Articles | Volume 20, issue 1
https://doi.org/10.5194/nhess-20-345-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-20-345-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Remote sensing in an index-based insurance design for hedging economic impacts on rice cultivation
Omar Roberto Valverde-Arias
CORRESPONDING AUTHOR
CEIGRAM, ETSIAAB, Universidad Politécnica de Madrid, 28040 Madrid, Spain
Paloma Esteve
CEIGRAM, ETSIAAB, Universidad Politécnica de Madrid, 28040 Madrid, Spain
Departamento de Economía Agraria, Estadística y Gestión de
Empresas, ETSIAAB, Universidad Politécnica de Madrid, 28040 Madrid,
Spain
Ana María Tarquis
CEIGRAM, ETSIAAB, Universidad Politécnica de Madrid, 28040 Madrid, Spain
Grupo de Sistemas Complejos, ETSIAAB, Universidad Politécnica de Madrid, 28040 Madrid, Spain
Alberto Garrido
CEIGRAM, ETSIAAB, Universidad Politécnica de Madrid, 28040 Madrid, Spain
Departamento de Economía Agraria, Estadística y Gestión de
Empresas, ETSIAAB, Universidad Politécnica de Madrid, 28040 Madrid,
Spain
Related authors
No articles found.
Alfonso Allen-Perkins, Angel Giménez-García, Ainhoa Magrach, Javier Galeano, Ana María Tarquis, and Ignasi Bartomeus
Web Ecol., 24, 81–96, https://doi.org/10.5194/we-24-81-2024, https://doi.org/10.5194/we-24-81-2024, 2024
Short summary
Short summary
Machine learning models outperform simple mechanistic models in predicting pollinator visitation rates. We use deep learning to infer rules from land cover maps to estimate pollination services globally. Results suggest deep learning can improve predictions by identifying complex patterns in landscape composition, especially in data-rich but knowledge-poor areas. The challenge is to make deep learning algorithms more interpretable so that experts can validate prediction rules for pollination.
Paolo Nasta, Günter Blöschl, Heye R. Bogena, Steffen Zacharias, Roland Baatz, Gabriëlle De Lannoy, Karsten H. Jensen, Salvatore Manfreda, Laurent Pfister, Ana M. Tarquis, Ilja van Meerveld, Marc Voltz, Yijian Zeng, William Kustas, Xin Li, Harry Vereecken, and Nunzio Romano
EGUsphere, https://doi.org/10.5194/egusphere-2024-1678, https://doi.org/10.5194/egusphere-2024-1678, 2024
Short summary
Short summary
The Unsolved Problems in Hydrology (UPH) initiative has emphasized the need to establish networks of multi-decadal hydrological observatories to tackle catchment-scale challenges on a global scale. This opinion paper provocatively discusses two end members of possible future hydrological observatory (HO) networks for a given hypothesized community budget: a comprehensive set of moderately instrumented observatories or, alternatively, a small number of highly instrumented super-sites.
Juan J. Martin-Sotoca, Ernesto Sanz, Antonio Saa-Requejo, Rubén Moratiel, Andrés F. Almeida-Ñauñay, and Ana M. Tarquis
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-145, https://doi.org/10.5194/nhess-2023-145, 2023
Manuscript not accepted for further review
Short summary
Short summary
This work includes vegetation (VCI) and water content index (WCI) series from two semiarid rangeland areas in Spain. Based on then, a Z-score for both was calculated to use it as an anomaly index. In this way, we associated negative anomalies with drought episodes. Then, we study the relations of these negative anomalies to see if it is possible to use WCI as an alarm of agronomic drought (VCI negative anomaly). The description of the behaviour of both areas and their comparison are made.
Jonathan Rizzi, Ana M. Tarquis, Anne Gobin, Mikhail Semenov, Wenwu Zhao, and Paolo Tarolli
Nat. Hazards Earth Syst. Sci., 21, 3873–3877, https://doi.org/10.5194/nhess-21-3873-2021, https://doi.org/10.5194/nhess-21-3873-2021, 2021
Panagiotis T. Nastos, Nicolas R. Dalezios, Ioannis N. Faraslis, Kostas Mitrakopoulos, Anna Blanta, Marios Spiliotopoulos, Stavros Sakellariou, Pantelis Sidiropoulos, and Ana M. Tarquis
Nat. Hazards Earth Syst. Sci., 21, 1935–1954, https://doi.org/10.5194/nhess-21-1935-2021, https://doi.org/10.5194/nhess-21-1935-2021, 2021
Short summary
Short summary
Risk assessment consists of three steps: identification, estimation and evaluation. Nevertheless, the risk management framework also includes a fourth step, the need for feedback on all the risk assessment undertakings. However, there is a lack of such feedback, which constitutes a serious deficiency in the reduction of environmental hazards at the present time. The objective of this review paper consists of addressing meteorological hazards and extremes within the risk management framework.
Rubén Moratiel, Raquel Bravo, Antonio Saa, Ana M. Tarquis, and Javier Almorox
Nat. Hazards Earth Syst. Sci., 20, 859–875, https://doi.org/10.5194/nhess-20-859-2020, https://doi.org/10.5194/nhess-20-859-2020, 2020
Short summary
Short summary
The estimation of ETo using temperature is particularly attractive in places where air humidity, wind speed and solar radiation data are not readily available. In this study we used, for the estimation of ETo, seven models against Penman–Monteith FAO 56 with temporal (annual and seasonal) and spatial perspective over Duero basin (Spain). The results of the tested models can be useful for adopting appropriate measures for efficient water management under the limitation of agrometeorological data.
Irene Blanco-Gutiérrez, Rhys Manners, Consuelo Varela-Ortega, Ana M. Tarquis, Lucieta G. Martorano, and Marisol Toledo
Nat. Hazards Earth Syst. Sci., 20, 797–813, https://doi.org/10.5194/nhess-20-797-2020, https://doi.org/10.5194/nhess-20-797-2020, 2020
Short summary
Short summary
The Amazon rainforest is being destroyed, resulting in negative ecological and social impacts. We explore how stakeholders perceive the causes of the Amazon's degradation in Bolivia and Brazil and develop a series of scenarios to help strengthen the balance between human development and environmental conservation. The results suggest that the application of governance and well-integrated technical and social reform strategies encourages positive regional changes even under climate change.
María del Pilar Jiménez-Donaire, Ana Tarquis, and Juan Vicente Giráldez
Nat. Hazards Earth Syst. Sci., 20, 21–33, https://doi.org/10.5194/nhess-20-21-2020, https://doi.org/10.5194/nhess-20-21-2020, 2020
Short summary
Short summary
A new combined drought indicator (CDI) is proposed that integrates rainfall, soil moisture and vegetation dynamics. The performance of this indicator was evaluated against crop damage data from agricultural insurance schemes in five different areas in SW Spain. Results show that this indicator was able to predict important droughts in 2004–2005 and 2011–2012, marked by crop damage of between 70 % and 95 % of the total insured area. This opens important applications for improving insurance schemes.
Juan José Martín-Sotoca, Antonio Saa-Requejo, Rubén Moratiel, Nicolas Dalezios, Ioannis Faraslis, and Ana María Tarquis
Nat. Hazards Earth Syst. Sci., 19, 1685–1702, https://doi.org/10.5194/nhess-19-1685-2019, https://doi.org/10.5194/nhess-19-1685-2019, 2019
Short summary
Short summary
Vegetation indices based on satellite images, such as the normalized difference vegetation index (NDVI), have been used for damaged pasture insurance. The occurrence of damage is usually defined by NDVI thresholds mainly based on normal statistics. In this work a pasture area in Spain was delimited by MODIS images. A statistical analysis of NDVI was applied to search for alternative distributions. Results show that generalized extreme value distributions present a better fit than normal ones.
Carmelo Alonso, Ana M. Tarquis, Ignacio Zúñiga, and Rosa M. Benito
Nonlin. Processes Geophys., 24, 141–155, https://doi.org/10.5194/npg-24-141-2017, https://doi.org/10.5194/npg-24-141-2017, 2017
Short summary
Short summary
NDVI and EVI vegetation indexes, estimated from satellite images, can been used to estimate root zone soil moisture. However, depending on the spatial and radiometric resolution of the sensors used, estimations could change. In this work, images taken by satellites IKONOS-2 and LANDSAT-7 of the same location are compared on the four bands involved in these vegetation indexes. The results show that spatial resolution has a similar scaling effect in the four bands, but not radiometric resolution.
Ana M. Tarquis, María Teresa Castellanos, Maria Carmen Cartagena, Augusto Arce, Francisco Ribas, María Jesús Cabello, Juan López de Herrera, and Nigel R. A. Bird
Nonlin. Processes Geophys., 24, 77–87, https://doi.org/10.5194/npg-24-77-2017, https://doi.org/10.5194/npg-24-77-2017, 2017
Short summary
Short summary
Melon crop got different levels of N that constituted a contribution to the variation of soil N at mainly larger scales. During its development a proportion of the N was taken up, adding a second factor of variability at smaller scales. After the melon harvest, the wheat was sown across the plots and harvested at the end of the season. Wheat was used as a N sink crop and allowed us to evaluate the soil N residual. Multiscale and relative entropy were applied to study N scale dependencies.
N. R. Dalezios, A. Blanta, N. V. Spyropoulos, and A. M. Tarquis
Nat. Hazards Earth Syst. Sci., 14, 2435–2448, https://doi.org/10.5194/nhess-14-2435-2014, https://doi.org/10.5194/nhess-14-2435-2014, 2014
P. Cely, A. M. Tarquis, J. Paz-Ferreiro, A. Méndez, and G. Gascó
Solid Earth, 5, 585–594, https://doi.org/10.5194/se-5-585-2014, https://doi.org/10.5194/se-5-585-2014, 2014
A. Matulka, P. López, J. M. Redondo, and A. Tarquis
Nonlin. Processes Geophys., 21, 269–278, https://doi.org/10.5194/npg-21-269-2014, https://doi.org/10.5194/npg-21-269-2014, 2014
Related subject area
Atmospheric, Meteorological and Climatological Hazards
Reconstructing hail days in Switzerland with statistical models (1959–2022)
GTDI: a game-theory-based integrated drought index implying hazard-causing and hazard-bearing impact change
Insurance loss model vs. meteorological loss index – how comparable are their loss estimates for European windstorms?
Intense rains in Israel associated with the train effect
Convection-permitting climate model representation of severe convective wind gusts and future changes in southeastern Australia
On the potential of using smartphone sensors for wildfire hazard estimation through citizen science
Global estimates of 100-year return values of daily precipitation from ensemble weather prediction data
Exploring the sensitivity of extreme event attribution of two recent extreme weather events in Sweden using long-running meteorological observations
Probabilistic short-range forecasts of high-precipitation events: optimal decision thresholds and predictability limits
Surprise floods: the role of our imagination in preparing for disasters
Brief Communication: Training of AI-based nowcasting models for rainfall early warning should take into account user requirements
Modelling crop hail damage footprints with single-polarization radar: the roles of spatial resolution, hail intensity, and cropland density
Insights into ground strike point properties in Europe through the EUCLID lightning location system
The role of citizen science in assessing the spatiotemporal pattern of rainfall events in urban areas: a case study in the city of Genoa, Italy
Precipitation extremes in Ukraine from 1979 to 2019: climatology, large-scale flow conditions, and moisture sources
Characterizing hail-prone environments using convection-permitting reanalysis and overshooting top detections over south-central Europe
Aircraft engine dust ingestion at global airports
Catchment-scale assessment of drought impact on environmental flow in the Indus Basin, Pakistan
The risk of synoptic-scale Arctic cyclones to shipping
Classification of North Atlantic and European extratropical cyclones using multiple measures of intensity
Estimation of future rainfall extreme values by temperature-dependent disaggregation of climate model data
Climatic characteristics of the Jianghuai cyclone and its linkage with precipitation during the Meiyu period from 1961 to 2020
Application of the teaching–learning-based optimization algorithm to an analytical model of thunderstorm outflows to analyze the variability of the downburst kinematic and geometric parameters
Examining the Eastern European heatwave of 2023 from a long-term perspective: the role of natural variability vs. anthropogenic factors
Projections and uncertainties of winter windstorm damage in Europe in a changing climate
Improving seasonal predictions of German Bight storm activity
A satellite view of the exceptionally warm summer of 2022 over Europe
Demographic yearbooks as a source of weather-related fatalities: the Czech Republic, 1919–2022
FOREWARNS: development and multifaceted verification of enhanced regional-scale surface water flood forecasts
Assessment of wind–damage relations for Norway using 36 years of daily insurance data
Interannual variations in the seasonal cycle of extreme precipitation in Germany and the response to climate change
Climatology of large hail in Europe: characteristics of the European Severe Weather Database
Amplified potential for vegetation stress under climate-change-induced intensifying compound extreme events in the Greater Mediterranean Region
Assimilation of surface pressure observations from personal weather stations in AROME-France
An open-source radar-based hail damage model for buildings and cars
Linkages between atmospheric rivers and humid heat across the United States
Evaluating pySTEPS optical flow algorithms for convection nowcasting over the Maritime Continent using satellite data
Climate change impacts on regional fire weather in heterogeneous landscapes of central Europe
High-resolution projections of ambient heat for major European cities using different heat metrics
Heat wave characteristics: evaluation of regional climate model performances for Germany
Rain-on-snow responses to warmer Pyrenees: a sensitivity analysis using a physically based snow hydrological model
Spatial identification of regions at risk to multi-hazards at pan European level: an implemented methodological approach
Return levels of extreme European windstorms, their dependency on the North Atlantic Oscillation, and potential future risks
Probabilistic hazard assessment of the gas emission of Mefite d’Ansanto, Southern Italy
Wind as a natural hazard in Poland
Climatological occurrences of hail and tornadoes associated with mesoscale convective systems in the United States
Characteristics of cloud-to-ground lightning (CG) and differences between +CG and −CG strokes in China regarding the China National Lightning Detection Network
The climatology and nature of warm-season convective cells in cold-frontal environments over Germany
Forecasting large hail and lightning using additive logistic regression models and the ECMWF reforecasts
The anomalous thundery month of June 1925 in SW Iberia: description and synoptic analysis
Lena Wilhelm, Cornelia Schwierz, Katharina Schröer, Mateusz Taszarek, and Olivia Martius
Nat. Hazards Earth Syst. Sci., 24, 3869–3894, https://doi.org/10.5194/nhess-24-3869-2024, https://doi.org/10.5194/nhess-24-3869-2024, 2024
Short summary
Short summary
In our study we used statistical models to reconstruct past hail days in Switzerland from 1959–2022. This new time series reveals a significant increase in hail day occurrences over the last 7 decades. We link this trend to increases in moisture and instability variables in the models. This time series can now be used to unravel the complexities of Swiss hail occurrence and to understand what drives its year-to-year variability.
Xiaowei Zhao, Tianzeng Yang, Hongbo Zhang, Tian Lan, Chaowei Xue, Tongfang Li, Zhaoxia Ye, Zhifang Yang, and Yurou Zhang
Nat. Hazards Earth Syst. Sci., 24, 3479–3495, https://doi.org/10.5194/nhess-24-3479-2024, https://doi.org/10.5194/nhess-24-3479-2024, 2024
Short summary
Short summary
To effectively track and identify droughts, we developed a novel integrated drought index that combines the effects of precipitation, temperature, and soil moisture on drought. After comparison and verification, the integrated drought index shows superior performance compared to a single meteorological drought index or agricultural drought index in terms of drought identification.
Julia Moemken, Inovasita Alifdini, Alexandre M. Ramos, Alexandros Georgiadis, Aidan Brocklehurst, Lukas Braun, and Joaquim G. Pinto
Nat. Hazards Earth Syst. Sci., 24, 3445–3460, https://doi.org/10.5194/nhess-24-3445-2024, https://doi.org/10.5194/nhess-24-3445-2024, 2024
Short summary
Short summary
European windstorms regularly cause damage to natural and human-made environments, leading to high socio-economic losses. For the first time, we compare estimates of these losses using a meteorological loss index (LI) and the insurance loss (catastrophe) model of Aon Impact Forecasting. We find that LI underestimates high-impact windstorms compared to the insurance model. Nonetheless, due to its simplicity, LI is an effective index, suitable for estimating impacts and ranking storm events.
Baruch Ziv, Uri Dayan, Lidiya Shendrik, and Elyakom Vadislavsky
Nat. Hazards Earth Syst. Sci., 24, 3267–3277, https://doi.org/10.5194/nhess-24-3267-2024, https://doi.org/10.5194/nhess-24-3267-2024, 2024
Short summary
Short summary
The train effect is related to convective cells that pass over the same place. Trains produce heavy rainfall and sometimes floods and are reported in North America during spring and summer. In Israel, 17 trains associated with Cyprus lows were identified by radar images and were found within the cold sector south of the low center and in the left flank of a maximum wind belt; they cross the Israeli coast, with a mean length of 45 km; last 1–3 h; and yield 35 mm of rainfall up to 60 mm.
Andrew Brown, Andrew Dowdy, and Todd P. Lane
Nat. Hazards Earth Syst. Sci., 24, 3225–3243, https://doi.org/10.5194/nhess-24-3225-2024, https://doi.org/10.5194/nhess-24-3225-2024, 2024
Short summary
Short summary
A computer model that simulates the climate of southeastern Australia is shown here to represent extreme wind events associated with convective storms. This is useful as it allows us to investigate possible future changes in the occurrences of these events, and we find in the year 2050 that our model simulates a decrease in the number of occurrences. However, the model also simulates too many events in the historical climate compared with observations, so these future changes are uncertain.
Hofit Shachaf, Colin Price, Dorita Rostkier-Edelstein, and Cliff Mass
Nat. Hazards Earth Syst. Sci., 24, 3035–3047, https://doi.org/10.5194/nhess-24-3035-2024, https://doi.org/10.5194/nhess-24-3035-2024, 2024
Short summary
Short summary
We have used the temperature and relative humidity sensors in smartphones to estimate the vapor pressure deficit (VPD), an important atmospheric parameter closely linked to fuel moisture and wildfire risk. Our analysis for two severe wildfire case studies in Israel and Portugal shows the potential for using smartphone data to compliment the regular weather station network while also providing high spatial resolution of the VPD index.
Florian Ruff and Stephan Pfahl
Nat. Hazards Earth Syst. Sci., 24, 2939–2952, https://doi.org/10.5194/nhess-24-2939-2024, https://doi.org/10.5194/nhess-24-2939-2024, 2024
Short summary
Short summary
High-impact river floods are often caused by extreme precipitation. Flood protection relies on reliable estimates of the return values. Observational time series are too short for a precise calculation. Here, 100-year return values of daily precipitation are estimated on a global grid based on a large set of model-generated precipitation events from ensemble weather prediction. The statistical uncertainties in the return values can be substantially reduced compared to observational estimates.
Erik Holmgren and Erik Kjellström
Nat. Hazards Earth Syst. Sci., 24, 2875–2893, https://doi.org/10.5194/nhess-24-2875-2024, https://doi.org/10.5194/nhess-24-2875-2024, 2024
Short summary
Short summary
Associating extreme weather events with changes in the climate remains difficult. We have explored two ways these relationships can be investigated: one using a more common method and one relying solely on long-running records of meteorological observations.
Our results show that while both methods lead to similar conclusions for two recent weather events in Sweden, the commonly used method risks underestimating the strength of the connection between the event and changes to the climate.
François Bouttier and Hugo Marchal
Nat. Hazards Earth Syst. Sci., 24, 2793–2816, https://doi.org/10.5194/nhess-24-2793-2024, https://doi.org/10.5194/nhess-24-2793-2024, 2024
Short summary
Short summary
Weather prediction uncertainties can be described as sets of possible scenarios – a technique called ensemble prediction. Our machine learning technique translates them into more easily interpretable scenarios for various users, balancing the detection of high precipitation with false alarms. Key parameters are precipitation intensity and space and time scales of interest. We show that the approach can be used to facilitate warnings of extreme precipitation.
Joy Ommer, Jessica Neumann, Milan Kalas, Sophie Blackburn, and Hannah L. Cloke
Nat. Hazards Earth Syst. Sci., 24, 2633–2646, https://doi.org/10.5194/nhess-24-2633-2024, https://doi.org/10.5194/nhess-24-2633-2024, 2024
Short summary
Short summary
What’s the worst that could happen? Recent floods are often claimed to be beyond our imagination. Imagination is the picturing of a situation in our mind and the emotions that we connect with this situation. But why is this important for disasters? This survey found that when we cannot imagine a devastating flood, we are not preparing in advance. Severe-weather forecasts and warnings need to advance in order to trigger our imagination of what might happen and enable us to start preparing.
Georgy Ayzel and Maik Heistermann
EGUsphere, https://doi.org/10.5194/egusphere-2024-1945, https://doi.org/10.5194/egusphere-2024-1945, 2024
Short summary
Short summary
Forecasting rainfall over the next hour is an essential feature of early warning systems. Deep learning has emerged as a powerful alternative to conventional nowcasting technologies, but it still struggles to adequately predict impact-relevant heavy rainfall. We think that DL could do much better if the training tasks were defined more specifically, and that such a specification presents an opportunity to better align the output of nowcasting models with actual user requirements.
Raphael Portmann, Timo Schmid, Leonie Villiger, David N. Bresch, and Pierluigi Calanca
Nat. Hazards Earth Syst. Sci., 24, 2541–2558, https://doi.org/10.5194/nhess-24-2541-2024, https://doi.org/10.5194/nhess-24-2541-2024, 2024
Short summary
Short summary
The study presents an open-source model to determine the occurrence of hail damage to field crops and grapevines after hailstorms in Switzerland based on radar, agricultural land use data, and insurance damage reports. The model performs best at 8 km resolution for field crops and 1 km for grapevine and in the main production areas. Highlighting performance trade-offs and the relevance of user needs, the study is a first step towards the assessment of risk and damage for crops in Switzerland.
Dieter Roel Poelman, Hannes Kohlmann, and Wolfgang Schulz
Nat. Hazards Earth Syst. Sci., 24, 2511–2522, https://doi.org/10.5194/nhess-24-2511-2024, https://doi.org/10.5194/nhess-24-2511-2024, 2024
Short summary
Short summary
EUCLID's lightning data unveil distinctive ground strike point (GSP) patterns in Europe. Over seas, GSPs per flash surpass inland, reaching a minimum in the Alps. Mountainous areas like the Alps and Pyrenees have the closest GSP separation, highlighting terrain elevation's impact. The daily peak current correlates with average GSPs per flash. These findings could significantly influence lightning protection measures, urging a focus on GSP density rather than flash density for risk assessment.
Nicola Loglisci, Giorgio Boni, Arianna Cauteruccio, Francesco Faccini, Massimo Milelli, Guido Paliaga, and Antonio Parodi
Nat. Hazards Earth Syst. Sci., 24, 2495–2510, https://doi.org/10.5194/nhess-24-2495-2024, https://doi.org/10.5194/nhess-24-2495-2024, 2024
Short summary
Short summary
We analyse the meteo-hydrological features of the 27 and 28 August 2023 event that occurred in Genoa. Rainfall observations were made using rain gauge networks based on either official networks or citizen science networks. The merged analysis stresses the spatial variability in the precipitation, which cannot be captured by the current spatial density of authoritative stations. Results show that at minimal distances the variations in cumulated rainfall over a sub-hourly duration are significant.
Ellina Agayar, Franziska Aemisegger, Moshe Armon, Alexander Scherrmann, and Heini Wernli
Nat. Hazards Earth Syst. Sci., 24, 2441–2459, https://doi.org/10.5194/nhess-24-2441-2024, https://doi.org/10.5194/nhess-24-2441-2024, 2024
Short summary
Short summary
This study presents the results of a climatological investigation of extreme precipitation events (EPEs) in Ukraine for the period 1979–2019. During all seasons EPEs are associated with pronounced upper-level potential vorticity (PV) anomalies. In addition, we find distinct seasonal and regional differences in moisture sources. Several extreme precipitation cases demonstrate the importance of these processes, complemented by a detailed synoptic analysis.
Antonio Giordani, Michael Kunz, Kristopher M. Bedka, Heinz Jürgen Punge, Tiziana Paccagnella, Valentina Pavan, Ines M. L. Cerenzia, and Silvana Di Sabatino
Nat. Hazards Earth Syst. Sci., 24, 2331–2357, https://doi.org/10.5194/nhess-24-2331-2024, https://doi.org/10.5194/nhess-24-2331-2024, 2024
Short summary
Short summary
To improve the challenging representation of hazardous hailstorms, a proxy for hail frequency based on satellite detections, convective parameters from high-resolution reanalysis, and crowd-sourced reports is tested and presented. Hail likelihood peaks in mid-summer at 15:00 UTC over northern Italy and shows improved agreement with observations compared to previous estimates. By separating ambient signatures based on hail severity, enhanced appropriateness for large-hail occurrence is found.
Claire L. Ryder, Clément Bézier, Helen F. Dacre, Rory Clarkson, Vassilis Amiridis, Eleni Marinou, Emmanouil Proestakis, Zak Kipling, Angela Benedetti, Mark Parrington, Samuel Rémy, and Mark Vaughan
Nat. Hazards Earth Syst. Sci., 24, 2263–2284, https://doi.org/10.5194/nhess-24-2263-2024, https://doi.org/10.5194/nhess-24-2263-2024, 2024
Short summary
Short summary
Desert dust poses a hazard to aircraft via degradation of engine components. This has financial implications for the aviation industry and results in increased fuel burn with climate impacts. Here we quantify dust ingestion by aircraft engines at airports worldwide. We find Dubai and Delhi in summer are among the dustiest airports, where substantial engine degradation would occur after 1000 flights. Dust ingestion can be reduced by changing take-off times and the altitude of holding patterns.
Khalil Ur Rahman, Songhao Shang, Khaled Saeed Balkhair, Hamza Farooq Gabriel, Khan Zaib Jadoon, and Kifayat Zaman
Nat. Hazards Earth Syst. Sci., 24, 2191–2214, https://doi.org/10.5194/nhess-24-2191-2024, https://doi.org/10.5194/nhess-24-2191-2024, 2024
Short summary
Short summary
This paper assesses the impact of drought (meteorological drought) on the hydrological alterations in major rivers of the Indus Basin. Threshold regression and range of variability analysis are used to determine the drought severity and times where drought has caused low flows and extreme low flows (identified using indicators of hydrological alterations). Moreover, this study also examines the degree of alterations in river flows due to drought using the hydrological alteration factor.
Alexander Frank Vessey, Kevin I. Hodges, Len C. Shaffrey, and Jonathan J. Day
Nat. Hazards Earth Syst. Sci., 24, 2115–2132, https://doi.org/10.5194/nhess-24-2115-2024, https://doi.org/10.5194/nhess-24-2115-2024, 2024
Short summary
Short summary
The risk posed to ships by Arctic cyclones has seldom been quantified due to the lack of publicly available historical Arctic ship track data. This study investigates historical Arctic ship tracks, cyclone tracks, and shipping incident reports to determine the number of shipping incidents caused by the passage of Arctic cyclones. Results suggest that Arctic cyclones have not been hazardous to ships and that ships are resilient to the rough sea conditions caused by Arctic cyclones.
Joona Samuel Cornér, Clément Gael Francis Bouvier, Benjamin Doiteau, Florian Pantillon, and Victoria Anne Sinclair
EGUsphere, https://doi.org/10.5194/egusphere-2024-1749, https://doi.org/10.5194/egusphere-2024-1749, 2024
Short summary
Short summary
Classification reduces the considerable variability between extratropical cyclones (ETC) and thus simplifies studying their representation in climate models and changes in the future climate. In this paper we present an objective classification of ETCs using measures of ETC intensity. This is motivated by the aim of finding a set of ETC intensity measures which together comprehensively describe both the dynamical and impact-relevant nature of ETC intensity.
Niklas Ebers, Kai Schröter, and Hannes Müller-Thomy
Nat. Hazards Earth Syst. Sci., 24, 2025–2043, https://doi.org/10.5194/nhess-24-2025-2024, https://doi.org/10.5194/nhess-24-2025-2024, 2024
Short summary
Short summary
Future changes in sub-daily rainfall extreme values are essential in various hydrological fields, but climate scenarios typically offer only daily resolution. One solution is rainfall generation. With a temperature-dependent rainfall generator climate scenario data were disaggregated to 5 min rainfall time series for 45 locations across Germany. The analysis of the future 5 min rainfall time series showed an increase in the rainfall extremes values for rainfall durations of 5 min and 1 h.
Ran Zhu and Lei Chen
Nat. Hazards Earth Syst. Sci., 24, 1937–1950, https://doi.org/10.5194/nhess-24-1937-2024, https://doi.org/10.5194/nhess-24-1937-2024, 2024
Short summary
Short summary
There is a positive correlation between the frequency of Jianghuai cyclone activity and precipitation during the Meiyu period. Its occurrence frequency has an obvious decadal variation, which corresponds well with the quasi-periodic and decadal variation in precipitation during the Meiyu period. This study provides a reference for the long-term and short-term forecasting of precipitation during the Meiyu period.
Andi Xhelaj and Massimiliano Burlando
Nat. Hazards Earth Syst. Sci., 24, 1657–1679, https://doi.org/10.5194/nhess-24-1657-2024, https://doi.org/10.5194/nhess-24-1657-2024, 2024
Short summary
Short summary
The study provides an in-depth analysis of a severe downburst event in Sânnicolau Mare, Romania, utilizing an analytical model and optimization algorithm. The goal is to explore a multitude of generating solutions and to identify potential alternatives to the optimal solution. Advanced data analysis techniques help to discern three main distinct storm scenarios. For this particular event, the best overall solution from the optimization algorithm shows promise in reconstructing the downburst.
Monica Ionita, Petru Vaideanu, Bogdan Antonescu, Catalin Roibu, Qiyun Ma, and Viorica Nagavciuc
EGUsphere, https://doi.org/10.5194/egusphere-2024-1207, https://doi.org/10.5194/egusphere-2024-1207, 2024
Short summary
Short summary
Eastern Europe's heatwave history is explored from 1885 to 2023, with a focus on pre-1960 events. The study reveals two periods with more frequent and intense heatwaves (HW): 1920s–1960s and 1980s–present. The research highlights the importance of a long-term perspective, revealing that extreme heat events have occurred throughout the entire study period and it emphasizes the combined influence of climate change and natural variations on increasing HW severity.
Luca G. Severino, Chahan M. Kropf, Hilla Afargan-Gerstman, Christopher Fairless, Andries Jan de Vries, Daniela I. V. Domeisen, and David N. Bresch
Nat. Hazards Earth Syst. Sci., 24, 1555–1578, https://doi.org/10.5194/nhess-24-1555-2024, https://doi.org/10.5194/nhess-24-1555-2024, 2024
Short summary
Short summary
We combine climate projections from 30 climate models with a climate risk model to project winter windstorm damages in Europe under climate change. We study the uncertainty and sensitivity factors related to the modelling of hazard, exposure and vulnerability. We emphasize high uncertainties in the damage projections, with climate models primarily driving the uncertainty. We find climate change reshapes future European windstorm risk by altering damage locations and intensity.
Daniel Krieger, Sebastian Brune, Johanna Baehr, and Ralf Weisse
Nat. Hazards Earth Syst. Sci., 24, 1539–1554, https://doi.org/10.5194/nhess-24-1539-2024, https://doi.org/10.5194/nhess-24-1539-2024, 2024
Short summary
Short summary
Previous studies found that climate models can predict storm activity in the German Bight well for averages of 5–10 years but struggle in predicting the next winter season. Here, we improve winter storm activity predictions by linking them to physical phenomena that occur before the winter. We guess the winter storm activity from these phenomena and discard model solutions that stray too far from the guess. The remaining solutions then show much higher prediction skill for storm activity.
João P. A. Martins, Sara Caetano, Carlos Pereira, Emanuel Dutra, and Rita M. Cardoso
Nat. Hazards Earth Syst. Sci., 24, 1501–1520, https://doi.org/10.5194/nhess-24-1501-2024, https://doi.org/10.5194/nhess-24-1501-2024, 2024
Short summary
Short summary
Over Europe, 2022 was truly exceptional in terms of extreme heat conditions, both in terms of temperature anomalies and their temporal and spatial extent. The satellite all-sky land surface temperature (LST) is used to provide a climatological context to extreme heat events. Where drought conditions prevail, LST anomalies are higher than 2 m air temperature anomalies. ERA5-Land does not represent this effect correctly due to a misrepresentation of vegetation anomalies.
Rudolf Brázdil, Kateřina Chromá, and Pavel Zahradníček
Nat. Hazards Earth Syst. Sci., 24, 1437–1457, https://doi.org/10.5194/nhess-24-1437-2024, https://doi.org/10.5194/nhess-24-1437-2024, 2024
Short summary
Short summary
The official mortality data in the Czech Republic in 1919–2022 are used to show long-term fluctuations in the number of fatalities caused by excessive natural cold and heat, lightning, natural disasters, and falls on ice/snow, as well as the sex and age of the deceased, based on certain meteorological, historical, and socioeconomic factors that strongly influence changes in the number and structure of such fatalities. Knowledge obtained is usable in risk management for the preservation of lives.
Ben Maybee, Cathryn E. Birch, Steven J. Böing, Thomas Willis, Linda Speight, Aurore N. Porson, Charlie Pilling, Kay L. Shelton, and Mark A. Trigg
Nat. Hazards Earth Syst. Sci., 24, 1415–1436, https://doi.org/10.5194/nhess-24-1415-2024, https://doi.org/10.5194/nhess-24-1415-2024, 2024
Short summary
Short summary
This paper presents the development and verification of FOREWARNS, a novel method for regional-scale forecasting of surface water flooding. We detail outcomes from a workshop held with UK forecast users, who indicated they valued the forecasts and would use them to complement national guidance. We use results of objective forecast tests against flood observations over northern England to show that this confidence is justified and that FOREWARNS meets the needs of UK flood responders.
Ashbin Jaison, Asgeir Sorteberg, Clio Michel, and Øyvind Breivik
Nat. Hazards Earth Syst. Sci., 24, 1341–1355, https://doi.org/10.5194/nhess-24-1341-2024, https://doi.org/10.5194/nhess-24-1341-2024, 2024
Short summary
Short summary
The present study uses daily insurance losses and wind speeds to fit storm damage functions at the municipality level of Norway. The results show that the damage functions accurately estimate losses associated with extreme damaging events and can reconstruct their spatial patterns. However, there is no single damage function that performs better than another. A newly devised damage–no-damage classifier shows some skill in predicting extreme damaging events.
Madlen Peter, Henning W. Rust, and Uwe Ulbrich
Nat. Hazards Earth Syst. Sci., 24, 1261–1285, https://doi.org/10.5194/nhess-24-1261-2024, https://doi.org/10.5194/nhess-24-1261-2024, 2024
Short summary
Short summary
The paper introduces a statistical modeling approach describing daily extreme precipitation in Germany more accurately by including changes within the year and between the years simultaneously. The changing seasonality over years is regionally divergent and mainly weak. However, some regions stand out with a more pronounced linear rise of summer intensities, indicating a possible climate change signal. Improved modeling of extreme precipitation is beneficial for risk assessment and adaptation.
Faye Hulton and David M. Schultz
Nat. Hazards Earth Syst. Sci., 24, 1079–1098, https://doi.org/10.5194/nhess-24-1079-2024, https://doi.org/10.5194/nhess-24-1079-2024, 2024
Short summary
Short summary
Large hail devastates crops and property and can injure and kill people and livestock. Hail reports are collected by individual countries, so understanding where and when large hail occurs across Europe is an incomplete undertaking. We use the European Severe Weather Database to evaluate the quality of reports by year and by country since 2000. Despite its short record, the dataset appears to represent aspects of European large-hail climatology reliably.
Patrick Olschewski, Mame Diarra Bousso Dieng, Hassane Moutahir, Brian Böker, Edwin Haas, Harald Kunstmann, and Patrick Laux
Nat. Hazards Earth Syst. Sci., 24, 1099–1134, https://doi.org/10.5194/nhess-24-1099-2024, https://doi.org/10.5194/nhess-24-1099-2024, 2024
Short summary
Short summary
We applied a multivariate and dependency-preserving bias correction method to climate model output for the Greater Mediterranean Region and investigated potential changes in false-spring events (FSEs) and heat–drought compound events (HDCEs). Results project an increase in the frequency of FSEs in middle and late spring as well as increases in frequency, intensity, and duration for HDCEs. This will potentially aggravate the risk of crop loss and failure and negatively impact food security.
Alan Demortier, Marc Mandement, Vivien Pourret, and Olivier Caumont
Nat. Hazards Earth Syst. Sci., 24, 907–927, https://doi.org/10.5194/nhess-24-907-2024, https://doi.org/10.5194/nhess-24-907-2024, 2024
Short summary
Short summary
Improvements in numerical weather prediction models make it possible to warn of hazardous weather situations. The incorporation of new observations from personal weather stations into the French limited-area model is evaluated. It leads to a significant improvement in the modelling of the surface pressure field up to 9 h ahead. Their incorporation improves the location and intensity of the heavy precipitation event that occurred in the South of France in September 2021.
Timo Schmid, Raphael Portmann, Leonie Villiger, Katharina Schröer, and David N. Bresch
Nat. Hazards Earth Syst. Sci., 24, 847–872, https://doi.org/10.5194/nhess-24-847-2024, https://doi.org/10.5194/nhess-24-847-2024, 2024
Short summary
Short summary
Hailstorms cause severe damage to buildings and cars, which motivates a detailed risk assessment. Here, we present a new open-source hail damage model based on radar data in Switzerland. The model successfully estimates the correct order of magnitude of car and building damages for most large hail events over 20 years. However, large uncertainty remains in the geographical distribution of modelled damages, which can be improved for individual events by using crowdsourced hail reports.
Colin Raymond, Anamika Shreevastava, Emily Slinskey, and Duane Waliser
Nat. Hazards Earth Syst. Sci., 24, 791–801, https://doi.org/10.5194/nhess-24-791-2024, https://doi.org/10.5194/nhess-24-791-2024, 2024
Short summary
Short summary
How can we systematically understand what causes high levels of atmospheric humidity and thus heat stress? Here we argue that atmospheric rivers can be a useful tool, based on our finding that in several US regions, atmospheric rivers and humid heat occur close together in space and time. Most typically, an atmospheric river transports moisture which heightens heat stress, with precipitation following a day later. These effects tend to be larger for stronger and more extensive systems.
Joseph Smith, Cathryn Birch, John Marsham, Simon Peatman, Massimo Bollasina, and George Pankiewicz
Nat. Hazards Earth Syst. Sci., 24, 567–582, https://doi.org/10.5194/nhess-24-567-2024, https://doi.org/10.5194/nhess-24-567-2024, 2024
Short summary
Short summary
Nowcasting uses observations to make predictions of the atmosphere on short timescales and is particularly applicable to the Maritime Continent, where storms rapidly develop and cause natural disasters. This paper evaluates probabilistic and deterministic satellite nowcasting algorithms over the Maritime Continent. We show that the probabilistic approach is most skilful at small scales (~ 60 km), whereas the deterministic approach is most skilful at larger scales (~ 200 km).
Julia Miller, Andrea Böhnisch, Ralf Ludwig, and Manuela I. Brunner
Nat. Hazards Earth Syst. Sci., 24, 411–428, https://doi.org/10.5194/nhess-24-411-2024, https://doi.org/10.5194/nhess-24-411-2024, 2024
Short summary
Short summary
We assess the impacts of climate change on fire danger for 1980–2099 in different landscapes of central Europe, using the Canadian Forest Fire Weather Index (FWI) as a fire danger indicator. We find that today's 100-year FWI event will occur every 30 years by 2050 and every 10 years by 2099. High fire danger (FWI > 21.3) becomes the mean condition by 2099 under an RCP8.5 scenario. This study highlights the potential for severe fire events in central Europe from a meteorological perspective.
Clemens Schwingshackl, Anne Sophie Daloz, Carley Iles, Kristin Aunan, and Jana Sillmann
Nat. Hazards Earth Syst. Sci., 24, 331–354, https://doi.org/10.5194/nhess-24-331-2024, https://doi.org/10.5194/nhess-24-331-2024, 2024
Short summary
Short summary
Ambient heat in European cities will substantially increase under global warming, as projected by three heat metrics calculated from high-resolution climate model simulations. While the heat metrics consistently project high levels of ambient heat for several cities, in other cities the projected heat levels vary considerably across the three heat metrics. Using complementary heat metrics for projections of ambient heat is thus important for assessments of future risks from heat stress.
Dragan Petrovic, Benjamin Fersch, and Harald Kunstmann
Nat. Hazards Earth Syst. Sci., 24, 265–289, https://doi.org/10.5194/nhess-24-265-2024, https://doi.org/10.5194/nhess-24-265-2024, 2024
Short summary
Short summary
The influence of model resolution and settings on the reproduction of heat waves in Germany between 1980–2009 is analyzed. Outputs from a high-resolution model with settings tailored to the target region are compared to those from coarser-resolution models with more general settings. Neither the increased resolution nor the tailored model settings are found to add significant value to the heat wave simulation. The models exhibit a large spread, indicating that the choice of model can be crucial.
Josep Bonsoms, Juan I. López-Moreno, Esteban Alonso-González, César Deschamps-Berger, and Marc Oliva
Nat. Hazards Earth Syst. Sci., 24, 245–264, https://doi.org/10.5194/nhess-24-245-2024, https://doi.org/10.5194/nhess-24-245-2024, 2024
Short summary
Short summary
Climate warming is changing mountain snowpack patterns, leading in some cases to rain-on-snow (ROS) events. Here we analyzed near-present ROS and its sensitivity to climate warming across the Pyrenees. ROS increases during the coldest months of the year but decreases in the warmest months and areas under severe warming due to snow cover depletion. Faster snow ablation is anticipated in the coldest and northern slopes of the range. Relevant implications in mountain ecosystem are anticipated.
Tiberiu-Eugen Antofie, Stefano Luoni, Alois Tilloy, Andrea Sibilia, Sandro Salari, Gustav Eklund, Davide Rodomonti, Christos Bountzouklis, and Christina Corbane
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-220, https://doi.org/10.5194/nhess-2023-220, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
This is the first study that uses spatial patterns (clusters/hot-spots) and meta-analysis in order to identify the regions at European level at risk to multi-hazards. The findings point out the socio-economic dimension as determinant factor for the risk potential to multi-hazard. The outcome provides valuable input for the Disaster Risk Management policy support and will assist national authorities on the implementation of a multi-hazard approach in the National Risk Assessments preparation.
Matthew D. K. Priestley, David B. Stephenson, Adam A. Scaife, Daniel Bannister, Christopher J. T. Allen, and David Wilkie
Nat. Hazards Earth Syst. Sci., 23, 3845–3861, https://doi.org/10.5194/nhess-23-3845-2023, https://doi.org/10.5194/nhess-23-3845-2023, 2023
Short summary
Short summary
This research presents a model for estimating extreme gusts associated with European windstorms. Using observed storm footprints we are able to calculate the return level of events at the 200-year return period. The largest gusts are found across NW Europe, and these are larger when the North Atlantic Oscillation is positive. Using theoretical future climate states we find that return levels are likely to increase across NW Europe to levels that are unprecedented compared to historical storms.
Fabio Dioguardi, Giovanni Chiodini, and Antonio Costa
EGUsphere, https://doi.org/10.5194/egusphere-2023-2867, https://doi.org/10.5194/egusphere-2023-2867, 2023
Short summary
Short summary
We present results of non-volcanic gas (CO2) hazard assessment at the Mefite d’Ansanto area (Italy) where a cold gas stream, which had already been lethal for humans and animals, forms in the valleys surrounding the emission zone. We took the uncertainty related to the gas emission and meteorological conditions into account. Results include maps of CO2 concentration at defined probability levels and of the probability to overcome specified CO2 concentrations over specified time intervals.
Tadeusz Chmielewski and Piotr A. Bońkowski
Nat. Hazards Earth Syst. Sci., 23, 3839–3844, https://doi.org/10.5194/nhess-23-3839-2023, https://doi.org/10.5194/nhess-23-3839-2023, 2023
Short summary
Short summary
The paper deals with wind speeds of extreme wind events in Poland and the descriptions of their effects. Two recent estimations developed by the Institute of Meteorology and Water Management in Warsaw and by Halina Lorenc are presented and briefly described. The 37 annual maximum gusts of wind speeds measured between 1971 and 2007 are analysed. Based on the measured and estimated wind speeds, the authors suggest new estimations for extreme winds that may occur in Poland.
Jingyu Wang, Jiwen Fan, and Zhe Feng
Nat. Hazards Earth Syst. Sci., 23, 3823–3838, https://doi.org/10.5194/nhess-23-3823-2023, https://doi.org/10.5194/nhess-23-3823-2023, 2023
Short summary
Short summary
Hail and tornadoes are devastating hazards responsible for significant property damage and economic losses in the United States. Quantifying the connection between hazard events and mesoscale convective systems (MCSs) is of great significance for improving predictability, as well as for better understanding the influence of the climate-scale perturbations. A 14-year statistical dataset of MCS-related hazard production is presented.
Ruijiao Jiang, Guoping Zhang, Shudong Wang, Bing Xue, Zhengshuai Xie, Tingzhao Yu, Kuoyin Wang, Jin Ding, and Xiaoxiang Zhu
Nat. Hazards Earth Syst. Sci., 23, 3747–3759, https://doi.org/10.5194/nhess-23-3747-2023, https://doi.org/10.5194/nhess-23-3747-2023, 2023
Short summary
Short summary
Lightning activity in China is analyzed. Low latitudes, undulating terrain, seaside, and humid surfaces are beneficial for lightning occurrence. Summer of the year or afternoon of the day is the high period. Large cloud-to-ground lightning frequency always corresponds to a small ratio and weak intensity of positive cloud-to-ground lightning on either a temporal or spatial scale. Interestingly, the discharge intensity difference between the two types of lightning shrinks on the Tibetan Plateau.
George Pacey, Stephan Pfahl, Lisa Schielicke, and Kathrin Wapler
Nat. Hazards Earth Syst. Sci., 23, 3703–3721, https://doi.org/10.5194/nhess-23-3703-2023, https://doi.org/10.5194/nhess-23-3703-2023, 2023
Short summary
Short summary
Cold fronts are often associated with areas of intense precipitation (cells) and sometimes with hazards such as flooding, hail and lightning. We find that cold-frontal cell days are associated with higher cell frequency and cells are typically more intense. We also show both spatially and temporally where cells are most frequent depending on their cell-front distance. These results are an important step towards a deeper understanding of cold-frontal storm climatology and improved forecasting.
Francesco Battaglioli, Pieter Groenemeijer, Ivan Tsonevsky, and Tomàš Púčik
Nat. Hazards Earth Syst. Sci., 23, 3651–3669, https://doi.org/10.5194/nhess-23-3651-2023, https://doi.org/10.5194/nhess-23-3651-2023, 2023
Short summary
Short summary
Probabilistic models for lightning and large hail were developed across Europe using lightning observations and hail reports. These models accurately predict the occurrence of lightning and large hail several days in advance. In addition, the hail model was shown to perform significantly better than the state-of-the-art forecasting methods. These results suggest that the models developed in this study may help improve forecasting of convective hazards and eventually limit the associated risks.
Francisco Javier Acero, Manuel Antón, Alejandro Jesús Pérez Aparicio, Nieves Bravo-Paredes, Víctor Manuel Sánchez Carrasco, María Cruz Gallego, José Agustín García, Marcelino Núñez, Irene Tovar, Javier Vaquero-Martínez, and José Manuel Vaquero
EGUsphere, https://doi.org/10.5194/egusphere-2023-2522, https://doi.org/10.5194/egusphere-2023-2522, 2023
Short summary
Short summary
The month of June 1925 was detected as exceptional in the SW interior of Iberia due to the large number of thunderstorms and the significant impacts that caused, with serious losses in human lives and material resources. We analyzed this event from different, complementary perspectives: the reconstruction of the history of the events from newspapers; the study of monthly meteorological variables of the longest series available in Iberia; and the analysis of the meteorological synoptic situation.
Cited articles
Aguilar, D., Andrade, D., Alava, D., Burbano, J., Díaz, M., Garcés, A. L., Jiménez, W., Leiva, D., Loayza, V., Muyulema, W., Pérez, P.,
Ruiz, V., Simbaña, B., and Yépez, R.: Estimación de superficie
sembrada de arroz (Oryza sativa l.) Y maíz amarillo duro (Zea mays l.)
En las épocas de invierno y verano año 2015, en las provincias de
Manabí, Los Ríos, Guayas, Santa Elena, Loja y El Oro, Quito, Ecuador, available at:
http://sinagap.agricultura.gob.ec/pdf/estudios_agroeconomicos/estimacion_superficie_arroz_maiz-2015.pdf (last access: 11 September 2018), 2015.
Aguilar, D., Alava, D., Burbano, J., Garcés, A. L., Jácome, D.,
Leiva, D., Simbaña, B., and Yépez, R.: Estimación de superficie
sembrada de arroz (Oryza sativa l.), maíz amarillo duro (Zea mays l.) y
soya (Glycine max) en las épocas del año 2017, en las provincias de:
Guayas, Los Ríos, Manabí, Santa Elena, Loja y El Oro, Quito, Ecuador, 2018.
Arias, O. V., Garrido, A., Villeta, M., and Tarquis, A. M.: Homogenisation of
a soil properties map by principal component analysis to define index
agricultural insurance policies, Geoderma, 311, 149–158, https://doi.org/10.1016/j.geoderma.2017.01.018, 2018.
Barnett, B. J. and Mahul, O.: Weather Index Insurance for Agriculture and
Rural Areas in Lower-Income Countries, Am. J. Agric. Econ., 89, 1241–1247, https://doi.org/10.1111/j.1467-8276.2007.01091.x, 2007.
Bullock, J. M., Dhanjal-Adams, K. L., Milne, A., Oliver, T. H., Todman, L. C., Whitmore, A. P., and Pywell, R. F.: Resilience and food security:
rethinking an ecological concept, J. Ecol., 105, 880–884,
https://doi.org/10.1111/1365-2745.12791, 2017.
Cai, W., Borlace, S., Lengaigne, M., van Rensch, P., Collins, M., Vecchi, G., Timmermann, A., Santoso, A., McPhaden, M. J., Wu, L., England, M. H., Wang, G., Guilyardi, E., and Jin, F.-F.: Increasing frequency of extreme El Nino events due to greenhouse warming, Nat. Clim. Change, 4, 111–116
https://doi.org/10.1038/nclimate2100, 2014.
Carter, M., Cheng, L., and Sarris, A.: The Impact of Inter-linked Index
Insurance and Credit Contracts on Financial Market Deepening and Small Farm
Productivity, Unpubl. manuscript, Univ. California, Davis, available at:
http://www.aueb.gr/conferences/Crete2012/papers/papers senior/Sarris.pdf (last access: 16 July 2018), 2011.
Clarke, D. J.: A theory of rational demand for index insurance, Am. Econ. J.
Microecon., 8, 283–306, https://doi.org/10.1257/mic.20140103, 2016.
CRED – Centre for Research on the Epidemiology of Disasters: EM DAT The
International Disaster Database, available at:
http://www.emdat.be/database (last access: 26 August 2019), 2015.
de Leeuw, J., Vrieling, A., Shee, A., Atzberger, C., Hadgu, K. M., Biradar, C. M., Keah, H., and Turvey, C.: The potential and uptake of remote sensing in insurance: a review, Remote Sens., 6, 10888–10912, 2014.
Didan, K.: MOD13Q1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250 m SIN
Grid V006, NASA EOSDIS Land Processes DAAC, University of Arizona, Tucson, 2015.
Didan, K., Barreto, A., Solano, R., and Huete, A.: MODIS Vegetation Index
User's Guide (MOD13 Series) Version 3.00 (Collection 6), available at: https://vip.arizona.edu/documents/MODIS/MODIS_VI_UsersGuide_June_2015_C6.pdf
(last access: 20 March 2018), 2015.
Elabed, G., Bellemare, M. F., Carter, M. R., and Guirkinger, C.: Managing
basis risk with multiscale index insurance, Agric. Econ., 44, 419–431, https://doi.org/10.1111/agec.12025, 2013.
Eymond, M. and Santos, A.: Asociatividad para el acceso a la comercialización de pequeños arroceros en Ecuador, in: Dinámicas
de comercialización para la agricultura familiar campesina: desafíos y alternativas en el escenario ecuatoriano, edited by: Proaño, V. and Lacroix, P., Sistema de Investigación sobre la Problemática Agraria en el Ecuador (SIPAE), Quito, Ecuador, 65–96, available at:
https://www.avsf.org/public/posts/1704/dinamicas_comercializacion_avsf_ecuador_2014.pdf#page=66
(last access: 2 January 2019), 2013.
FAO: Seguimiento del mercado del arroz de la FAO, Comer. y mercados, FAO,
XXI, 9, https://doi.org/I9243ES/1/05.18, 2018.
FAO and Un-Habitat: On solid ground. Addressing land tenure issues following
natural disasters, Rome, 2010.
Garrido, A. and Zilberman, D.: Revisiting the demand for agricultural insurance: the case of Spain, edited by: David, Z., Agric. Financ. Rev., 68, 43–66, https://doi.org/10.1108/00214660880001218, 2008.
Gu, Y., Wylie, B. K., Howard, D. M., Phuyal, K. P., and Ji, L.: NDVI
saturation adjustment: A new approach for improving cropland performance
estimates in the Greater Platte River Basin, USA, Ecol. Indic., 30, 1–6,
https://doi.org/10.1016/j.ecolind.2013.01.041, 2013.
Harvey, C. a, Rakotobe, Z. L., Rao, N. S., Dave, R., Razafimahatratra, H.,
Rabarijohn, R. H., Rajaofara, H., and Mackinnon, J. L.: Extreme vulnerability
of smallholder farmers to agricultural risks and climate change in
Madagascar, Philos. T. Roy. Soc. Lond. B, 369, 20130089, https://doi.org/10.1098/rstb.2013.0089, 2014.
Hellmuth, M. E., Osgood, D. E., Hess, U., Moorhead, A., and Bhojwani, H. (Eds.): Index insurance and climate risk: prospects for development and disaster management, Climate and Society No. 2, International Research Institute for Climate and Society (IRI), Columbia University, New York, USA, 2009.
Höppe, P.: Scientific and Economic Rationale for Weather Risk Insurance For Agriculture, in: Managing Weather and Climate Risks in Agriculture, edited by: Sivakumar, M. V. K. and Motha, R. P., Springer, Berlin, Heidelberg, 367–375, 2007.
Huang, J., Wang, X., Li, X., Tian, H., and Pan, Z.: Remotely sensed rice yield prediction using multi-temporal NDVI data derived from NOAA's-AVHRR, PLoS One, 8, e70816, https://doi.org/10.1371/journal.pone.0070816, 2013.
IEE – Instituto Espacial Ecuatoriano: Technical report of production systems
in Babahoyo canton, Quito-Ecuador, available at:
http://181.211.99.244/geodescargas/babahoyo/mt_babahoyo_sistemas_productivos.pdf
(last access: 16 April 2018), 2009.
INEC: Rice-cultivated area. Historical database, Contin. Agric. Prod. Surv. (ESPAC), Ecuador en cifras, available at:
http://www.ecuadorencifras.gob.ec/encuesta-de-superficie-y-produccion-agropecuaria-continua-2015
(last access: 2 March 2019), 2018.
Inglada, J., Arias, M., Tardy, B., Hagolle, O., Valero, S., Morin, D., Dedieu, G., Sepulcre, G., Bontemps, S., Defourny, P., and Koetz, B.: Assessment of an Operational System for Crop Type Map Production Using High
Temporal and Spatial Resolution Satellite Optical Imagery, Remote Sens., 7, 12356–12379, https://doi.org/10.3390/rs70912356, 2015.
Isch, E.: El cambio climático y el agua: efectos y medidas de adaptación, Quito, Ecuador, available at:
http://www.pacc-ecuador.org/wp-content/uploads/2014/01/CapacitacionCC_Modulo_dos.pdf
(last access: 18 February 2019), 2011.
Jasiulewicz, H.: Probability of ruin with variable premium rate in a Markovian environment, Insur. Math. Econ., 29, 291–296,
https://doi.org/10.1016/S0167-6687(01)00090-7, 2001.
Jensen, N. and Barrett, C.: Agricultural Index Insurance for Development, Appl. Econ. Perspect. Policy, 39, 199–219, https://doi.org/10.1093/aepp/ppw022, 2017.
Jensen, N. D., Mude, A. G., and Barrett, C. B.: How basis risk and
spatiotemporal adverse selection influence demand for index insurance: Evidence from northern Kenya, Food Policy, 74, 172–198,
https://doi.org/10.1016/j.foodpol.2018.01.002, 2018.
Jiao, W., Tian, C., Chang, Q., Novick, K. A., and Wang, L.: A new multi-sensor integrated index for drought monitoring, Agr. Forest. Meteorol.,
268, 74–85, https://doi.org/10.1016/j.agrformet.2019.01.008, 2019.
Kotz, S. and Nadarajah, S.: Extreme Value distribution: Theory and
applications, 1st Edn., Imperial College Press, London, 2000.
Maestro, T., Bielza, M., and Garrido, A.: Hydrological drought index insurance for irrigation districts in Spain, Spanish J. Agric. Res., 14, e0105, https://doi.org/10.5424/sjar/2016143-8981, 2016.
MAG: Costos de producción del cultivo de arroz en secano y riego, Quito, Ecuador, available at: http://sinagap.agricultura.gob.ec/ (last access: 25 January 2019), 2017.
MAGAP – Ministerio de Agricultura Ganaderia Acuacultura y Pesca: Censo por
Impactos de Invierno 2012, Resultados, Quito, Ecuador, available at:
http://sinagap.agricultura.gob.ec/images/flippingbook/censoimpacto2012/files/assets/downloads/publication.pdf
(last access: 21 March 2018), 2012.
MAGAP – Ministerio de Agricultura Ganaderia Acuacultura y Pesca: Map of
estimated area of rice and maize cultivation in the provinces of Guayas, Santa Elena, Los Rios, Manabí, El Oro and Loja in 2014, Geoportal del
Agro Ecuatoriano, available at:
http://geoportal.agricultura.gob.ec/catalogo_datos/visualizador.html
(last access: 12 November 2018), 2014.
Mcintosh, C., Sarris, A., and Papadopoulos, F.: Productivity, credit, risk,
and the demand for weather index insurance in smallholder agriculture in
Ethiopia, Agric. Econ., 44, 399–417, https://doi.org/10.1111/agec.12024, 2013.
Medina, N.: Agricultural insurance in Ecuador: Evidence of asymmetric
information, J. Account. Tax., 9, 68–87, https://doi.org/10.5897/JAT2017.0262, 2017.
Ministerio de Agricultura y Ganaderia MAG: Ministerial Agreement No. 168,
Ministerio de Agricultura y Ganaderia, Ecuador, available at:
http://servicios.agricultura.gob.ec/mag01/pdfs/aministerial/2018/2018-168.pdf,
last access: 5 June 2018.
Mobarak, A. M. and Rosenzweig, M. R.: Informal risk sharing, index insurance, and risk taking in developing countries, Am. Econ. Rev., 103, 375–380, 2013.
Montaño, M.: Estudio de la aplicación de Azolla Anabaena como bioabono en el cultivo de arroz en el Litoral ecuatoriano, Rev.
Tecnológica ESPOL, 18, 147–151, 2005.
Moreno, B.: Yield rice in Ecuador, First quarter 2014, Quito, Ecuador,
available at:
http://sinagap.agricultura.gob.ec/pdf/estudios_agroeconomicos/rendimiento_arroz_1er_cuatrimestre.pdf
(last access: 21 May 2019), 2014.
Mude, A., Barrett, C. B., Carter, M. R., Chantarat, S., Ikegami, M., and McPeak, J. G.: Index based livestock insurance for northern Kenya's arid and
semi-arid lands: the Marsabit pilot, SSRN 1844758, ILRI, Nairobi, Kenya, 2009.
NASA LP DAAC: MOD13Q1: MODIS/Terra Vegetation Indices 16-Day L3 Global 250 m
Grid SIN V006, USGS Earth Resour. Obs. Sci. Center, Sioux Falls, South Dakota, https://doi.org/10.5067/MODIS/MOD13Q1.006, 2015.
NOAA: Anomalies of GPCC Precipitation, Phys. Sci. Div. Earth Syst. Res. Lab., available at:
https://www.esrl.noaa.gov/psd/cgi-bin/data/composites/printpage.pl, last access: 8 February 2018.
Olofsson, P., Foody, G. M., Herold, M., Stehman, S. V, Woodcock, C. E., and
Wulder, M. A.: Good practices for estimating area and assessing accuracy of
land change, Remote Sens. Environ., 148, 42–57, https://doi.org/10.1016/j.rse.2014.02.015, 2014.
Pardo, A., Merino, A. P., and Castellanos, R. S. M.: Análisis de datos en
psicología II, Pirámide, available at:
https://books.google.es/books?id=k4OWAAAACAAJ (last access: 13 March 2018), 1998.
Patt, A., Peterson, N., Carter, M., Velez, M., Hess, U., and Suarez, P.:
Making index insurance attractive to farmers, Mitig. Adapt. Strateg. Glob.
Change, 14, 737–753, https://doi.org/10.1007/s11027-009-9196-3, 2009.
Pinstrup-Andersen, P.: Food security: definition and measurement, Food
Secur., 1, 5–7, https://doi.org/10.1007/s12571-008-0002-y, 2009.
Polasek, W.: Multivariate Analysis for the Biobehavioral and Social Sciences: A Graphical Approach by Bruce L. Brown, Suzanne B. Hendrix, Dawson W. Hedges, Timothy B. Smith, Int. Stat. Rev., 81, 463–465, https://doi.org/10.1111/insr.12042_5, 2013.
Poveda, G. and Andrade, C.: Producción Sostenible De Arroz En La Provincia Del Guayas, Rev. Contrib. a las Ciencias Soc., Universidad de Guayaquil, Guayaquil, Ecuador, 2013.
Quarmby, N. A., Milnes, M., Hindel, T. L., and Sileos, N.: The use of
multi-temporal NDVI measurements from AVHRR data for crop yield estimation
and prediction, Int. J. Remote Sens., 14, 199–210, https://doi.org/10.1080/01431169308904332, 1993.
Rao, K.: International Conference on Agricultural Risk and Food Security 2010, Agric. Agric. Sci. Procedia, 1, 193–203, https://doi.org/10.1016/j.aaspro.2010.09.024, 2010.
Razali, N. M. and Wah, Y. B.: Power comparisons of Shapiro-Wilk,
Kolmogorov–Smirnov, Lilliefors and Anderson-Darling tests, J. Stat. Model.
Anal., 2, 21–33, 2011.
Rhee, J., Im, J., and Carbone, G. J.: Monitoring agricultural drought for
arid and humid regions using multi-sensor remote sensing data, Remote Sens.
Environ., 114, 2875–2887, https://doi.org/10.1016/j.rse.2010.07.005, 2010.
Ricome, A., Affholder, F., Gérard, F., Muller, B., Poeydebat, C., Quirion, P., and Sall, M.: Are subsidies to weather-index insurance the best
use of public funds? A bio-economic farm model applied to the Senegalese
groundnut basin, Agric. Syst., 156, 149–176, https://doi.org/10.1016/j.agsy.2017.05.015, 2017.
Rondeaux, G., Steven, M., and Baret, F.: Optimization of soil-adjusted
vegetation indices, Remote Sens. Environ., 55, 95–107, https://doi.org/10.1016/0034-4257(95)00186-7, 1996.
Sánchez, N., González-Zamora, Á., Martínez-Fernández, J., Piles, M., and Pablos, M.: Integrated remote sensing approach to global
agricultural drought monitoring, Agr. Forest. Meteorol., 259, 141–153,
https://doi.org/10.1016/j.agrformet.2018.04.022, 2018.
Sivakumar, M., Motha, R., and Das, H.: Natural Disasters and Extreme Events
in Agriculture, in: Impacts and Mitigation, edited by: Sivakumar, M., Motha, R., and Das, F., Springer, Berlin, 2005.
Soil Survey Staff: Keys to soil taxonomy, 12th Edn., USDA – Natural Resources Conservation Service, Washington, D.C., 2014.
Son, N. T., Chen, C. F., Chen, C. R., Minh, V. Q., and Trung, N. H.: A
comparative analysis of multitemporal MODIS EVI and NDVI data for large-scale rice yield estimation, Agr. Forest. Meteorol., 197, 52–64,
https://doi.org/10.1016/j.agrformet.2014.06.007, 2014.
Takahashi, K., Ikegami, M., Sheahan, M., and Barrett, C. B.: Experimental
Evidence on the Drivers of Index-Based Livestock Insurance Demand in Southern Ethiopia, World Dev., 78, 324–340, https://doi.org/10.1016/j.worlddev.2015.10.039, 2016.
Torbick, N., Chowdhury, D., Salas, W., and Qi, J.: Monitoring rice agriculture across myanmar using time series Sentinel-1 assisted by
Landsat-8 and PALSAR-2, Remote Sens., 9, 119, https://doi.org/10.3390/rs9020119, 2017.
Valverde-Arias, O., Garrido, A., Valencia, J. L., and Tarquis, A. M.: Using
geographical information system to generate a drought risk map for rice
cultivation: Case study in Babahoyo canton (Ecuador), Biosyst. Eng., 168, 26–41, https://doi.org/10.1016/j.biosystemseng.2017.08.007, 2018.
Valverde-Arias, O., Garrido, A., Saa-Requejo, A., Carreño, F., and Tarquis, A. M.: Agro-ecological variability effects on an index-based
insurance design for extreme events, Geoderma, 337, 1341–1350,
https://doi.org/10.1016/j.geoderma.2018.10.043, 2019.
van de Ven, W. P. M. M., van Vliet, R. C. J. A., Schut, F. T., and van Barneveld, E. M.: Access to coverage for high-risks in a competitive
individual health insurance market: via premium rate restrictions or
risk-adjusted premium subsidies?, J. Health Econ., 19, 311–339,
https://doi.org/10.1016/S0167-6296(99)00028-4, 2000.
Van Tricht, K., Gobin, A., Gilliams, S., and Piccard, I.: Synergistic Use of
Radar Sentinel-1 and Optical Sentinel-2 Imagery for Crop Mapping: A Case
Study for Belgium, Remote Sens., 10, 1642, https://doi.org/10.3390/rs10101642, 2018.
Vedenov, D. V. and Barnett, B. J.: Efficiency of Weather Derivatives as
Primary Crop Insurance Instruments, J. Agric. Resour. Econ., 29, 387–403, 2004.
Veloso, A., Mermoz, S., Bouvet, A., Le Toan, T. , Planells, M., Dejoux, J.-F., and Ceschia, E.: Understanding the temporal behavior of crops using
Sentinel-1 and Sentinel-2-like data for agricultural applications, Remote
Sens. Environ., 199, 415–426, https://doi.org/10.1016/j.rse.2017.07.015, 2017.
Vroege, W., Dalhaus, T., and Finger, R.: Index insurances for grasslands – A
review for Europe and North-America, Agric. Syst., 168, 101–111,
https://doi.org/10.1016/j.agsy.2018.10.009, 2019.
Williams, L. J. and Abdi, H.: Fisher's least significant difference (LSD) test, Encycl. Res. Des., 218, 840–853, 2010.
Xu, J. and Liao, P.: Crop Insurance, Premium Subsidy and Agricultural
Output, J. Integr. Agric., 13, 2537–2545, https://doi.org/10.1016/S2095-3119(13)60674-7, 2014.
Yuanchang, X. and Jiyu, J.: The optimal boundary of political subsidies for
agricultural insurance in welfare economic prospect, Agric. Agric. Sci.
Procedia, 1, 163–169, https://doi.org/10.1016/j.aaspro.2010.09.020, 2010.
Zhang, X., Chen, N., Li, J., Chen, Z., and Niyogi, D.: Multi-sensor integrated framework and index for agricultural drought monitoring, Remote
Sens. Environ., 188, 141–163, https://doi.org/10.1016/j.rse.2016.10.045, 2017.
Short summary
We designed an index-based insurance (IBI) for drought and flood in rice crops in Babahoyo (Ecuador). We assessed Babahoyo's soil, climatic and topographic variability, finding two homogeneous zones inside this area. We set differentiated insurance premiums according to the particular risk status of each zone. Results demonstrate that this IBI is an efficient risk transfer tool for policyholders. This insurance design could contribute to stabilizing farmers' incomes and rice production.
We designed an index-based insurance (IBI) for drought and flood in rice crops in Babahoyo...
Altmetrics
Final-revised paper
Preprint