictions (Hos-
mer and Lemeshow, 2000). The accompanying area under
curve (AUC) is the integrated area under the ROC curve
and describes the model skill across all possible probabil-
ity thresholds. Values of the AUC above 0.5 (equivalent to
a random model) are better, while a score of 1 indicates a
perfect model. Additionally, we compute confusion matrix
performance scores for a fixed probability prediction thresh-
old of 50 %. To summarise the accuracy of the models, we
assess the magnitude of the error in the probability predic-
tions using the Brier score (BS) (Eq. 3) (Brier, 1950; Wilks,

2006).

BS=
1
N

N∑
t=1
(ft − ot )

2, (3)

whereN is the number of mapped shallow landslides, ft rep-
resents the predicted probabilities for shallow-landslide oc-
currence (between 0 or 1), and ot represents the observed
(mapped) shallow landslides (either no= 0 or yes= 1). The
Brier score (BS) is equivalent to the mean squared error yet
is valid for binary observations. A BS of 0 indicates perfect
model performance, while 1 is the worst possible score (pre-
diction is opposite of observation). Probability predictions
that are farther away from the observation are penalised more
heavily. If the model predicts a 50 % chance of shallow land-
slide every time (random), a score of 0.25 is achieved for a
balanced data set (Steyerberg et al., 2010; Raja et al., 2017).
We re-estimate the BS with bootstrapping (500 repetitions,
sampled with replacement) to achieve confidence intervals.

3 Data Sets

3.1 Shallow-landslide and non-landslide points

To perform the mapping of shallow-landslide sites with the
U-Net model (Sect. 2.1), we require aerial (ortho-)images
(SwissImage; Swisstopo, 2010) and a digital terrain model
(DTM; SwissALTI; Swisstopo, 2014). The aerial images
have a spatial resolution of 0.25 m and red, green and
blue spectral bands. The aerial images for the study sites
were collected during the years 2013 (Turbach, Urseren,
Val d’Entremont), 2014 (Arosa, Baulmes, Chrauchtal) and
2015 (Hornbach, Rappetal, Val Cluozza, Val Piora). From
the DTM, the derivatives slope, aspect and curvature (plan
and profile) are required, which are calculated with ArcGIS
(10.5). Additionally, we use a data set with land-cover in-
formation (SwissTLM, Swisstopo, 2019) to assure only sites
with grassland are being mapped. For the mapped shallow
landslides, we extract the centre points with ArcGIS of sites
with a minimum size of 4 m2. Non-landslide points were ex-
tracted randomly within the grassland area and with a min-
imum buffer distance to mapped shallow landslides of 5 m.
This shallow-landslide data set contains an equal number of
landslide and non-landslide points for each study site (Fig. 4)
(Frattini et al., 2010; Petschko et al., 2014).

3.2 Explanatory variables

The explanatory variables selected for the statistical evalu-
ation of the shallow-landslide points are a combination of
variables commonly found in landslide or shallow-landslide
susceptibility studies (Budimir et al., 2015; Chen et al., 2017;
Cignetti et al., 2019; Kavzoglu et al., 2014; Lee et al., 2020;
Meusburger and Alewell, 2009; Persichillo et al., 2017;
Nhu et al., 2020a, b) and climate-related variables that may
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Figure 4. Example of mapped shallow landslides in the Turbach valley (purple). The centred points (yellow) represent shallow-landslide lo-
cations for the lasso model evaluation. Only sites with an area larger than 4 m2 were used for the evaluation. Red points represent randomised
non-landslide points. Aerial image (2013) obtained from © swisstopo.

explain differences between the sites (e.g. strong precipi-
tation events) from the CHELSA data set (Karger et al.,
2017, 2018). Variables related to land cover and vegetation
are not considered as we filter our study sites to contain only
grassland areas.

For every shallow-landslide and non-landslide point the
variables listed in Table 2 were extracted. The same variables
are used for evaluating all 10 sites as well as the all-in-one
model. The continuous variables have been standardised to
allow for comparing coefficients of variables. The categori-
cal variables were converted to dummy variables (all classes
of a categorical variable encoded as 0 or 1). Most variables
can be derived from the DTM (elevation values, SwissALTI),
which has a spatial resolution of 2 m. Slope (in degrees) de-
scribes the maximum change in elevation to neighbouring
cells. Aspect is included as a categorical variable containing
eight exposition sectors (north, north-east, east, south-east,
south, south-west, west and north-west). For curvature we
use plan and profile. Plan curvature describes the slope’s con-
cave (positive values) or convex (negative values) properties
perpendicular to the direction of the maximum slope, while
profile curvature indicates the same but parallel to the max-
imum slope. A value of zero indicates a flat surface. Plan
curvature characterises the convergence and divergence of
surface flow, and profile curvature describes the acceleration
of the surface flow (Zevenbergen and C., 1987). Roughness
expresses the difference between maximum and minimum
elevation values between a cell and all of its neighbouring
cells (Wilson et al., 2007). Higher roughness values indi-
cate rougher terrain. Based on flow direction (direction of the
steepest descent) we determine the flow accumulation, which

describes the number of cells flowing into a cell. The topo-
graphic wetness index (TWI) gives indications of where wa-
ter accumulates on slopes and is calculated with ln(α/ tanβ),
where α is the upslope area draining through a certain point
per unit contour length (flow accumulation), and β is the
slope (Beven and Kirkby, 1979). Distance to roads and road
density are variables that are often included in landslide sus-
ceptibility studies as they represent constructional interfer-
ence (Meusburger and Alewell, 2009; Nhu et al., 2020b).
Distance to streams and stream density can give further infor-
mation on rainfall drainage and runoff processes (Nhu et al.,
2020b). These variables were calculated based on the Swis-
sTLM data set (Swisstopo, 2019), containing information on
road and stream locations using the distance and line density
tool (search radius of 500 m; Meusburger and Alewell, 2009)
of ArcGIS. In addition to these terrain-related variables, we
use variables derived from the CHELSA data set, which con-
tains monthly values on temperature and precipitation from
which many environmental parameters are derived (Karger
et al., 2017, 2018). We include the strongest precipitation
events of the last 5 years and 10 years prior to the record-
ing year of the aerial images, information on snow fall and
cover, growing season length, and frost change frequency
(5 year average of 2009–2013). While these variables have
a comparatively low spatial resolution (30 arcsec, approx.
1 km), they may give a good indication of regional differ-
ences in shallow-landslide occurrence as they are representa-
tive of alpine processes often linked to the triggering of shal-
low landslides (Meusburger and Alewell, 2008; Wiegand and
Geitner, 2010; Löbmann et al., 2020; Geitner et al., 2021).
Specifics on the individual CHELSA variables used can be
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Table 2. Table containing the variables used for the logistic regression with information on the type of variable (continuous or categorical),
spatial resolution and which data set the variable was originally based on.

Variable Type Resolution Based on

Elevation Continuous 2 m SwissALTI
Slope gradient Continuous 2 m SwissALTI
Curvature plan Continuous 2 m SwissALTI
Curvature profile Continuous 2 m SwissALTI
Roughness Continuous 2 m SwissALTI
Flow accumulation Continuous 2 m SwissALTI
Topographic wetness index Continuous 2 m SwissALTI
Distance to roads Continuous 10 m SwissTLM
Distance to streams Continuous 10 m SwissTLM
Road density (500 m radius) Continuous 25 m SwissTLM
Stream density (500 m radius) Continuous 25 m SwissTLM
Max precipitation event (10 years) Continuous 1 km CHELSA
Max precipitation event (5 years) Continuous 1 km CHELSA
Snow days Continuous 1 km CHELSA
Snow cover days Continuous 1 km CHELSA
Growing season length Continuous 1 km CHELSA
Frost change frequency Continuous 1 km CHELSA

Geology (four classes) Categorical 1 : 500 000 Geological Map
Aspect (eight classes) Categorical 2 m SwissALTI

found in Karger and Zimmermann (2019). Since we analyse
10 different sites as well as all sites in one model, we select a
simplified geological data set containing only the three main
rock formation classes (igneous, metamorphic, sedimentary)
and unconsolidated rocks. This reduces the number of classes
in the categorical variable and increases the interpretability
of the model, especially when comparing between sites.

4 Results and discussion

The lasso regression model selects the relevant explanatory
variables and estimates their regression coefficients to predict
the location of shallow landslides. The statistical evaluation
was conducted for all 10 sites individually and for all sites
combined into one large model (all-in-one model). The same
explanatory variables were used for both approaches. Due
to the 20 fivefold cross-validations and random re-samplings
(bootstrapping), the coefficients are estimated 100 times. The
estimated coefficients should be analysed in combination
with the variable inclusion rate, which describes how many
times the explanatory variable was selected by the lasso re-
gression model (100= selected every time) and gives an in-
dication of the importance of the variable.

4.1 Individual-site models

The statistical evaluation of the study sites yields one model
per site (10 models). We combine the results of all 10 sites
in heat maps, showing the median estimated coefficients
(Fig. 5) and their inclusion rate (Fig. 6).

Most sites select slope as the most important variable in
terms of coefficient value as well as the inclusion rate. Only
the sites Baulmes (29 %) and Hornbach (19 %) rarely select
slope and shrink the value of the coefficient towards zero.
These sites are both located outside of the Alpine region
(Jura Mountains and the foothills of the Alps) and on av-
erage have gentler slopes (Baulmes 14◦ and Hornbach 21◦).
Steeper slopes tend to be more susceptible to shallow land-
slides, which is in agreement with other studies that have
found slope to be one of their top predictors (Budimir et al.,
2015; Goetz et al., 2015; Tien Bui et al., 2016; Oh and Lee,
2017; Persichillo et al., 2017; Lombardo and Mai, 2018; Lee
et al., 2020; Nhu et al., 2020a, b).

The aspect was selected most times (84 %–100 %) for all
sites except for Arosa (4 %) and Baulmes (0 %) (Fig. 6). In
Baulmes, this may relate to the fact that there are only 26
mapped shallow landslides available and that all grassland
areas in the valley are located on the south-east-facing slope,
which includes non-landslide points. The rest of this site is
covered with forest, which was not considered for our evalua-
tion. Arosa is located in a wide circular-shaped valley with no
dominant slope expositions, and no typical aspect for shallow
landslides is present. For the remaining eight sites, the sec-
tors ranging from west to north-east are strong indicators of
no shallow landslides occurring, while E–SW-facing slopes
are favourable for shallow landslides (Persichillo et al., 2017;
Lombardo and Mai, 2018). The coefficient size of the indi-
vidual aspect sectors varies slightly from site to site, indicat-
ing that aspect may be more predictive in some areas (e.g.
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Figure 5. Heat map displaying estimates of coefficients (median of 100 estimates) for all 10 sites. Note that not all geological rock classes
are present at all sites (grey line). White boxes are equivalent to coefficients of zero and were therefore never selected for the models.

Urseren or Val Piora) than in others (e.g. Hornbach or Val
Cluozza).

Other important variables which show a high inclusion
rate amongst most sites yet often do not have a large im-
pact concerning the coefficient values are roughness, TWI,
distance to roads or streams, road or stream density, and frost
change frequency. However, these variables were disregarded
for some of the sites (low inclusion rates or even excluded
completely). The coefficients’ values may have a negative or
positive correlation to shallow-landslide points (SLS points),
depending on the sites and the local conditions. Geology is
important for most sites, while sedimentary rocks and uncon-
solidated rocks are either present at the sites or selected for
the model from all available classes. Unconsolidated rocks
are negatively correlated in most cases. They can often be
found near the valley bottom in proximity to streams and
lakes, which tend to be located outside of shallow-landslide
zones. Sedimentary rocks are positively correlated in most
cases but can also show a negative correlation, depending on
the site.

Two sites (Chrauchtal and Val Piora) have been selected
as examples to show detailed results of the models and how

the selection of explanatory variables can differ between sites
(Fig. 7). The boxplots of the estimated coefficients for all
10 sites can be found in the Supplement (Figs. S1–S10).
Chrauchtal is located on the northern side of the Alps, while
Val Piora is located on the southern side. They have oppos-
ing orientations of the main valley axis (N–S and E–W; see
Table 1). Chrauchtal is the site with the highest shallow-
landslide density (2.31 % with 8073 SLS points), which af-
fects the very high inclusion rates for all explanatory vari-
ables (Fig. 6). This also affects the spread of the boxplots,
which show small variability in the coefficient values (Fig. 7
in purple). With the high number of shallow landslides the
variability in coefficients decreases, which means that the
lasso regression estimates very similar coefficient values for
all 100 repetitions. Val Piora has a lower landslide density
(0.49 % with 1116 SLS points). Here, the spread of the box-
plots shows a higher variability for the estimated coefficients
(Fig. 7 in orange). Interquartile ranges are often much wider,
and longer whiskers and outliers are more common than for
the Chrauchtal site. For both sites, slope and aspect are very
important variables in terms of coefficient size and inclusion
rate. S–SW aspect sectors are susceptible to shallow land-
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Figure 6. Heat map displaying the inclusion rate of variables for all 10 sites. The numbers indicate how often variables were selected for
the models out of 100 estimates. Note that not all geological rock classes are present at all sites (grey line). Darker colours show variables
selected more often. White boxes indicate which variables were never selected for the models.

slides, while N–NW-facing slopes are unfavourable. Rough-
ness is negatively correlated for both sites, meaning that
rougher terrain is less favourable to shallow landslides. Vari-
ables with smaller coefficients may also be selected often by
the lasso regression. However, these variables tend to have
different effects depending on local conditions (e.g. distance
to roads and road density, elevation, or TWI).

To assess the prediction skills of the individual-site mod-
els, we calculate the ROC curves and the corresponding AUC
values (Sect. 2.3, Fig. 8). Curves closer to the top left corner
of the plot show models with higher predictive skills (e.g.
Urseren, AUC= 0.865), while curves closer to the diagonal
line have lower predictive skill (e.g. Baulmes, AUC= 0.733).
Confusion matrix scores summarised in Table 3 are based
on a probability threshold of 0.5, which is the best threshold
based on ROC curve evaluation (not shown). Brier scores de-
scribe the accuracy of the predictions, where values closer to
zero indicate better model performance (Sect. 2.3, Fig. 9).
The Urseren site has the best model accuracy (BS= 0.14),
while Baulmes has the lowest score (BS= 0.21, located in
the Jura Mountains with only 26 SLS points). The remain-

ing eight models have BS values that range between 0.16
and 0.19, which is satisfactory. Models of sites with more
SLS points perform better and have a smaller spread of the
bootstrapped BS. Sites with fewer SLS points do not perform
as well. One exception is the Chrauchtal site (BS= 0.18),
which has 8074 SLS points yet does not perform as well as
other sites with fewer points. For models with higher Brier
scores the selected explanatory variables might not have been
suitable enough to predict the location of shallow landslides,
whereas for sites such as Urseren and Val Piora, the available
explanatory variables are well suited to describe the mapped
shallow landslides.

Generally, the number of shallow landslides available at a
site does not necessarily affect the mean estimated value of
coefficients, but the variability in the estimates is smaller, and
the inclusion rates are higher for sites with more data points.
Lower-performing models are for sites located either outside
of the Alpine region (Baulmes, Hornbach) or in the Swiss
National Park (Val Cluozza, only 8 % grassland in the valley)
and have the lowest number of shallow landslides. This may
be because different processes govern shallow landslides that
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Figure 7. Boxplots (with whiskers and outliers) showing the coefficient range with 100 repetitions. Numbers above variable names indicate
the number of times it was selected for the model. Boxes show the interquartile range (25th and 75th percentile), and the line indicates the
median of the coefficients. Chrauchtal and Val Piora are selected from 10 study sites as examples.

Table 3. Confusion matrix derivations using 0.5 for the prediction threshold. Perfect scores are accuracy= 1, bias= 1 (above 1 is overpre-
dicted, while below 1 is underpredicted), true positive rate (TPR)= 1 and false positive rate (FPR)= 0. Site names are abbreviated as follows.
A: Arosa; B: Baulmes; C: Chrauchtal; H: Hornbachtal; R: Rappetal; T: Turbachtal; U: Urserental; VC: Val Cluozza; VE: Val d’Entremont;
VP: Val Piora.

Site A B C H R T U VC VE VP

Accuracy 0.760 0.716 0.727 0.723 0.758 0.741 0.798 0.702 0.717 0.770
Bias 1.023 0.851 1.071 1.066 1.123 1.098 1.081 0.989 1.029 1.083
TPR 0.772 0.641 0.763 0.756 0.819 0.790 0.838 0.697 0.731 0.812
FPR 0.251 0.209 0.308 0.310 0.303 0.308 0.243 0.293 0.298 0.271

are not covered by available variables. Alpine sites perform
better, although performance measures can vary here too.
Sites with better lasso regression model performance may
be better explained with the available explanatory variables
than other sites. Additionally, the better-performing models
are for sites with an east–west orientation of the valley, in-
dependent of the number of shallow landslides. The latter
implies that more slope surfaces are facing either south or
north. South-facing slopes tend to be more susceptible to
shallow landslides in the Alps as the exposition determines
the amount of solar radiation (solar angle and duration). This,
in turn, affects parameters such as evapotranspiration or soil
moisture but also affects snow characteristics such as snow
cover, snow movement or snowmelt, which have a strong
influence on the occurrence of shallow landslides (Schauer,
1975; Moser and Hohensinn, 1983; Tasser et al., 2003; Meus-
burger et al., 2010; Wiegand and Geitner, 2013; Höller, 2014;
Leitinger et al., 2018).

4.2 Performance of slope-only model

As the slope is always the most important predictor for shal-
low landslides in terms of coefficient size and model inclu-
sion rates, a slope-only model was tested for all sites. The
application of the slope-only model indicates how well slope
predicts shallow landslides and how important additional ex-
planatory variables can be. We therefore compare the results
of slope-only models for all sites to the full-variable mod-
els based on their Brier scores (Table 4). Additionally, a no-
slope model containing all predictors except for slope was
included in the evaluation, demonstrating the additional im-
portance of slope (full model) in comparison to all other pre-
dictors. Interestingly, for Baulmes with only 26 SLS points,
the slope-only model performs slightly better than the full
model. Arosa has only a slightly higher BS result for the
full model compared to the slope-only model, which indi-
cates that additional explanatory variables do not improve
the model for Arosa very much. The importance of slope for
Arosa can already be seen in Figs. 5 and 6. For all remaining
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Figure 8. ROC performance measure of the models for all 10 sites.
Plot displays ROC curves with corresponding AUC values.

Figure 9. Performance measure expressed with the Brier score for
the models for all 10 sites. Plot shows boxplots of Brier scores,
where lower Brier scores are indicative of better model perfor-
mance.

sites, additional explanatory variables included in the model
increase the model performance substantially. This is further
supported by the higher BS results of the no-slope models.
The differences between the slope-only, no-slope and the full
models are statistically significant for all sites (paired t test
with p values ≤ 0.05).

Table 4. Brier scores for the slope-only model compared with Brier
scores of the no-slope and full models for all sites. The values dis-
played are median values of the bootstrapped Brier scores (500 rep-
etitions). Lower scores are better (bold font) than higher scores.

Site Slope-only No-slope Full
model

Arosa 0.17031 0.17589 0.17017
Baulmes 0.19803 0.20926 0.21049
Chrauchtal 0.20170 0.19294 0.18277
Hornbach 0.20348 0.19085 0.18979
Rappetal 0.22223 0.17324 0.16944
Turbach 0.20377 0.18349 0.18023
Urseren 0.18088 0.14894 0.14354
Val Cluozza 0.22741 0.19268 0.19141
Val d’Entremont 0.21468 0.18634 0.18627
Val Piora 0.19847 0.16873 0.16000

4.3 Performance of all-in-one model

With the all-in-one model, we evaluate whether the same ex-
planatory variables are important for cross-regional evalua-
tions as for individual site evaluations. As all sites included
in the all-in-one model have different numbers of SLS points,
the sites with more points have a stronger influence on the
model’s outcome.

The all-in-one model places the ROC curve at roughly the
centre of the individual-site models (Fig. 10), which is con-
firmed by the AUC value of 0.786. The same can be stated
for the BS result (BS= 0.186). With a bias of 1.079, the all-
in-one model only slightly over-forecasts shallow-landslide
points, while the overall accuracy of 72.3 % is slightly be-
low the average for the individual-site models (74.1 %). The
true positive rate lies at 76.3 % and the false positive rate at
31.6 %, which is slightly higher than all individual-site mod-
els. Generally, the individual-site models perform better in
most cases as local conditions are important for the overall
accuracy of models. However, the variability in the estimated
coefficients of the all-in-one model is relatively low (Fig. 11),
indicating that the coefficients were estimated similarly when
selected.

The most important variables are comparable to the
individual-site models, with slope and roughness having
the largest coefficients for continuous variables (Goetz
et al., 2015). The categorical variables aspect and geology
show similar behaviour to the individual-site models. The
CHELSA climatology variables (max precipitation events,
snow days and snow cover days, growing season length,
and frost change frequency) were originally included with
the idea that these might have a stronger impact when do-
ing cross-regional evaluations such as this all-in-one model.
From these variables, frost change frequency was selected
the most (88 %). Frost change frequency describes the num-
ber of daily events for which the temperature encompasses
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Figure 10. On the left-hand side, the ROC curve is displayed with the AUC value for the all-in-one model in black (including locations of
probability thresholds) superimposed over the individual-site models in grey. On the right-hand side is the bootstrapped Brier score for the
all-in-one model.

Figure 11. Boxplots showing the coefficient range with 100 repetitions. Numbers above variable names indicate the number of times it was
selected for the model.

zero (Karger and Zimmermann, 2019), yet the estimated co-
efficient is very small. This variable was tested as it may rep-
resent snow movement processes related to freezing–thawing
cycles, yet it was too ambiguous. Other climate variables
were rarely selected. The inclusion of climate variables may
prove helpful when comparing different regions in a “bulk”
perspective (e.g. average landslide density per site) but seem-
ingly not when explaining locations of individual shallow
landslides across different regions. Additionally, the com-
paratively low spatial resolution of the CHELSA data set

(30 arcsec) may not be suitable for such detailed analysis, and
the variables might not represent triggering landslide pro-
cesses well enough.

Additionally, shallow-landslide causes can be manifold,
and singular triggering processes are difficult to assign, and
the timing of the occurrence is often unknown. If possible,
it would be useful to differentiate between triggering fac-
tors of shallow landslides based on visual appearance, as
was suggested by Geitner et al. (2021). With the U-Net ap-
proach used to map the shallow-landslide sites on aerial im-
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Figure 12. Susceptibility maps for the study site Chrauchtal based on the local model and the cross-regional all-in-one model. The suscep-
tibility maps show the probability of shallow landslides occurring at a specific pixel on the map. The difference between the two applied
models are shown on the right-hand side. White areas on the map are not grassland and are therefore not considered.

ages (0.25 m), it is impossible to distinguish between trigger-
ing factors (Samarin et al., 2020; Zweifel et al., 2019). With
higher spatial resolutions of climate variables and a temporal
component to the mapped shallow landslides, it may become
possible to assign triggering processes with such evaluation
techniques. Additional variables such as land-use informa-
tion (e.g. grassland management) could be of great impor-
tance if available in appropriate spatial resolution and high-
enough accuracy for all regions (Meusburger and Alewell,
2009; Budimir et al., 2015). While the explanatory variables
for this study were chosen based on data availability, this
is not an exclusive list of possible predictors. Many studies
have worked towards identifying triggering factors in vary-
ing Alpine regions, such as the effects of land use, snow
processes, precipitation events or vegetation cover (Newe-
sely et al., 2000; Tasser et al., 2003; Rickli and Graf, 2009;
Wiegand and Geitner, 2010, 2013; Meusburger and Alewell,
2008; Meusburger et al., 2013; Von Ruette et al., 2013;
Höller, 2014; Ceaglio et al., 2017; Fromm et al., 2018; Geit-
ner et al., 2021). Therefore, it is difficult to fully quan-
tify all ongoing processes simultaneously in such a com-
plex system as triggering factors are often interlaced (Zweifel
et al., 2019). To ideally represent causal factors for statistical
evaluations of shallow landslides, these important processes
need to be represented with high spatial resolutions, and a
temporal component needs to be included (Meusburger and
Alewell, 2009).

4.3.1 Susceptibility map

The calculated coefficients of the logistic regression may be
used for spatial predictions of shallow-landslide occurrence,
yielding a susceptibility map of the region for the remaining
grassland areas. These susceptibility maps are useful to iden-
tify areas that may likely be affected by shallow landslides
in the future (Barbb, 1984). As an example we used the site
Chrauchtal to apply the coefficients of both the local model
and the cross-regional all-in-one model (Fig. 12). As the co-
efficients are estimated 500 times per model, we use the mean
coefficient values for the prediction process. The results are
very similar; however, to highlight the differences between
the local and cross-regional all-in-one model, a map showing
the differences between the two maps is shown, where red re-
gions show slightly higher probabilities of shallow landslides
in the cross-regional all-in-one model, and blue areas show
slightly higher probabilities in the local model. The blue ar-
eas mainly cover areas at higher elevations, whereas the red
areas are located at lower elevations but are facing south.
Working with cross-regional models allows the general pat-
tern to be caught; however, local hotspots might be missed.

5 Conclusions

In this study we located shallow landslides across 10 study
sites spread across Switzerland. We use the term shallow
landslides to describe the erosion sites, which classifies the
erosion feature without implications for the triggering event.
Using the lasso regression model, we identified the most im-
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portant explanatory variables for these shallow landslides lo-
cated on grassland slopes. Due to the different local con-
ditions of the varying sites, different explanatory variables
were identified as important. Slope and aspect are among the
most important variables. Shallow landslides of sites with an
east–west orientation of the valley axis as well as alpine sites
were better explained by the available explanatory variables
(Urseren, Val Piora, Rappetal and Arosa). This means that
exposition-related processes in mountainous regions are es-
sential for understanding regional patterns (e.g. snowmelt,
snow movement). For the remaining sites, the available se-
lection of explanatory variables was not as well suited, and
therefore important processes could be missed. Sites outside
of the main Alpine region (Baulmes and Hornbach) or lo-
cated in the Swiss National Park (Val Cluozza) have a small
number of SLS points, which were not well explained by the
available variables. Performance scores for individual-site
models range between BS= 0.144, AUC= 0.865 (Urseren)
and BS= 0.210, AUC= 0.733 (Baulmes). Although we find
that slope was the most important variable, predictions using
only slope yield lower accuracies, indicting that additional
variables are important to explain local shallow-landslide
occurrence. An all-in-one model evaluating all 10 sites si-
multaneously found comparable results to the individual-
site models (i.e. slope and aspect), with performance values
of BS= 0.186 and AUC= 0.786. Additionally, this model
showed a relatively strong negative correlation for roughness,
indicating that smooth grassland surfaces are more suscepti-
ble to shallow landslides. The decisive causal factors iden-
tified are generally related to static variables (e.g. geomor-
phological, geological), while the available climate-related
data sets have proven to be less informative on both local
and cross-regional scales. Nevertheless, data sets represent-
ing triggering shallow-landslide conditions and processes in
appropriate spatial resolutions would likely improve model
performance. Studies focusing on understanding small-scale
processes are therefore of great importance, and with data
availability shifting towards open access and higher spatial
resolutions as well as large spatial coverage, such statistical
evaluations may improve in the future.
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Raja, N. B., Çiçek, I., Türkoğlu, N., Aydin, O., and Kawasaki, A.:
Landslide susceptibility mapping of the Sera River Basin using
logistic regression model, Nat. Hazards, 85, 1323–1346, 2017.

Rickli, C. and Graf, F.: Effects of forests on shallow landslides
– case studies in Switzerland, Forest Snow and Landscape Re-
search, 82, 33–44, 2009.

Ronneberger O., Fischer P., and Brox T.: U-Net: Convolutional
Networks for Biomedical Image Segmentation, in: Medical Im-
age Computing and Computer-Assisted Intervention – MICCAI
2015, MICCAI 2015, Lecture Notes in Computer Science, edited
by: Navab N., Hornegger J., Wells W., and Frangi A., vol. 9351,
Springer, Cham, https://doi.org/10.1007/978-3-319-24574-4_28,
2015.

Samarin, M.: bmda-unibas/ErosionSegmentation: Pre-release
(v0.1), Zenodo [code], https://doi.org/10.5281/zenodo.5656831,
2021.

Samarin, M., Zweifel, L., Roth, V., and Alewell, C.: Identifying Soil
Erosion Processes in Alpine Grasslands on Aerial Imagery with a
U-Net Convolutional Neural Network, Remote Sens.-Basel, 12,
4149, https://doi.org/10.3390/rs12244149, 2020.

Schauer, T.: Die Blaikenbildung in den Alpen, Schriftenreihe des
Bayerischen Landesamtes für Wasserwirtschaft, 1, 29, 1975.

Steger, S., Brenning, A., Bell, R., Petschko, H., and Glade, T.: Ex-
ploring discrepancies between quantitative validation results and
the geomorphic plausibility of statistical landslide susceptibility
maps, Geomorphology, 262, 8–23, 2016.

Steyerberg, E. W., Vickers, A. J., Cook, N. R., Gerds, T., Gonen, M.,
Obuchowski, N., Pencina, M. J., and Kattan, M. W.: Assessing
the performance of prediction models: A framework for tradi-
tional and novel measures, Epidemiology, 21, 128–138, 2010.

Stumpf, F., Schneider, M. K., Keller, A., Mayr, A., Rentschler, T.,
Meuli, R. G., Schaepman, M., and Liebisch, F.: Spa-
tial monitoring of grassland management using multi-
temporal satellite imagery, Ecol. Indic., 113, 106201,
https://doi.org/10.1016/j.ecolind.2020.106201, 2020.

Swisstopo: Swissimage, Das digitale Farborthophotomosaik der
Schweiz, Bundesamt für Landestopografie swisstopo, Bern,
2010.

Swisstopo: SwissALTI3D. Das hoch aufgelöste Terrainmodell der
Schweiz, Bundesamt für Landestopografie swisstopo, Bern,
2014.

Swisstopo: SwissTLM3D. Das grossmassstäbliche Topografis-
che Landschaftsmodell der Schweiz, Bundesamt für Landesto-
pografie swisstopo, Bern, 2019.
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