Articles | Volume 21, issue 6
https://doi.org/10.5194/nhess-21-1935-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-21-1935-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Review article: Risk management framework of environmental hazards and extremes in Mediterranean ecosystems
Laboratory of Climatology and Atmospheric Environment, National and
Kapodistrian University of Athens, Athens, Greece
Nicolas R. Dalezios
Department of Civil Engineering, University of Thessaly, Volos, Greece
Ioannis N. Faraslis
Department of Environment, University of Thessaly, Volos, Greece
Kostas Mitrakopoulos
Department of Civil Engineering, University of Thessaly, Volos, Greece
Anna Blanta
Department of Civil Engineering, University of Thessaly, Volos, Greece
Marios Spiliotopoulos
Department of Civil Engineering, University of Thessaly, Volos, Greece
Stavros Sakellariou
Department of Civil Engineering, University of Thessaly, Volos, Greece
Pantelis Sidiropoulos
Department of Civil Engineering, University of Thessaly, Volos, Greece
Ana M. Tarquis
CEIGRAM – Department of Agricultural Engineering, Technical
University of Madrid, Madrid, Spain
Related authors
Anna Karali, Konstantinos V. Varotsos, Christos Giannakopoulos, Panagiotis P. Nastos, and Maria Hatzaki
Nat. Hazards Earth Syst. Sci., 23, 429–445, https://doi.org/10.5194/nhess-23-429-2023, https://doi.org/10.5194/nhess-23-429-2023, 2023
Short summary
Short summary
As climate change leads to more frequent and severe fires, forecasting fire danger before fire season begins can support fire management. This study aims to provide high-resolution probabilistic seasonal fire danger forecasts in a Mediterranean environment and assess their ability to capture years with increased fire activity. Results indicate that forecasts are skillful in predicting above-normal fire danger conditions and can be exploited by regional authorities in fire prevention management.
This article is included in the Encyclopedia of Geosciences
Panagiotis T. Nastos and Nicolas R. Dalezios
Nat. Hazards Earth Syst. Sci., 16, 1259–1268, https://doi.org/10.5194/nhess-16-1259-2016, https://doi.org/10.5194/nhess-16-1259-2016, 2016
K. Papachristopoulou, I. T. Matsangouras, and P. T. Nastos
Adv. Sci. Res., 12, 45–49, https://doi.org/10.5194/asr-12-45-2015, https://doi.org/10.5194/asr-12-45-2015, 2015
P. T. Nastos and I. T. Matsangouras
Nat. Hazards Earth Syst. Sci., 14, 2409–2421, https://doi.org/10.5194/nhess-14-2409-2014, https://doi.org/10.5194/nhess-14-2409-2014, 2014
I. T. Matsangouras, I. Pytharoulis, and P. T. Nastos
Nat. Hazards Earth Syst. Sci., 14, 1905–1919, https://doi.org/10.5194/nhess-14-1905-2014, https://doi.org/10.5194/nhess-14-1905-2014, 2014
Paolo Nasta, Günter Blöschl, Heye R. Bogena, Steffen Zacharias, Roland Baatz, Gabriëlle De Lannoy, Karsten H. Jensen, Salvatore Manfreda, Laurent Pfister, Ana M. Tarquis, Ilja van Meerveld, Marc Voltz, Yijian Zeng, William Kustas, Xin Li, Harry Vereecken, and Nunzio Romano
EGUsphere, https://doi.org/10.5194/egusphere-2024-1678, https://doi.org/10.5194/egusphere-2024-1678, 2024
Short summary
Short summary
The Unsolved Problems in Hydrology (UPH) initiative has emphasized the need to establish networks of multi-decadal hydrological observatories to tackle catchment-scale challenges on a global scale. This opinion paper provocatively discusses two end members of possible future hydrological observatory (HO) networks for a given hypothesized community budget: a comprehensive set of moderately instrumented observatories or, alternatively, a small number of highly instrumented super-sites.
This article is included in the Encyclopedia of Geosciences
Juan J. Martin-Sotoca, Ernesto Sanz, Antonio Saa-Requejo, Rubén Moratiel, Andrés F. Almeida-Ñauñay, and Ana M. Tarquis
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-145, https://doi.org/10.5194/nhess-2023-145, 2023
Manuscript not accepted for further review
Short summary
Short summary
This work includes vegetation (VCI) and water content index (WCI) series from two semiarid rangeland areas in Spain. Based on then, a Z-score for both was calculated to use it as an anomaly index. In this way, we associated negative anomalies with drought episodes. Then, we study the relations of these negative anomalies to see if it is possible to use WCI as an alarm of agronomic drought (VCI negative anomaly). The description of the behaviour of both areas and their comparison are made.
This article is included in the Encyclopedia of Geosciences
Anna Karali, Konstantinos V. Varotsos, Christos Giannakopoulos, Panagiotis P. Nastos, and Maria Hatzaki
Nat. Hazards Earth Syst. Sci., 23, 429–445, https://doi.org/10.5194/nhess-23-429-2023, https://doi.org/10.5194/nhess-23-429-2023, 2023
Short summary
Short summary
As climate change leads to more frequent and severe fires, forecasting fire danger before fire season begins can support fire management. This study aims to provide high-resolution probabilistic seasonal fire danger forecasts in a Mediterranean environment and assess their ability to capture years with increased fire activity. Results indicate that forecasts are skillful in predicting above-normal fire danger conditions and can be exploited by regional authorities in fire prevention management.
This article is included in the Encyclopedia of Geosciences
Jonathan Rizzi, Ana M. Tarquis, Anne Gobin, Mikhail Semenov, Wenwu Zhao, and Paolo Tarolli
Nat. Hazards Earth Syst. Sci., 21, 3873–3877, https://doi.org/10.5194/nhess-21-3873-2021, https://doi.org/10.5194/nhess-21-3873-2021, 2021
Rubén Moratiel, Raquel Bravo, Antonio Saa, Ana M. Tarquis, and Javier Almorox
Nat. Hazards Earth Syst. Sci., 20, 859–875, https://doi.org/10.5194/nhess-20-859-2020, https://doi.org/10.5194/nhess-20-859-2020, 2020
Short summary
Short summary
The estimation of ETo using temperature is particularly attractive in places where air humidity, wind speed and solar radiation data are not readily available. In this study we used, for the estimation of ETo, seven models against Penman–Monteith FAO 56 with temporal (annual and seasonal) and spatial perspective over Duero basin (Spain). The results of the tested models can be useful for adopting appropriate measures for efficient water management under the limitation of agrometeorological data.
This article is included in the Encyclopedia of Geosciences
Irene Blanco-Gutiérrez, Rhys Manners, Consuelo Varela-Ortega, Ana M. Tarquis, Lucieta G. Martorano, and Marisol Toledo
Nat. Hazards Earth Syst. Sci., 20, 797–813, https://doi.org/10.5194/nhess-20-797-2020, https://doi.org/10.5194/nhess-20-797-2020, 2020
Short summary
Short summary
The Amazon rainforest is being destroyed, resulting in negative ecological and social impacts. We explore how stakeholders perceive the causes of the Amazon's degradation in Bolivia and Brazil and develop a series of scenarios to help strengthen the balance between human development and environmental conservation. The results suggest that the application of governance and well-integrated technical and social reform strategies encourages positive regional changes even under climate change.
This article is included in the Encyclopedia of Geosciences
Omar Roberto Valverde-Arias, Paloma Esteve, Ana María Tarquis, and Alberto Garrido
Nat. Hazards Earth Syst. Sci., 20, 345–362, https://doi.org/10.5194/nhess-20-345-2020, https://doi.org/10.5194/nhess-20-345-2020, 2020
Short summary
Short summary
We designed an index-based insurance (IBI) for drought and flood in rice crops in Babahoyo (Ecuador). We assessed Babahoyo's soil, climatic and topographic variability, finding two homogeneous zones inside this area. We set differentiated insurance premiums according to the particular risk status of each zone. Results demonstrate that this IBI is an efficient risk transfer tool for policyholders. This insurance design could contribute to stabilizing farmers' incomes and rice production.
This article is included in the Encyclopedia of Geosciences
María del Pilar Jiménez-Donaire, Ana Tarquis, and Juan Vicente Giráldez
Nat. Hazards Earth Syst. Sci., 20, 21–33, https://doi.org/10.5194/nhess-20-21-2020, https://doi.org/10.5194/nhess-20-21-2020, 2020
Short summary
Short summary
A new combined drought indicator (CDI) is proposed that integrates rainfall, soil moisture and vegetation dynamics. The performance of this indicator was evaluated against crop damage data from agricultural insurance schemes in five different areas in SW Spain. Results show that this indicator was able to predict important droughts in 2004–2005 and 2011–2012, marked by crop damage of between 70 % and 95 % of the total insured area. This opens important applications for improving insurance schemes.
This article is included in the Encyclopedia of Geosciences
Juan José Martín-Sotoca, Antonio Saa-Requejo, Rubén Moratiel, Nicolas Dalezios, Ioannis Faraslis, and Ana María Tarquis
Nat. Hazards Earth Syst. Sci., 19, 1685–1702, https://doi.org/10.5194/nhess-19-1685-2019, https://doi.org/10.5194/nhess-19-1685-2019, 2019
Short summary
Short summary
Vegetation indices based on satellite images, such as the normalized difference vegetation index (NDVI), have been used for damaged pasture insurance. The occurrence of damage is usually defined by NDVI thresholds mainly based on normal statistics. In this work a pasture area in Spain was delimited by MODIS images. A statistical analysis of NDVI was applied to search for alternative distributions. Results show that generalized extreme value distributions present a better fit than normal ones.
This article is included in the Encyclopedia of Geosciences
Carmelo Alonso, Ana M. Tarquis, Ignacio Zúñiga, and Rosa M. Benito
Nonlin. Processes Geophys., 24, 141–155, https://doi.org/10.5194/npg-24-141-2017, https://doi.org/10.5194/npg-24-141-2017, 2017
Short summary
Short summary
NDVI and EVI vegetation indexes, estimated from satellite images, can been used to estimate root zone soil moisture. However, depending on the spatial and radiometric resolution of the sensors used, estimations could change. In this work, images taken by satellites IKONOS-2 and LANDSAT-7 of the same location are compared on the four bands involved in these vegetation indexes. The results show that spatial resolution has a similar scaling effect in the four bands, but not radiometric resolution.
This article is included in the Encyclopedia of Geosciences
Ana M. Tarquis, María Teresa Castellanos, Maria Carmen Cartagena, Augusto Arce, Francisco Ribas, María Jesús Cabello, Juan López de Herrera, and Nigel R. A. Bird
Nonlin. Processes Geophys., 24, 77–87, https://doi.org/10.5194/npg-24-77-2017, https://doi.org/10.5194/npg-24-77-2017, 2017
Short summary
Short summary
Melon crop got different levels of N that constituted a contribution to the variation of soil N at mainly larger scales. During its development a proportion of the N was taken up, adding a second factor of variability at smaller scales. After the melon harvest, the wheat was sown across the plots and harvested at the end of the season. Wheat was used as a N sink crop and allowed us to evaluate the soil N residual. Multiscale and relative entropy were applied to study N scale dependencies.
This article is included in the Encyclopedia of Geosciences
Panagiotis T. Nastos and Nicolas R. Dalezios
Nat. Hazards Earth Syst. Sci., 16, 1259–1268, https://doi.org/10.5194/nhess-16-1259-2016, https://doi.org/10.5194/nhess-16-1259-2016, 2016
K. Papachristopoulou, I. T. Matsangouras, and P. T. Nastos
Adv. Sci. Res., 12, 45–49, https://doi.org/10.5194/asr-12-45-2015, https://doi.org/10.5194/asr-12-45-2015, 2015
N. R. Dalezios, A. Blanta, N. V. Spyropoulos, and A. M. Tarquis
Nat. Hazards Earth Syst. Sci., 14, 2435–2448, https://doi.org/10.5194/nhess-14-2435-2014, https://doi.org/10.5194/nhess-14-2435-2014, 2014
P. T. Nastos and I. T. Matsangouras
Nat. Hazards Earth Syst. Sci., 14, 2409–2421, https://doi.org/10.5194/nhess-14-2409-2014, https://doi.org/10.5194/nhess-14-2409-2014, 2014
I. T. Matsangouras, I. Pytharoulis, and P. T. Nastos
Nat. Hazards Earth Syst. Sci., 14, 1905–1919, https://doi.org/10.5194/nhess-14-1905-2014, https://doi.org/10.5194/nhess-14-1905-2014, 2014
P. Cely, A. M. Tarquis, J. Paz-Ferreiro, A. Méndez, and G. Gascó
Solid Earth, 5, 585–594, https://doi.org/10.5194/se-5-585-2014, https://doi.org/10.5194/se-5-585-2014, 2014
A. Matulka, P. López, J. M. Redondo, and A. Tarquis
Nonlin. Processes Geophys., 21, 269–278, https://doi.org/10.5194/npg-21-269-2014, https://doi.org/10.5194/npg-21-269-2014, 2014
Related subject area
Atmospheric, Meteorological and Climatological Hazards
GTDI: a game-theory-based integrated drought index implying hazard-causing and hazard-bearing impact change
This article is included in the Encyclopedia of Geosciences
Insurance loss model vs. meteorological loss index – how comparable are their loss estimates for European windstorms?
Intense rains in Israel associated with the train effect
Convection-permitting climate model representation of severe convective wind gusts and future changes in southeastern Australia
On the potential of using smartphone sensors for wildfire hazard estimation through citizen science
Global estimates of 100-year return values of daily precipitation from ensemble weather prediction data
Exploring the sensitivity of extreme event attribution of two recent extreme weather events in Sweden using long-running meteorological observations
Probabilistic short-range forecasts of high-precipitation events: optimal decision thresholds and predictability limits
Surprise floods: the role of our imagination in preparing for disasters
Modelling crop hail damage footprints with single-polarization radar: the roles of spatial resolution, hail intensity, and cropland density
Insights into ground strike point properties in Europe through the EUCLID lightning location system
The role of citizen science in assessing the spatiotemporal pattern of rainfall events in urban areas: a case study in the city of Genoa, Italy
Precipitation extremes in Ukraine from 1979 to 2019: climatology, large-scale flow conditions, and moisture sources
Characterizing hail-prone environments using convection-permitting reanalysis and overshooting top detections over south-central Europe
Aircraft engine dust ingestion at global airports
Catchment-scale assessment of drought impact on environmental flow in the Indus Basin, Pakistan
The risk of synoptic-scale Arctic cyclones to shipping
Estimation of future rainfall extreme values by temperature-dependent disaggregation of climate model data
Climatic characteristics of the Jianghuai cyclone and its linkage with precipitation during the Meiyu period from 1961 to 2020
Application of the teaching–learning-based optimization algorithm to an analytical model of thunderstorm outflows to analyze the variability of the downburst kinematic and geometric parameters
Examining the Eastern European heatwave of 2023 from a long-term perspective: the role of natural variability vs. anthropogenic factors
Projections and uncertainties of winter windstorm damage in Europe in a changing climate
Improving seasonal predictions of German Bight storm activity
A satellite view of the exceptionally warm summer of 2022 over Europe
Demographic yearbooks as a source of weather-related fatalities: the Czech Republic, 1919–2022
FOREWARNS: development and multifaceted verification of enhanced regional-scale surface water flood forecasts
Assessment of wind–damage relations for Norway using 36 years of daily insurance data
Interannual variations in the seasonal cycle of extreme precipitation in Germany and the response to climate change
Climatology of large hail in Europe: characteristics of the European Severe Weather Database
Amplified potential for vegetation stress under climate-change-induced intensifying compound extreme events in the Greater Mediterranean Region
Assimilation of surface pressure observations from personal weather stations in AROME-France
An open-source radar-based hail damage model for buildings and cars
Linkages between atmospheric rivers and humid heat across the United States
A modelled multi-decadal hailday time series for Switzerland
Evaluating pySTEPS optical flow algorithms for convection nowcasting over the Maritime Continent using satellite data
Climate change impacts on regional fire weather in heterogeneous landscapes of central Europe
High-resolution projections of ambient heat for major European cities using different heat metrics
Heat wave characteristics: evaluation of regional climate model performances for Germany
Rain-on-snow responses to warmer Pyrenees: a sensitivity analysis using a physically based snow hydrological model
Spatial identification of regions at risk to multi-hazards at pan European level: an implemented methodological approach
Return levels of extreme European windstorms, their dependency on the North Atlantic Oscillation, and potential future risks
Wind as a natural hazard in Poland
Climatological occurrences of hail and tornadoes associated with mesoscale convective systems in the United States
Characteristics of cloud-to-ground lightning (CG) and differences between +CG and −CG strokes in China regarding the China National Lightning Detection Network
The climatology and nature of warm-season convective cells in cold-frontal environments over Germany
Forecasting large hail and lightning using additive logistic regression models and the ECMWF reforecasts
The impact of global navigation satellite system (GNSS) zenith total delay data assimilation on the short-term precipitable water vapor and precipitation forecast over Italy using the Weather Research and Forecasting (WRF) model
Shallow and deep learning of extreme rainfall events from convective atmospheres
Linking reported drought impacts with drought indices, water scarcity and aridity: the case of Kenya
Future heat extremes and impacts in a convection-permitting climate ensemble over Germany
Xiaowei Zhao, Tianzeng Yang, Hongbo Zhang, Tian Lan, Chaowei Xue, Tongfang Li, Zhaoxia Ye, Zhifang Yang, and Yurou Zhang
Nat. Hazards Earth Syst. Sci., 24, 3479–3495, https://doi.org/10.5194/nhess-24-3479-2024, https://doi.org/10.5194/nhess-24-3479-2024, 2024
Short summary
Short summary
To effectively track and identify droughts, we developed a novel integrated drought index that combines the effects of precipitation, temperature, and soil moisture on drought. After comparison and verification, the integrated drought index shows superior performance compared to a single meteorological drought index or agricultural drought index in terms of drought identification.
Julia Moemken, Inovasita Alifdini, Alexandre M. Ramos, Alexandros Georgiadis, Aidan Brocklehurst, Lukas Braun, and Joaquim G. Pinto
Nat. Hazards Earth Syst. Sci., 24, 3445–3460, https://doi.org/10.5194/nhess-24-3445-2024, https://doi.org/10.5194/nhess-24-3445-2024, 2024
Short summary
Short summary
European windstorms regularly cause damage to natural and human-made environments, leading to high socio-economic losses. For the first time, we compare estimates of these losses using a meteorological loss index (LI) and the insurance loss (catastrophe) model of Aon Impact Forecasting. We find that LI underestimates high-impact windstorms compared to the insurance model. Nonetheless, due to its simplicity, LI is an effective index, suitable for estimating impacts and ranking storm events.
This article is included in the Encyclopedia of Geosciences
Baruch Ziv, Uri Dayan, Lidiya Shendrik, and Elyakom Vadislavsky
Nat. Hazards Earth Syst. Sci., 24, 3267–3277, https://doi.org/10.5194/nhess-24-3267-2024, https://doi.org/10.5194/nhess-24-3267-2024, 2024
Short summary
Short summary
The train effect is related to convective cells that pass over the same place. Trains produce heavy rainfall and sometimes floods and are reported in North America during spring and summer. In Israel, 17 trains associated with Cyprus lows were identified by radar images and were found within the cold sector south of the low center and in the left flank of a maximum wind belt; they cross the Israeli coast, with a mean length of 45 km; last 1–3 h; and yield 35 mm of rainfall up to 60 mm.
This article is included in the Encyclopedia of Geosciences
Andrew Brown, Andrew Dowdy, and Todd P. Lane
Nat. Hazards Earth Syst. Sci., 24, 3225–3243, https://doi.org/10.5194/nhess-24-3225-2024, https://doi.org/10.5194/nhess-24-3225-2024, 2024
Short summary
Short summary
A computer model that simulates the climate of southeastern Australia is shown here to represent extreme wind events associated with convective storms. This is useful as it allows us to investigate possible future changes in the occurrences of these events, and we find in the year 2050 that our model simulates a decrease in the number of occurrences. However, the model also simulates too many events in the historical climate compared with observations, so these future changes are uncertain.
This article is included in the Encyclopedia of Geosciences
Hofit Shachaf, Colin Price, Dorita Rostkier-Edelstein, and Cliff Mass
Nat. Hazards Earth Syst. Sci., 24, 3035–3047, https://doi.org/10.5194/nhess-24-3035-2024, https://doi.org/10.5194/nhess-24-3035-2024, 2024
Short summary
Short summary
We have used the temperature and relative humidity sensors in smartphones to estimate the vapor pressure deficit (VPD), an important atmospheric parameter closely linked to fuel moisture and wildfire risk. Our analysis for two severe wildfire case studies in Israel and Portugal shows the potential for using smartphone data to compliment the regular weather station network while also providing high spatial resolution of the VPD index.
This article is included in the Encyclopedia of Geosciences
Florian Ruff and Stephan Pfahl
Nat. Hazards Earth Syst. Sci., 24, 2939–2952, https://doi.org/10.5194/nhess-24-2939-2024, https://doi.org/10.5194/nhess-24-2939-2024, 2024
Short summary
Short summary
High-impact river floods are often caused by extreme precipitation. Flood protection relies on reliable estimates of the return values. Observational time series are too short for a precise calculation. Here, 100-year return values of daily precipitation are estimated on a global grid based on a large set of model-generated precipitation events from ensemble weather prediction. The statistical uncertainties in the return values can be substantially reduced compared to observational estimates.
This article is included in the Encyclopedia of Geosciences
Erik Holmgren and Erik Kjellström
Nat. Hazards Earth Syst. Sci., 24, 2875–2893, https://doi.org/10.5194/nhess-24-2875-2024, https://doi.org/10.5194/nhess-24-2875-2024, 2024
Short summary
Short summary
Associating extreme weather events with changes in the climate remains difficult. We have explored two ways these relationships can be investigated: one using a more common method and one relying solely on long-running records of meteorological observations.
This article is included in the Encyclopedia of Geosciences
Our results show that while both methods lead to similar conclusions for two recent weather events in Sweden, the commonly used method risks underestimating the strength of the connection between the event and changes to the climate.
François Bouttier and Hugo Marchal
Nat. Hazards Earth Syst. Sci., 24, 2793–2816, https://doi.org/10.5194/nhess-24-2793-2024, https://doi.org/10.5194/nhess-24-2793-2024, 2024
Short summary
Short summary
Weather prediction uncertainties can be described as sets of possible scenarios – a technique called ensemble prediction. Our machine learning technique translates them into more easily interpretable scenarios for various users, balancing the detection of high precipitation with false alarms. Key parameters are precipitation intensity and space and time scales of interest. We show that the approach can be used to facilitate warnings of extreme precipitation.
This article is included in the Encyclopedia of Geosciences
Joy Ommer, Jessica Neumann, Milan Kalas, Sophie Blackburn, and Hannah L. Cloke
Nat. Hazards Earth Syst. Sci., 24, 2633–2646, https://doi.org/10.5194/nhess-24-2633-2024, https://doi.org/10.5194/nhess-24-2633-2024, 2024
Short summary
Short summary
What’s the worst that could happen? Recent floods are often claimed to be beyond our imagination. Imagination is the picturing of a situation in our mind and the emotions that we connect with this situation. But why is this important for disasters? This survey found that when we cannot imagine a devastating flood, we are not preparing in advance. Severe-weather forecasts and warnings need to advance in order to trigger our imagination of what might happen and enable us to start preparing.
This article is included in the Encyclopedia of Geosciences
Raphael Portmann, Timo Schmid, Leonie Villiger, David N. Bresch, and Pierluigi Calanca
Nat. Hazards Earth Syst. Sci., 24, 2541–2558, https://doi.org/10.5194/nhess-24-2541-2024, https://doi.org/10.5194/nhess-24-2541-2024, 2024
Short summary
Short summary
The study presents an open-source model to determine the occurrence of hail damage to field crops and grapevines after hailstorms in Switzerland based on radar, agricultural land use data, and insurance damage reports. The model performs best at 8 km resolution for field crops and 1 km for grapevine and in the main production areas. Highlighting performance trade-offs and the relevance of user needs, the study is a first step towards the assessment of risk and damage for crops in Switzerland.
This article is included in the Encyclopedia of Geosciences
Dieter Roel Poelman, Hannes Kohlmann, and Wolfgang Schulz
Nat. Hazards Earth Syst. Sci., 24, 2511–2522, https://doi.org/10.5194/nhess-24-2511-2024, https://doi.org/10.5194/nhess-24-2511-2024, 2024
Short summary
Short summary
EUCLID's lightning data unveil distinctive ground strike point (GSP) patterns in Europe. Over seas, GSPs per flash surpass inland, reaching a minimum in the Alps. Mountainous areas like the Alps and Pyrenees have the closest GSP separation, highlighting terrain elevation's impact. The daily peak current correlates with average GSPs per flash. These findings could significantly influence lightning protection measures, urging a focus on GSP density rather than flash density for risk assessment.
This article is included in the Encyclopedia of Geosciences
Nicola Loglisci, Giorgio Boni, Arianna Cauteruccio, Francesco Faccini, Massimo Milelli, Guido Paliaga, and Antonio Parodi
Nat. Hazards Earth Syst. Sci., 24, 2495–2510, https://doi.org/10.5194/nhess-24-2495-2024, https://doi.org/10.5194/nhess-24-2495-2024, 2024
Short summary
Short summary
We analyse the meteo-hydrological features of the 27 and 28 August 2023 event that occurred in Genoa. Rainfall observations were made using rain gauge networks based on either official networks or citizen science networks. The merged analysis stresses the spatial variability in the precipitation, which cannot be captured by the current spatial density of authoritative stations. Results show that at minimal distances the variations in cumulated rainfall over a sub-hourly duration are significant.
This article is included in the Encyclopedia of Geosciences
Ellina Agayar, Franziska Aemisegger, Moshe Armon, Alexander Scherrmann, and Heini Wernli
Nat. Hazards Earth Syst. Sci., 24, 2441–2459, https://doi.org/10.5194/nhess-24-2441-2024, https://doi.org/10.5194/nhess-24-2441-2024, 2024
Short summary
Short summary
This study presents the results of a climatological investigation of extreme precipitation events (EPEs) in Ukraine for the period 1979–2019. During all seasons EPEs are associated with pronounced upper-level potential vorticity (PV) anomalies. In addition, we find distinct seasonal and regional differences in moisture sources. Several extreme precipitation cases demonstrate the importance of these processes, complemented by a detailed synoptic analysis.
This article is included in the Encyclopedia of Geosciences
Antonio Giordani, Michael Kunz, Kristopher M. Bedka, Heinz Jürgen Punge, Tiziana Paccagnella, Valentina Pavan, Ines M. L. Cerenzia, and Silvana Di Sabatino
Nat. Hazards Earth Syst. Sci., 24, 2331–2357, https://doi.org/10.5194/nhess-24-2331-2024, https://doi.org/10.5194/nhess-24-2331-2024, 2024
Short summary
Short summary
To improve the challenging representation of hazardous hailstorms, a proxy for hail frequency based on satellite detections, convective parameters from high-resolution reanalysis, and crowd-sourced reports is tested and presented. Hail likelihood peaks in mid-summer at 15:00 UTC over northern Italy and shows improved agreement with observations compared to previous estimates. By separating ambient signatures based on hail severity, enhanced appropriateness for large-hail occurrence is found.
This article is included in the Encyclopedia of Geosciences
Claire L. Ryder, Clément Bézier, Helen F. Dacre, Rory Clarkson, Vassilis Amiridis, Eleni Marinou, Emmanouil Proestakis, Zak Kipling, Angela Benedetti, Mark Parrington, Samuel Rémy, and Mark Vaughan
Nat. Hazards Earth Syst. Sci., 24, 2263–2284, https://doi.org/10.5194/nhess-24-2263-2024, https://doi.org/10.5194/nhess-24-2263-2024, 2024
Short summary
Short summary
Desert dust poses a hazard to aircraft via degradation of engine components. This has financial implications for the aviation industry and results in increased fuel burn with climate impacts. Here we quantify dust ingestion by aircraft engines at airports worldwide. We find Dubai and Delhi in summer are among the dustiest airports, where substantial engine degradation would occur after 1000 flights. Dust ingestion can be reduced by changing take-off times and the altitude of holding patterns.
This article is included in the Encyclopedia of Geosciences
Khalil Ur Rahman, Songhao Shang, Khaled Saeed Balkhair, Hamza Farooq Gabriel, Khan Zaib Jadoon, and Kifayat Zaman
Nat. Hazards Earth Syst. Sci., 24, 2191–2214, https://doi.org/10.5194/nhess-24-2191-2024, https://doi.org/10.5194/nhess-24-2191-2024, 2024
Short summary
Short summary
This paper assesses the impact of drought (meteorological drought) on the hydrological alterations in major rivers of the Indus Basin. Threshold regression and range of variability analysis are used to determine the drought severity and times where drought has caused low flows and extreme low flows (identified using indicators of hydrological alterations). Moreover, this study also examines the degree of alterations in river flows due to drought using the hydrological alteration factor.
This article is included in the Encyclopedia of Geosciences
Alexander Frank Vessey, Kevin I. Hodges, Len C. Shaffrey, and Jonathan J. Day
Nat. Hazards Earth Syst. Sci., 24, 2115–2132, https://doi.org/10.5194/nhess-24-2115-2024, https://doi.org/10.5194/nhess-24-2115-2024, 2024
Short summary
Short summary
The risk posed to ships by Arctic cyclones has seldom been quantified due to the lack of publicly available historical Arctic ship track data. This study investigates historical Arctic ship tracks, cyclone tracks, and shipping incident reports to determine the number of shipping incidents caused by the passage of Arctic cyclones. Results suggest that Arctic cyclones have not been hazardous to ships and that ships are resilient to the rough sea conditions caused by Arctic cyclones.
This article is included in the Encyclopedia of Geosciences
Niklas Ebers, Kai Schröter, and Hannes Müller-Thomy
Nat. Hazards Earth Syst. Sci., 24, 2025–2043, https://doi.org/10.5194/nhess-24-2025-2024, https://doi.org/10.5194/nhess-24-2025-2024, 2024
Short summary
Short summary
Future changes in sub-daily rainfall extreme values are essential in various hydrological fields, but climate scenarios typically offer only daily resolution. One solution is rainfall generation. With a temperature-dependent rainfall generator climate scenario data were disaggregated to 5 min rainfall time series for 45 locations across Germany. The analysis of the future 5 min rainfall time series showed an increase in the rainfall extremes values for rainfall durations of 5 min and 1 h.
This article is included in the Encyclopedia of Geosciences
Ran Zhu and Lei Chen
Nat. Hazards Earth Syst. Sci., 24, 1937–1950, https://doi.org/10.5194/nhess-24-1937-2024, https://doi.org/10.5194/nhess-24-1937-2024, 2024
Short summary
Short summary
There is a positive correlation between the frequency of Jianghuai cyclone activity and precipitation during the Meiyu period. Its occurrence frequency has an obvious decadal variation, which corresponds well with the quasi-periodic and decadal variation in precipitation during the Meiyu period. This study provides a reference for the long-term and short-term forecasting of precipitation during the Meiyu period.
This article is included in the Encyclopedia of Geosciences
Andi Xhelaj and Massimiliano Burlando
Nat. Hazards Earth Syst. Sci., 24, 1657–1679, https://doi.org/10.5194/nhess-24-1657-2024, https://doi.org/10.5194/nhess-24-1657-2024, 2024
Short summary
Short summary
The study provides an in-depth analysis of a severe downburst event in Sânnicolau Mare, Romania, utilizing an analytical model and optimization algorithm. The goal is to explore a multitude of generating solutions and to identify potential alternatives to the optimal solution. Advanced data analysis techniques help to discern three main distinct storm scenarios. For this particular event, the best overall solution from the optimization algorithm shows promise in reconstructing the downburst.
This article is included in the Encyclopedia of Geosciences
Monica Ionita, Petru Vaideanu, Bogdan Antonescu, Catalin Roibu, Qiyun Ma, and Viorica Nagavciuc
EGUsphere, https://doi.org/10.5194/egusphere-2024-1207, https://doi.org/10.5194/egusphere-2024-1207, 2024
Short summary
Short summary
Eastern Europe's heatwave history is explored from 1885 to 2023, with a focus on pre-1960 events. The study reveals two periods with more frequent and intense heatwaves (HW): 1920s–1960s and 1980s–present. The research highlights the importance of a long-term perspective, revealing that extreme heat events have occurred throughout the entire study period and it emphasizes the combined influence of climate change and natural variations on increasing HW severity.
This article is included in the Encyclopedia of Geosciences
Luca G. Severino, Chahan M. Kropf, Hilla Afargan-Gerstman, Christopher Fairless, Andries Jan de Vries, Daniela I. V. Domeisen, and David N. Bresch
Nat. Hazards Earth Syst. Sci., 24, 1555–1578, https://doi.org/10.5194/nhess-24-1555-2024, https://doi.org/10.5194/nhess-24-1555-2024, 2024
Short summary
Short summary
We combine climate projections from 30 climate models with a climate risk model to project winter windstorm damages in Europe under climate change. We study the uncertainty and sensitivity factors related to the modelling of hazard, exposure and vulnerability. We emphasize high uncertainties in the damage projections, with climate models primarily driving the uncertainty. We find climate change reshapes future European windstorm risk by altering damage locations and intensity.
This article is included in the Encyclopedia of Geosciences
Daniel Krieger, Sebastian Brune, Johanna Baehr, and Ralf Weisse
Nat. Hazards Earth Syst. Sci., 24, 1539–1554, https://doi.org/10.5194/nhess-24-1539-2024, https://doi.org/10.5194/nhess-24-1539-2024, 2024
Short summary
Short summary
Previous studies found that climate models can predict storm activity in the German Bight well for averages of 5–10 years but struggle in predicting the next winter season. Here, we improve winter storm activity predictions by linking them to physical phenomena that occur before the winter. We guess the winter storm activity from these phenomena and discard model solutions that stray too far from the guess. The remaining solutions then show much higher prediction skill for storm activity.
This article is included in the Encyclopedia of Geosciences
João P. A. Martins, Sara Caetano, Carlos Pereira, Emanuel Dutra, and Rita M. Cardoso
Nat. Hazards Earth Syst. Sci., 24, 1501–1520, https://doi.org/10.5194/nhess-24-1501-2024, https://doi.org/10.5194/nhess-24-1501-2024, 2024
Short summary
Short summary
Over Europe, 2022 was truly exceptional in terms of extreme heat conditions, both in terms of temperature anomalies and their temporal and spatial extent. The satellite all-sky land surface temperature (LST) is used to provide a climatological context to extreme heat events. Where drought conditions prevail, LST anomalies are higher than 2 m air temperature anomalies. ERA5-Land does not represent this effect correctly due to a misrepresentation of vegetation anomalies.
This article is included in the Encyclopedia of Geosciences
Rudolf Brázdil, Kateřina Chromá, and Pavel Zahradníček
Nat. Hazards Earth Syst. Sci., 24, 1437–1457, https://doi.org/10.5194/nhess-24-1437-2024, https://doi.org/10.5194/nhess-24-1437-2024, 2024
Short summary
Short summary
The official mortality data in the Czech Republic in 1919–2022 are used to show long-term fluctuations in the number of fatalities caused by excessive natural cold and heat, lightning, natural disasters, and falls on ice/snow, as well as the sex and age of the deceased, based on certain meteorological, historical, and socioeconomic factors that strongly influence changes in the number and structure of such fatalities. Knowledge obtained is usable in risk management for the preservation of lives.
This article is included in the Encyclopedia of Geosciences
Ben Maybee, Cathryn E. Birch, Steven J. Böing, Thomas Willis, Linda Speight, Aurore N. Porson, Charlie Pilling, Kay L. Shelton, and Mark A. Trigg
Nat. Hazards Earth Syst. Sci., 24, 1415–1436, https://doi.org/10.5194/nhess-24-1415-2024, https://doi.org/10.5194/nhess-24-1415-2024, 2024
Short summary
Short summary
This paper presents the development and verification of FOREWARNS, a novel method for regional-scale forecasting of surface water flooding. We detail outcomes from a workshop held with UK forecast users, who indicated they valued the forecasts and would use them to complement national guidance. We use results of objective forecast tests against flood observations over northern England to show that this confidence is justified and that FOREWARNS meets the needs of UK flood responders.
This article is included in the Encyclopedia of Geosciences
Ashbin Jaison, Asgeir Sorteberg, Clio Michel, and Øyvind Breivik
Nat. Hazards Earth Syst. Sci., 24, 1341–1355, https://doi.org/10.5194/nhess-24-1341-2024, https://doi.org/10.5194/nhess-24-1341-2024, 2024
Short summary
Short summary
The present study uses daily insurance losses and wind speeds to fit storm damage functions at the municipality level of Norway. The results show that the damage functions accurately estimate losses associated with extreme damaging events and can reconstruct their spatial patterns. However, there is no single damage function that performs better than another. A newly devised damage–no-damage classifier shows some skill in predicting extreme damaging events.
This article is included in the Encyclopedia of Geosciences
Madlen Peter, Henning W. Rust, and Uwe Ulbrich
Nat. Hazards Earth Syst. Sci., 24, 1261–1285, https://doi.org/10.5194/nhess-24-1261-2024, https://doi.org/10.5194/nhess-24-1261-2024, 2024
Short summary
Short summary
The paper introduces a statistical modeling approach describing daily extreme precipitation in Germany more accurately by including changes within the year and between the years simultaneously. The changing seasonality over years is regionally divergent and mainly weak. However, some regions stand out with a more pronounced linear rise of summer intensities, indicating a possible climate change signal. Improved modeling of extreme precipitation is beneficial for risk assessment and adaptation.
This article is included in the Encyclopedia of Geosciences
Faye Hulton and David M. Schultz
Nat. Hazards Earth Syst. Sci., 24, 1079–1098, https://doi.org/10.5194/nhess-24-1079-2024, https://doi.org/10.5194/nhess-24-1079-2024, 2024
Short summary
Short summary
Large hail devastates crops and property and can injure and kill people and livestock. Hail reports are collected by individual countries, so understanding where and when large hail occurs across Europe is an incomplete undertaking. We use the European Severe Weather Database to evaluate the quality of reports by year and by country since 2000. Despite its short record, the dataset appears to represent aspects of European large-hail climatology reliably.
This article is included in the Encyclopedia of Geosciences
Patrick Olschewski, Mame Diarra Bousso Dieng, Hassane Moutahir, Brian Böker, Edwin Haas, Harald Kunstmann, and Patrick Laux
Nat. Hazards Earth Syst. Sci., 24, 1099–1134, https://doi.org/10.5194/nhess-24-1099-2024, https://doi.org/10.5194/nhess-24-1099-2024, 2024
Short summary
Short summary
We applied a multivariate and dependency-preserving bias correction method to climate model output for the Greater Mediterranean Region and investigated potential changes in false-spring events (FSEs) and heat–drought compound events (HDCEs). Results project an increase in the frequency of FSEs in middle and late spring as well as increases in frequency, intensity, and duration for HDCEs. This will potentially aggravate the risk of crop loss and failure and negatively impact food security.
This article is included in the Encyclopedia of Geosciences
Alan Demortier, Marc Mandement, Vivien Pourret, and Olivier Caumont
Nat. Hazards Earth Syst. Sci., 24, 907–927, https://doi.org/10.5194/nhess-24-907-2024, https://doi.org/10.5194/nhess-24-907-2024, 2024
Short summary
Short summary
Improvements in numerical weather prediction models make it possible to warn of hazardous weather situations. The incorporation of new observations from personal weather stations into the French limited-area model is evaluated. It leads to a significant improvement in the modelling of the surface pressure field up to 9 h ahead. Their incorporation improves the location and intensity of the heavy precipitation event that occurred in the South of France in September 2021.
This article is included in the Encyclopedia of Geosciences
Timo Schmid, Raphael Portmann, Leonie Villiger, Katharina Schröer, and David N. Bresch
Nat. Hazards Earth Syst. Sci., 24, 847–872, https://doi.org/10.5194/nhess-24-847-2024, https://doi.org/10.5194/nhess-24-847-2024, 2024
Short summary
Short summary
Hailstorms cause severe damage to buildings and cars, which motivates a detailed risk assessment. Here, we present a new open-source hail damage model based on radar data in Switzerland. The model successfully estimates the correct order of magnitude of car and building damages for most large hail events over 20 years. However, large uncertainty remains in the geographical distribution of modelled damages, which can be improved for individual events by using crowdsourced hail reports.
This article is included in the Encyclopedia of Geosciences
Colin Raymond, Anamika Shreevastava, Emily Slinskey, and Duane Waliser
Nat. Hazards Earth Syst. Sci., 24, 791–801, https://doi.org/10.5194/nhess-24-791-2024, https://doi.org/10.5194/nhess-24-791-2024, 2024
Short summary
Short summary
How can we systematically understand what causes high levels of atmospheric humidity and thus heat stress? Here we argue that atmospheric rivers can be a useful tool, based on our finding that in several US regions, atmospheric rivers and humid heat occur close together in space and time. Most typically, an atmospheric river transports moisture which heightens heat stress, with precipitation following a day later. These effects tend to be larger for stronger and more extensive systems.
This article is included in the Encyclopedia of Geosciences
Lena Wilhelm, Cornelia Schwierz, Katharina Schröer, Mateusz Taszarek, and Olivia Martius
EGUsphere, https://doi.org/10.5194/egusphere-2024-371, https://doi.org/10.5194/egusphere-2024-371, 2024
Short summary
Short summary
In our study we used statistical models to reconstruct past haildays in Switzerland from 1959–2022. This new timeseries reveals a significant increase in hail occurrences over the last seven decades. We link this trend to climate factors, showcasing the impact of increasing moisture and instability in the atmosphere. The last two decades have seen a surge in early hailseason events. This time series can now be used to study what drives the strong year-to-year variability of Swiss hailstorms.
This article is included in the Encyclopedia of Geosciences
Joseph Smith, Cathryn Birch, John Marsham, Simon Peatman, Massimo Bollasina, and George Pankiewicz
Nat. Hazards Earth Syst. Sci., 24, 567–582, https://doi.org/10.5194/nhess-24-567-2024, https://doi.org/10.5194/nhess-24-567-2024, 2024
Short summary
Short summary
Nowcasting uses observations to make predictions of the atmosphere on short timescales and is particularly applicable to the Maritime Continent, where storms rapidly develop and cause natural disasters. This paper evaluates probabilistic and deterministic satellite nowcasting algorithms over the Maritime Continent. We show that the probabilistic approach is most skilful at small scales (~ 60 km), whereas the deterministic approach is most skilful at larger scales (~ 200 km).
This article is included in the Encyclopedia of Geosciences
Julia Miller, Andrea Böhnisch, Ralf Ludwig, and Manuela I. Brunner
Nat. Hazards Earth Syst. Sci., 24, 411–428, https://doi.org/10.5194/nhess-24-411-2024, https://doi.org/10.5194/nhess-24-411-2024, 2024
Short summary
Short summary
We assess the impacts of climate change on fire danger for 1980–2099 in different landscapes of central Europe, using the Canadian Forest Fire Weather Index (FWI) as a fire danger indicator. We find that today's 100-year FWI event will occur every 30 years by 2050 and every 10 years by 2099. High fire danger (FWI > 21.3) becomes the mean condition by 2099 under an RCP8.5 scenario. This study highlights the potential for severe fire events in central Europe from a meteorological perspective.
This article is included in the Encyclopedia of Geosciences
Clemens Schwingshackl, Anne Sophie Daloz, Carley Iles, Kristin Aunan, and Jana Sillmann
Nat. Hazards Earth Syst. Sci., 24, 331–354, https://doi.org/10.5194/nhess-24-331-2024, https://doi.org/10.5194/nhess-24-331-2024, 2024
Short summary
Short summary
Ambient heat in European cities will substantially increase under global warming, as projected by three heat metrics calculated from high-resolution climate model simulations. While the heat metrics consistently project high levels of ambient heat for several cities, in other cities the projected heat levels vary considerably across the three heat metrics. Using complementary heat metrics for projections of ambient heat is thus important for assessments of future risks from heat stress.
This article is included in the Encyclopedia of Geosciences
Dragan Petrovic, Benjamin Fersch, and Harald Kunstmann
Nat. Hazards Earth Syst. Sci., 24, 265–289, https://doi.org/10.5194/nhess-24-265-2024, https://doi.org/10.5194/nhess-24-265-2024, 2024
Short summary
Short summary
The influence of model resolution and settings on the reproduction of heat waves in Germany between 1980–2009 is analyzed. Outputs from a high-resolution model with settings tailored to the target region are compared to those from coarser-resolution models with more general settings. Neither the increased resolution nor the tailored model settings are found to add significant value to the heat wave simulation. The models exhibit a large spread, indicating that the choice of model can be crucial.
This article is included in the Encyclopedia of Geosciences
Josep Bonsoms, Juan I. López-Moreno, Esteban Alonso-González, César Deschamps-Berger, and Marc Oliva
Nat. Hazards Earth Syst. Sci., 24, 245–264, https://doi.org/10.5194/nhess-24-245-2024, https://doi.org/10.5194/nhess-24-245-2024, 2024
Short summary
Short summary
Climate warming is changing mountain snowpack patterns, leading in some cases to rain-on-snow (ROS) events. Here we analyzed near-present ROS and its sensitivity to climate warming across the Pyrenees. ROS increases during the coldest months of the year but decreases in the warmest months and areas under severe warming due to snow cover depletion. Faster snow ablation is anticipated in the coldest and northern slopes of the range. Relevant implications in mountain ecosystem are anticipated.
This article is included in the Encyclopedia of Geosciences
Tiberiu-Eugen Antofie, Stefano Luoni, Alois Tilloy, Andrea Sibilia, Sandro Salari, Gustav Eklund, Davide Rodomonti, Christos Bountzouklis, and Christina Corbane
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-220, https://doi.org/10.5194/nhess-2023-220, 2024
Revised manuscript under review for NHESS
Short summary
Short summary
This is the first study that uses spatial patterns (clusters/hot-spots) and meta-analysis in order to identify the regions at European level at risk to multi-hazards. The findings point out the socio-economic dimension as determinant factor for the risk potential to multi-hazard. The outcome provides valuable input for the Disaster Risk Management policy support and will assist national authorities on the implementation of a multi-hazard approach in the National Risk Assessments preparation.
This article is included in the Encyclopedia of Geosciences
Matthew D. K. Priestley, David B. Stephenson, Adam A. Scaife, Daniel Bannister, Christopher J. T. Allen, and David Wilkie
Nat. Hazards Earth Syst. Sci., 23, 3845–3861, https://doi.org/10.5194/nhess-23-3845-2023, https://doi.org/10.5194/nhess-23-3845-2023, 2023
Short summary
Short summary
This research presents a model for estimating extreme gusts associated with European windstorms. Using observed storm footprints we are able to calculate the return level of events at the 200-year return period. The largest gusts are found across NW Europe, and these are larger when the North Atlantic Oscillation is positive. Using theoretical future climate states we find that return levels are likely to increase across NW Europe to levels that are unprecedented compared to historical storms.
This article is included in the Encyclopedia of Geosciences
Tadeusz Chmielewski and Piotr A. Bońkowski
Nat. Hazards Earth Syst. Sci., 23, 3839–3844, https://doi.org/10.5194/nhess-23-3839-2023, https://doi.org/10.5194/nhess-23-3839-2023, 2023
Short summary
Short summary
The paper deals with wind speeds of extreme wind events in Poland and the descriptions of their effects. Two recent estimations developed by the Institute of Meteorology and Water Management in Warsaw and by Halina Lorenc are presented and briefly described. The 37 annual maximum gusts of wind speeds measured between 1971 and 2007 are analysed. Based on the measured and estimated wind speeds, the authors suggest new estimations for extreme winds that may occur in Poland.
This article is included in the Encyclopedia of Geosciences
Jingyu Wang, Jiwen Fan, and Zhe Feng
Nat. Hazards Earth Syst. Sci., 23, 3823–3838, https://doi.org/10.5194/nhess-23-3823-2023, https://doi.org/10.5194/nhess-23-3823-2023, 2023
Short summary
Short summary
Hail and tornadoes are devastating hazards responsible for significant property damage and economic losses in the United States. Quantifying the connection between hazard events and mesoscale convective systems (MCSs) is of great significance for improving predictability, as well as for better understanding the influence of the climate-scale perturbations. A 14-year statistical dataset of MCS-related hazard production is presented.
This article is included in the Encyclopedia of Geosciences
Ruijiao Jiang, Guoping Zhang, Shudong Wang, Bing Xue, Zhengshuai Xie, Tingzhao Yu, Kuoyin Wang, Jin Ding, and Xiaoxiang Zhu
Nat. Hazards Earth Syst. Sci., 23, 3747–3759, https://doi.org/10.5194/nhess-23-3747-2023, https://doi.org/10.5194/nhess-23-3747-2023, 2023
Short summary
Short summary
Lightning activity in China is analyzed. Low latitudes, undulating terrain, seaside, and humid surfaces are beneficial for lightning occurrence. Summer of the year or afternoon of the day is the high period. Large cloud-to-ground lightning frequency always corresponds to a small ratio and weak intensity of positive cloud-to-ground lightning on either a temporal or spatial scale. Interestingly, the discharge intensity difference between the two types of lightning shrinks on the Tibetan Plateau.
This article is included in the Encyclopedia of Geosciences
George Pacey, Stephan Pfahl, Lisa Schielicke, and Kathrin Wapler
Nat. Hazards Earth Syst. Sci., 23, 3703–3721, https://doi.org/10.5194/nhess-23-3703-2023, https://doi.org/10.5194/nhess-23-3703-2023, 2023
Short summary
Short summary
Cold fronts are often associated with areas of intense precipitation (cells) and sometimes with hazards such as flooding, hail and lightning. We find that cold-frontal cell days are associated with higher cell frequency and cells are typically more intense. We also show both spatially and temporally where cells are most frequent depending on their cell-front distance. These results are an important step towards a deeper understanding of cold-frontal storm climatology and improved forecasting.
This article is included in the Encyclopedia of Geosciences
Francesco Battaglioli, Pieter Groenemeijer, Ivan Tsonevsky, and Tomàš Púčik
Nat. Hazards Earth Syst. Sci., 23, 3651–3669, https://doi.org/10.5194/nhess-23-3651-2023, https://doi.org/10.5194/nhess-23-3651-2023, 2023
Short summary
Short summary
Probabilistic models for lightning and large hail were developed across Europe using lightning observations and hail reports. These models accurately predict the occurrence of lightning and large hail several days in advance. In addition, the hail model was shown to perform significantly better than the state-of-the-art forecasting methods. These results suggest that the models developed in this study may help improve forecasting of convective hazards and eventually limit the associated risks.
This article is included in the Encyclopedia of Geosciences
Rosa Claudia Torcasio, Alessandra Mascitelli, Eugenio Realini, Stefano Barindelli, Giulio Tagliaferro, Silvia Puca, Stefano Dietrich, and Stefano Federico
Nat. Hazards Earth Syst. Sci., 23, 3319–3336, https://doi.org/10.5194/nhess-23-3319-2023, https://doi.org/10.5194/nhess-23-3319-2023, 2023
Short summary
Short summary
This work shows how local observations can improve precipitation forecasting for severe weather events. The improvement lasts for at least 6 h of forecast.
This article is included in the Encyclopedia of Geosciences
Gerd Bürger and Maik Heistermann
Nat. Hazards Earth Syst. Sci., 23, 3065–3077, https://doi.org/10.5194/nhess-23-3065-2023, https://doi.org/10.5194/nhess-23-3065-2023, 2023
Short summary
Short summary
Our subject is a new catalogue of radar-based heavy rainfall events (CatRaRE) over Germany and how it relates to the concurrent atmospheric circulation. We classify reanalyzed daily atmospheric fields of convective indices according to CatRaRE, using conventional statistical and more recent machine learning algorithms, and apply them to present and future atmospheres. Increasing trends are projected for CatRaRE-type probabilities, from reanalyzed as well as from simulated atmospheric fields.
This article is included in the Encyclopedia of Geosciences
Marleen R. Lam, Alessia Matanó, Anne F. Van Loon, Rhoda A. Odongo, Aklilu D. Teklesadik, Charles N. Wamucii, Marc J. C. van den Homberg, Shamton Waruru, and Adriaan J. Teuling
Nat. Hazards Earth Syst. Sci., 23, 2915–2936, https://doi.org/10.5194/nhess-23-2915-2023, https://doi.org/10.5194/nhess-23-2915-2023, 2023
Short summary
Short summary
There is still no full understanding of the relation between drought impacts and drought indices in the Horn of Africa where water scarcity and arid regions are also present. This study assesses their relation in Kenya. A random forest model reveals that each region, aggregated by aridity, has its own set of predictors for every impact category. Water scarcity was not found to be related to aridity. Understanding these relations contributes to the development of drought early warning systems.
This article is included in the Encyclopedia of Geosciences
Marie Hundhausen, Hendrik Feldmann, Natalie Laube, and Joaquim G. Pinto
Nat. Hazards Earth Syst. Sci., 23, 2873–2893, https://doi.org/10.5194/nhess-23-2873-2023, https://doi.org/10.5194/nhess-23-2873-2023, 2023
Short summary
Short summary
Using a convection-permitting regional climate ensemble, the magnitude of heat waves (HWs) over Germany is projected to increase by 26 % (100 %) in a 2 °C (3 °C) warmer world. The increase is strongest in late summer, relatively homogeneous in space, and accompanied by increasing variance in HW length. Tailored parameters to climate adaptation to heat revealed dependency on major landscapes, and a nonlinear, exponential increase for parameters characterizing strong heat stress is expected.
This article is included in the Encyclopedia of Geosciences
Cited articles
Akhtar, N., Brauch, J., Dobler, A., Béranger, K., and Ahrens, B.: Medicanes in an ocean–atmosphere coupled regional climate model, Nat. Hazards Earth Syst. Sci., 14, 2189–2201, https://doi.org/10.5194/nhess-14-2189-2014, 2014.
Alexakis, D. D., Grillakis, M. G., Koutroulis, A. G., Agapiou, A., Themistocleous, K., Tsanis, I. K., Michaelides, S., Pashiardis, S., Demetriou, C., Aristeidou, K., Retalis, A., Tymvios, F., and Hadjimitsis, D. G.: GIS and remote sensing techniques for the assessment of land use change impact on flood hydrology: the case study of Yialias basin in Cyprus, Nat. Hazards Earth Syst. Sci., 14, 413–426, https://doi.org/10.5194/nhess-14-413-2014, 2014.
Alexander, L. V., Zhang, X., Peterson, T. C., Caesar, J., Gleason, B., Klein Tank, A. M. G., Haylock, M., Collins, D., Trewin, B., Rahimzadeh, F.,
Tagipour, A., Rupa Kumar, K. M., New, M., Zhai, P., Rusticucci, M., and
Vazquez-Aguirre, J. L.: Global observed changes in Revadekar, J., Griffiths,
G., Vincent, L., Stephenson, D. B., Burn, J., Aguilar, E., Brunet, M.,
Taylor, M., New, M., Zhai, P., Rusticucci, M., and Vazquez-Aguirre, J. L.: Global observed changes in daily climate extremes of temperature and precipitation, J. Geophys. Res., 111, D05109, https://doi.org/10.1029/2005JD006290, 2006.
Barriopedro, D., Fischer, E. M., Luterbacher, J., Trigo, R. M., and
García-Herrera, R.: The Hot Summer of 2010: Redrawing the Temperature
Record Map of Europe, Science, 332, 220–224, https://doi.org/10.1126/science.1201224, 2011.
Benhamrouche, A., Boucherf, D., Hamadache, R., Bendahmane, L., Martin-Vide, J., and Teixeira Nery, J.: Spatial distribution of the daily precipitation concentration index in Algeria, Nat. Hazards Earth Syst. Sci., 15, 617–625, https://doi.org/10.5194/nhess-15-617-2015, 2015.
Beniston, M., Stephenson, D. B., Christensen, O. B., Ferro, C. A. T., Frei,
C., Goyette, S., Halsnaes, K., Holt, T., Jylhä, K., Koffi, B., Palutikof, J., Schöll, R., Semmler, T., and Woth, K.: Current and future
extreme climatic events in Europe: observations and modeling studies conducted within the EU PRUDENCE project, Climatic Change, 81, 71–95, 2007.
Bornstein, R. and Lin, Q.: Urban Heat Island and Summer Time Convective
Thunderstorms in Atlanta: Three Case Studies, Atmos. Environ., 34, 507–516, https://doi.org/10.1016/S1352-2310(99)00374-X, 2000.
Bovio, G., Quaglino, A., and Nosenzo, A.: Individuazione di un indice di
previsione per il Pericolo di Incendi Boschivi, Montie Boschi Anno XXXV(4),
Boca Raton, Florida, USA, 39–44, 1984.
Brázdil, R., Chromá, K., Dobrovolný, P., and Černoch, Z.:
The tornado history of the Czech Lands, AD 1119–2010, Atmos. Res., 118,
193–204, 2012.
Burić, D., Luković, J., Ducić, V., Dragojlović, J., and Doderović, M.: Recent trends in daily temperature extremes over southern Montenegro (1951–2010), Nat. Hazards Earth Syst. Sci., 14, 67–72, https://doi.org/10.5194/nhess-14-67-2014, 2014.
Businger, S. and Reed, R.: Cyclogenesis in cold air masses, Weather Forecast., 20, 133–156, 1989.
Cicek, I. and Turkoglu, N.: Urban Effects on Precipitation in Ankara, Atmosfera, 18, 173–187, 2005.
Dalezios, N. R. (Ed.): Environmental Hazards Methodologies for Risk Assessment and Management, IWA, London, UK, ISBN 9781780407128, p. 534, 2017.
Dalezios, N. R.: Drought and Remote Sensing: An Overview, in: Book chap. 1,
Remote Sensing of Hydrometeorological Hazards, edited by: Petropoulos, G. P. and Islam, T., Taylor and Francis, Boca Raton, Florida, USA, 3–32, 2018.
Dalezios, N. R. and Eslamian, S.: Regional Design Storm for Greece within the
Flood Risk Management Framework, Int. J. Hydrol. Sci. Technol., 6, 82–102, 2016.
Dalezios, N. R., Loukas, A., Vasiliades, L., and Liakopoulos, H.: Severity-Duration-Frequency Analysis of Droughts and Wet Periods in Greece,
Hydrol. Sci., 45, 751–769, 2000.
Dalezios, N. R., Blanta, A., and Spyropoulos, N. V.: Assessment of remotely sensed drought features in vulnerable agriculture, Nat. Hazards Earth Syst. Sci., 12, 3139–3150, https://doi.org/10.5194/nhess-12-3139-2012, 2012.
Dalezios, N. R., Blanta, A., Spyropoulos, N. V., and Tarquis, A. M.: Risk identification of agricultural drought for sustainable Agroecosystems, Nat. Hazards Earth Syst. Sci., 14, 2435–2448, https://doi.org/10.5194/nhess-14-2435-2014, 2014.
Dalezios, N. R., Tarquis, A. M., and Eslamian, S.: Drought Assessment and Risk Analysis, in: Book chap. 18 in Vol. 1 of 3-Volume Handbook of Drought and Water Scarcity (HDWS), edited by: Eslamian, S., Taylor and Francis, Boca Raton, Florida, USA, 323–343, 2017.
Dalezios, N., Petropoulos, G. P., and Faraslis, I. N.: Concepts and Methodologies of Environmental Hazards and Disasters, in: chap. 1, Techniques for Disaster Risk Management and Mitigation, edited by: Srivastava, P. K., Singh, S. K., Mohanty, U. C., and Murty, T., AGU-Wiley, Washington, DC, USA, 3–22, ISBN-10: 111935918X, April 2020.
Deeming, J. E., Burgan, R. E., and Cohen, J. D.: The National Fire-Danger
Rating System – 1978, USDA Forest Service General technical Report INT-39,
Intermountain Forest and Range Experiment Station, Ogden, UT, 1977.
Doswell, C. A., Brooks, H. E., and Maddox, R. A.: Flash flood forecasting: An
ingredients-based methodology, Weather Forecast., 11, 560–581, 1996.
Dotzek, N.: An updated esti mate of tornado occurrence in Europe, Atmos. Res., 67–68, 153–161, 2003.
Emanuel, K.: Genesis and maintenance of “Mediterranean hurricanes”, Adv. Geosci., 2, 217–220, https://doi.org/10.5194/adgeo-2-217-2005, 2005.
Feloni, E. G., Baltas, E. A., Nastos, P. T., and Matsangouras, I. T.: Implementation and evaluation of a convective/stratiform precipitation scheme in Attica region, Greece, Atmos. Res., 220, 109–119, 2019.
Fujita, T. T.: Tornadoes around the world, Weatherwise, 26, 56–83, 1973.
Gayà, M., Homar, V., Romero, R., and Ramis, C.: Tornadoes and waterspouts in the Balearic Islands: Phenomena and environment characterization, Atmos. Res., 56, 253–267, 2000.
Giannaros, T. M., Melas, D., Daglis, I. A., and Keramitsoglou, I.: Development of an operational modeling system for urban heat islands: an application to Athens, Greece, Nat. Hazards Earth Syst. Sci., 14, 347–358, https://doi.org/10.5194/nhess-14-347-2014, 2014.
Golden, J. H.: An assessment of waterspout frequencies along the U.S. east
and Gulf states, J. Appl. Meteorol., 16, 231–236, 1977.
Golden, J. H.: The life cycle of Florida Keys' waterspouts I, J. Appl. Meteorol., 13, 676–692, 1974a.
Golden, J. H.: Scale-interaction implications for the waterspout life cycle II, J. Appl. Meteorol., 13, 693–709, 1974b.
Golden, J. H.: Waterspouts, in: Encyclopedia of Atmospheric Sciences, edited
by: Holton, J. R., Academic Press, Oxford, 2510–2525, https://doi.org/10.1016/B0-12-227090-8/00451-6, 2003.
Guo, L. X., Fu, H. D., and Wang, J.: Mesoscale convective precipitation system modified by urbanization in Beijing City, Atmos. Res., 82, 112–126, 2006.
Haghroosta, T., Ismail, W. R., Ghafarian, P., and Barekati, S. M.: The efficiency of the Weather Research and Forecasting (WRF) model for simulating typhoons, Nat. Hazards Earth Syst. Sci., 14, 2179–2187, https://doi.org/10.5194/nhess-14-2179-2014, 2014.
Heideman, K. F. and Fritsch, J. M.: A quantitative evaluation of the warm-season QPF problem, in: Preprints Tenth Conf. on Weather Forecasting and
Analysis, Clearwater Beach, Amer. Meteor. Soc., Boston, MA, USA, 57–64, 1984.
Hess, G. D. and Spillane, K. T.: Waterspouts in the Gulf of Carpentaria, Aust. Meteorol. Mag., 38, 173–180, 1990.
Homar, V., Romero, R., Stensrud, D. J., Ramis, C., and Alonso, S.: Numerical
diagnosis of a small, quasi-tropical cyclone over the western Mediterranean:
Dynamical vs. boundary factors, Q. Roy. Meteorol. Soc., 129, 1469–1490, 2003.
Houze, R. A.: Structure and dynamics of a tropical squall-line system, Mon.
Weather Rev., 105, 1540–1567, 1977.
ICONA: Experimentacion de un nuevo sistema para determinacion del peligro de
incendios forestales derivado de los combustibles:instrucciones de calculo,
Instituto Nacional para la Conservacion de la Naturaleza, Madrid, Spain, 1988.
IPCC: Managing the Risks of Extreme Events and Disasters to Advance Climate
Change Adaptation, Special Report of IPCC, Cambridge University Press, Cambridge, UK, p. 594, 2012.
IPCC: Summary for Policymakers, in: Climate Change 2013, The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK and New York, NY, USA, 2013.
Joyce, L. A., Blate, G. M., Littell, J. S., McNulty, S.G., Millar, C. I.,
Moser, S. C., Neilson, R. P., O'Halloran, K., and Peterson, D. L.: National
Forests, In: Preliminary review of adaptation options for climate-sensitive
ecosystems and resources, in: A Report by the U.S. Climate Change Science
Program and the Subcommittee on Global Change Research, US Environmental
Protection Agency, Washington, DC, USA, 3-1–3-127, 2008.
Karali, A., Hatzaki, M., Giannakopoulos, C., Roussos, A., Xanthopoulos, G., and Tenentes, V.: Sensitivity and evaluation of current fire risk and future projections due to climate change: the case study of Greece, Nat. Hazards Earth Syst. Sci., 14, 143–153, https://doi.org/10.5194/nhess-14-143-2014, 2014.
Katsafados, P., Papadopoulos, A., Varlas, G., Papadopoulou, E., and Mavromatidis, E.: Seasonal predictability of the 2010 Russian heat wave, Nat. Hazards Earth Syst. Sci., 14, 1531–1542, https://doi.org/10.5194/nhess-14-1531-2014, 2014.
Koppe, C., Jendritzky, G., Kovats, S., and Menne, B.: Heat-waves: risks and
responses, Series No. 2, Regional Office for Europe, Health and Global Environmental Change, Kopenhagen, Denmark, 2004.
Kostopoulou, E., Giannakopoulos, C., Hatzaki, M., Karali, A., Hadjinicolaou, P., Lelieveld, J., and Lange, M. A.: Spatio-temporal patterns of recent and future climate extremes in the eastern Mediterranean and Middle East region, Nat. Hazards Earth Syst. Sci., 14, 1565–1577, https://doi.org/10.5194/nhess-14-1565-2014, 2014.
Lee, H. D. P.: Aristotle: Meteorologica, Loeb Classical Library No. 397,
Harvard University press and Heinemann, Cambridge, London, 1952.
Leon, D. C., French, J. R., Lasher-Trapp, S., Blyth, A. M., Abel, S. J., Ballard, S., Barrett, A., Bennett, L. J., Bower, K., Brooks, B., Brown, P.,
Charlton-Perez, C., Choularton, T., Clark, P., Collier, C., Crosier, J.,
Cui, Z., Dey, S., Dufton, D., Eagle, C., Flynn, M. J., Gallagher, M., Halliwell, C., Hanley, K., Hawkness-Smith, L., Huang, Y., Kelly, G., Kitchen, M., Korolev, A., Lean, H., Liu, Z., Marsham, J., Moser, D., Nicol, J., Norton, E. G., Plummer, D., Price, J., Ricketts, H., Roberts, N., Rosenberg, P. D., Simonin, D., Taylor, J. W., Warren, R., Williams, P. I., and Young, G.: The COnvective Precipitation Experiment (COPE): Investigating the origins of heavy precipitation in the southwestern UK, B. Am. Meteorol. Soc., 97, 1003–1020, https://doi.org/10.1175/BAMS-D-14-00157.1, 2016.
Leverson, V. H., Sinclair, P. C., and Golden, J. H.: Waterspout wind,
temperature and pressure structure deduced from aircraft measurements, Mon.
Weather Rev., 105, 725–733, 1977.
Marcinoniene, I.: Tornadoes in Lithuania in the period of 1950–2002 including analysis of the strongest tornado of 29 May 1981, Atmos. Res.,
67–68, 475–484, 2003.
Matsangouras, I. T., Nastos, P. T., Bluestein, H. B., and Sioutas, M. V.: A
climatology of tornadic activity over Greece based on historical records, Int. J. Climatol., 34, 2538–2555, 2014a.
Matsangouras, I. T., Pytharoulis, I., and Nastos, P. T.: Numerical modeling and analysis of the effect of complex Greek topography on tornadogenesis, Nat. Hazards Earth Syst. Sci., 14, 1905–1919, https://doi.org/10.5194/nhess-14-1905-2014, 2014b.
Matzarakis, A. and Nastos, P. T.: Human-biometeorological assessment of heat waves in Athens, Theor. Appl. Climatol., 105, 99–106, 2011.
Matzarakis, A., Mayer, H., and Iziomon, M. G.: Applications of a universal
thermal index: physiological equivalent temperature, Int. J. Biometeorol., 43, 76–84, 1999.
Mc Arthur, A. G.: Fire Behaviour in Eucalypt Forests, Leaflet No. 107, Department of National Development, Forestry and Timber Bureau, Canberra,
Australia, 1967.
McKee, T. B., Doesken, N. J., and Kleist, J.: The relationship of drought
frequency and duration to time scale, in: Preprints Eighth Conference on
Applied Climatology, 17–22 January 1993, AMS – American Meteorological Society, Anaheim, CA, 179–184, 1993.
Meaden, G. T.: Tornadoes in Britain: Their intensities and distribution in
space and time, J. Meteorol., 1, 242–251, 1976.
Mechler, R., Hochrainer, S., Aaheim, A., Salen, H., and Wreford, A.:
Modelling economic impacts and adaptation to extreme events: Insights from
European case studies, Mitig. Adapt. Strat. Global Change, 15, 737–762, 2010.
Miglietta, M. M., Mastrangelo, D., and Conte, D.: Influence of physics
parameterization schemes on the simulation of a tropical-like cyclone in the
Mediterranean Sea, Atmos. Res., 153, 360–375, 2015.
Moscatello, A., Miglietta, M. M., and Rotunno, R.: Numerical analysis of a
Mediterranean `hurricane' over southeastern Italy, Mon. Weather Rev., 136, 4373–4397, 2008.
Mylonas, M. P., Douvis, K. C., Polychroni, I. D., Politi, N., and Nastos, P.
T.: Analysis of a Mediterranean Tropical-Like Cyclone. Sensitivity to WRF
Parameterizations and Horizontal Resolution, Atmosphere, 10, 425,
https://doi.org/10.3390/atmos10080425, 2019.
Nastos, P. and Matzarakis, A.: Variability of tropical days over Greece within the second half of the twentieth century, Theor. Appl. Climatol., 93, 75–89, 2008.
Nastos, P. T. and Kapsomenakis, J.: Regional climate model simulations of
extreme air temperature in Greece. Abnormal or common records in the future
climate?, Atmos. Res., 152, 43–60, 2015.
Nastos, P. T. and Matsangouras, J. T.: Tornado activity in Greece within the 20th century, Adv. Geosci., 26, 49–51, https://doi.org/10.5194/adgeo-26-49-2010, 2010.
Nastos, P. T. and Matsangouras, I. T.: Analysis of synoptic conditions for tornadic days over western Greece, Nat. Hazards Earth Syst. Sci., 14, 2409–2421, https://doi.org/10.5194/nhess-14-2409-2014, 2014.
Nastos, P. T. and Zerefos, C. S.: On extreme daily precipitation totals at Athens, Greece, Adv. Geosci., 10, 59–66, https://doi.org/10.5194/adgeo-10-59-2007, 2007.
Nastos, P. T., Politi, N., and Kapsomenakis, J.: Spatial and temporal variability of the Aridity Index in Greece, Atmos. Res., 119, 140–152, 2013.
Nastos, P. T., Matsangouras, I. T., and Chronis, T. G.: Spatio-temporal analysis of lightning activity over Greece – Preliminary results derived from the recent state precision lightning network, Atmos. Res., 144,
207–217, 2014.
Nastos, P. T., Philandras, C. M., Kapsomenakis, J. N., Repapis, C. C., and
Zerefos, C. S.: Features of extreme daily rain over specific thresholds in
Athens and Thessaloniki, Greece, in: Vol. 2, 11th International Hydrogeological Congress, Athens, 371–383, 2017.
Nastos, P. T., Karavana-Papadimou, K., and Matsangouras, I. T.: Mediterranean tropical-like cyclones: Impacts and composite daily means and anomalies of synoptic patterns, Atmos. Res., 208, 156–166, 2018.
Palmer, W. C.: Meteorological drought, Research Paper No. 45, US Department
of Commerce Weather Bureau, Washington, DC, 1965.
Peterson, R. E.: A historical review of tornadoes in Italy, J. Wind Eng. Ind. Aerod., 74–76, 123–130, 1998.
Polychroni, I., and Nastos, P. T.: Annual standardized precipitation index (SPI12) over the Mediterranean, in: Vol. 2, 11th International Hydrogeological Congress, Athens, 435–444, 2017.
Price, C.: Thunderstorms, Lightning and Climate Change, in: Lightning:
Principles, Instruments and Applications, edited by: Betz, H. D., Schumann, U., and Laroche, P., Springer Publications, Cham, Switzerland, 521–536, 2009.
Pytharoulis, I., Craig, G. C., and Ballard, S. P.: The hurricane-like
Mediterranean cyclone of January 1995, Meteorol. Appl., 7, 261–279, 2000.
Rauhala, J., Brooks, E. H., and Schultz, M. D.: Tornado climatology of Finland, Mon. Weather Rev., 140, 1446–1456, 2012.
Reynolds, D. J.: A revised U.K. tornado climatology, 1960–1989, J. Meteorol., 24, 290–321, 1999.
Robine, J. M., Cheung, S. L. K., Le Roy, S., van Oyen, H., Griffiths, C.,
Michel, J.-P., and Herrmann, F. R.: Death toll exceeded 70,000 in Europe during the summer of 2003, C. R. Biol., 331, 171–178, 2006.
Robinson, P. J.: On the definition of heat waves, J. Appl. Meteorol., 40,
762–775, 2001.
Rogers, R.: Doppler radar investigation of Hawaiian rain, Tellus, 19, 432–454, 1967.
Running, S. W.: Is Global Warming Causing More, Larger Wildfires?, Science,
313, 927–928, 2006.
Salinger, J., Sivakumar, M. V. K., and Motha, R. P. (Eds): Increasing Climate Variability and Change: Reducing the Vulnerability of Agriculture and Forestry, Springer, Dordrecht, the Netherlands, p. 362, ISBN 1-4020-3354-0,, 2005.
Schär, C., Vidale, P. L., Lüthi, D., Frei, C., Häberli, C., Liniger, M. A., and Appenzeller, C.: The role of increasing temperature
variability in European summer heatwaves, Nature, 427, 332–336, 2004.
Segoni, S., Rosi, A., Rossi, G., Catani, F., and Casagli, N.: Analysing the relationship between rainfalls and landslides to define a mosaic of triggering thresholds for regional-scale warning systems, Nat. Hazards Earth Syst. Sci., 14, 2637–2648, https://doi.org/10.5194/nhess-14-2637-2014, 2014a.
Segoni, S., Rossi, G., Rosi, A., and Catani, F.: Landslides triggered by rainfall: a semi-automated procedure to define consistent intensity-duration
thresholds, Comput. Geosci., 63, 123–131, 2014b.
Simpson, J. S., Morton, B. R., McCumber, M. C., and Penc, R. S.: Observations and mechanisms of GATE waterspouts, J. Atmos. Sci., 43, 753–782, 1986.
Sivakumar, M. V. K., Motha, R. P., and Das, H. P. (Eds): Natural Disaster
and Extreme Events in Agriculture, Springer, Cham, Switzerland, p. 367, ISBN 10 3-540-22490-4, 2005.
Smith, K.: Environmental Hazards: Assessing Risk and Reducing Disaster,
6th Edn., Springer, Springer, Cham, p. 478, 2013.
Tolika, K., Maheras, P., Pytharoulis, I., and Anagnostopoulou, C.: The anomalous low and high temperatures of 2012 over Greece – an explanation from a meteorological and climatological perspective, Nat. Hazards Earth Syst. Sci., 14, 501–507, https://doi.org/10.5194/nhess-14-501-2014, 2014.
Tooming, H. K. and Peterson, R. E.: Vigorous tornadoes and waterspouts during the last 35 years in Estoniain: Meteorology in Estonia in Johannes Letzmann's Times and Today, edited by: Eelsalu, H. and Tooming, H., Estonian Academy Publishers, Tallinn, Estonia, 168–179, 1995.
Tsakiris, G., Pangalou, D., and Vangelis, H.: Regional drought assessment based on the Reconnaissance Drought Index (RDI), Water Res. Manage., 21, 821–833, 2007.
Tucker, C. J.: Red and photographic infrared linear combinations for monitoring vegetation, Remote Sens. Environ., 8, 127–150, 1979.
Tucker, C. J. and Choudhury, B. J.: Satellite remote sensing of drought conditions, Remote Sens. Environ., 23, 243–251, 1987.
Tyrrell, J.: A tornado climatology for Ireland, Atmos. Res., 67–68, 671–684, 2003.
UNESCO – United Nations Educational, Scientific and Cultural Organization:
Map of the world distribution of arid regions: Map at scale
with explanatory note, MAB Technical Notes 7, UNESCO, Paris, 1979.
UN/ISDR: Hyogo Framework for Action 2005–2015, in: Final Report, World Conference on Disaster Reduction, 18–20 January 2005, Kobe, Hyogo, Japan, p. 22, 2005.
Vandentorren, S., Bretin, P., Zeghnoun, A., Mandereau-Bruno, L., Croisier,
A., Cochet, C., Ribéron, J., Siberan, I., Declercq, B., and Ledrans, M.:
August 2003 heat wave in France: risk factors for death of elderly people
living at home, Eur. J. Publ. Health, 16, 583–591, 2006.
van Wagner, C. E.: Development and structure of a Canadian forest fire weather index system, Forestry Tech. Rep. 35, Canadian Forestry Service, Ottawa, 1987.
Venäläinen, A. and Heikinheimo, M.: The Finnish forest fire index
calculation system, in: Early warning systems for natural disaster reduction, edited by: Zschau, J. and Kuppers, A., Springer, Cham, Switzerland, 645–648, 2003.
Wang, G.: Agricultural drought in a future climate: Results from 15 global
climate models participating in the IPCC 4th assessment, Clim. Dynam., 25, 739–753, 2005.
Weghorst, K.: The reclamation drought index: Guidelines and practical applications, Bureau of Reclamation, Denver, CO, 6 pp., 1996.
WMO – World Meteorological Organization: Preventing and mitigating natural
disasters, WMO-No. 993, Geneva, Switzerland, ISBN 92-63-10993-1, 2006.
Yang, L., Smith, J. A., Baeck, M. L., Bou-Zeid, E., Jessup, S. M., Tian, F.,
and Hu, H.: Impact of Urbanization on Heavy Convective Precipitation under
Strong Large-Scale Forcing: A Case Study over the Milwaukee–Lake Michigan
Region, J. Hydrometeorol., 15, 261–278, 2014.
Yonetani, T.: Increase in number of days with heavy precipitation in Tokyo
urban area, J. Appl. Meteorol., 21, 1466–1471, 1982.
Zhang, X., Hegerl, G., Zwiers, F. W., and Kenyon, J.: Avoiding Inhomogeneity
in Percentile-Based Indices of Temperature Extremes, J. Climate, 18, 1641–1651, 2005.
Short summary
Risk assessment consists of three steps: identification, estimation and evaluation. Nevertheless, the risk management framework also includes a fourth step, the need for feedback on all the risk assessment undertakings. However, there is a lack of such feedback, which constitutes a serious deficiency in the reduction of environmental hazards at the present time. The objective of this review paper consists of addressing meteorological hazards and extremes within the risk management framework.
Risk assessment consists of three steps: identification, estimation and evaluation....
Altmetrics
Final-revised paper
Preprint