Articles | Volume 20, issue 1
Nat. Hazards Earth Syst. Sci., 20, 345–362, 2020
https://doi.org/10.5194/nhess-20-345-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue: Remote sensing, modelling-based hazard and risk assessment,...
Research article
28 Jan 2020
Research article
| 28 Jan 2020
Remote sensing in an index-based insurance design for hedging economic impacts on rice cultivation
Omar Roberto Valverde-Arias et al.
Related authors
No articles found.
Jonathan Rizzi, Ana M. Tarquis, Anne Gobin, Mikhail Semenov, Wenwu Zhao, and Paolo Tarolli
Nat. Hazards Earth Syst. Sci., 21, 3873–3877, https://doi.org/10.5194/nhess-21-3873-2021, https://doi.org/10.5194/nhess-21-3873-2021, 2021
Panagiotis T. Nastos, Nicolas R. Dalezios, Ioannis N. Faraslis, Kostas Mitrakopoulos, Anna Blanta, Marios Spiliotopoulos, Stavros Sakellariou, Pantelis Sidiropoulos, and Ana M. Tarquis
Nat. Hazards Earth Syst. Sci., 21, 1935–1954, https://doi.org/10.5194/nhess-21-1935-2021, https://doi.org/10.5194/nhess-21-1935-2021, 2021
Short summary
Short summary
Risk assessment consists of three steps: identification, estimation and evaluation. Nevertheless, the risk management framework also includes a fourth step, the need for feedback on all the risk assessment undertakings. However, there is a lack of such feedback, which constitutes a serious deficiency in the reduction of environmental hazards at the present time. The objective of this review paper consists of addressing meteorological hazards and extremes within the risk management framework.
Rubén Moratiel, Raquel Bravo, Antonio Saa, Ana M. Tarquis, and Javier Almorox
Nat. Hazards Earth Syst. Sci., 20, 859–875, https://doi.org/10.5194/nhess-20-859-2020, https://doi.org/10.5194/nhess-20-859-2020, 2020
Short summary
Short summary
The estimation of ETo using temperature is particularly attractive in places where air humidity, wind speed and solar radiation data are not readily available. In this study we used, for the estimation of ETo, seven models against Penman–Monteith FAO 56 with temporal (annual and seasonal) and spatial perspective over Duero basin (Spain). The results of the tested models can be useful for adopting appropriate measures for efficient water management under the limitation of agrometeorological data.
Irene Blanco-Gutiérrez, Rhys Manners, Consuelo Varela-Ortega, Ana M. Tarquis, Lucieta G. Martorano, and Marisol Toledo
Nat. Hazards Earth Syst. Sci., 20, 797–813, https://doi.org/10.5194/nhess-20-797-2020, https://doi.org/10.5194/nhess-20-797-2020, 2020
Short summary
Short summary
The Amazon rainforest is being destroyed, resulting in negative ecological and social impacts. We explore how stakeholders perceive the causes of the Amazon's degradation in Bolivia and Brazil and develop a series of scenarios to help strengthen the balance between human development and environmental conservation. The results suggest that the application of governance and well-integrated technical and social reform strategies encourages positive regional changes even under climate change.
María del Pilar Jiménez-Donaire, Ana Tarquis, and Juan Vicente Giráldez
Nat. Hazards Earth Syst. Sci., 20, 21–33, https://doi.org/10.5194/nhess-20-21-2020, https://doi.org/10.5194/nhess-20-21-2020, 2020
Short summary
Short summary
A new combined drought indicator (CDI) is proposed that integrates rainfall, soil moisture and vegetation dynamics. The performance of this indicator was evaluated against crop damage data from agricultural insurance schemes in five different areas in SW Spain. Results show that this indicator was able to predict important droughts in 2004–2005 and 2011–2012, marked by crop damage of between 70 % and 95 % of the total insured area. This opens important applications for improving insurance schemes.
Juan José Martín-Sotoca, Antonio Saa-Requejo, Rubén Moratiel, Nicolas Dalezios, Ioannis Faraslis, and Ana María Tarquis
Nat. Hazards Earth Syst. Sci., 19, 1685–1702, https://doi.org/10.5194/nhess-19-1685-2019, https://doi.org/10.5194/nhess-19-1685-2019, 2019
Short summary
Short summary
Vegetation indices based on satellite images, such as the normalized difference vegetation index (NDVI), have been used for damaged pasture insurance. The occurrence of damage is usually defined by NDVI thresholds mainly based on normal statistics. In this work a pasture area in Spain was delimited by MODIS images. A statistical analysis of NDVI was applied to search for alternative distributions. Results show that generalized extreme value distributions present a better fit than normal ones.
Carmelo Alonso, Ana M. Tarquis, Ignacio Zúñiga, and Rosa M. Benito
Nonlin. Processes Geophys., 24, 141–155, https://doi.org/10.5194/npg-24-141-2017, https://doi.org/10.5194/npg-24-141-2017, 2017
Short summary
Short summary
NDVI and EVI vegetation indexes, estimated from satellite images, can been used to estimate root zone soil moisture. However, depending on the spatial and radiometric resolution of the sensors used, estimations could change. In this work, images taken by satellites IKONOS-2 and LANDSAT-7 of the same location are compared on the four bands involved in these vegetation indexes. The results show that spatial resolution has a similar scaling effect in the four bands, but not radiometric resolution.
Ana M. Tarquis, María Teresa Castellanos, Maria Carmen Cartagena, Augusto Arce, Francisco Ribas, María Jesús Cabello, Juan López de Herrera, and Nigel R. A. Bird
Nonlin. Processes Geophys., 24, 77–87, https://doi.org/10.5194/npg-24-77-2017, https://doi.org/10.5194/npg-24-77-2017, 2017
Short summary
Short summary
Melon crop got different levels of N that constituted a contribution to the variation of soil N at mainly larger scales. During its development a proportion of the N was taken up, adding a second factor of variability at smaller scales. After the melon harvest, the wheat was sown across the plots and harvested at the end of the season. Wheat was used as a N sink crop and allowed us to evaluate the soil N residual. Multiscale and relative entropy were applied to study N scale dependencies.
N. R. Dalezios, A. Blanta, N. V. Spyropoulos, and A. M. Tarquis
Nat. Hazards Earth Syst. Sci., 14, 2435–2448, https://doi.org/10.5194/nhess-14-2435-2014, https://doi.org/10.5194/nhess-14-2435-2014, 2014
P. Cely, A. M. Tarquis, J. Paz-Ferreiro, A. Méndez, and G. Gascó
Solid Earth, 5, 585–594, https://doi.org/10.5194/se-5-585-2014, https://doi.org/10.5194/se-5-585-2014, 2014
A. Matulka, P. López, J. M. Redondo, and A. Tarquis
Nonlin. Processes Geophys., 21, 269–278, https://doi.org/10.5194/npg-21-269-2014, https://doi.org/10.5194/npg-21-269-2014, 2014
Related subject area
Atmospheric, Meteorological and Climatological Hazards
Lessons from the 2018–2019 European droughts: a collective need for unifying drought risk management
Idealized simulations of Mei-yu rainfall in Taiwan under uniform southwesterly flow using a cloud-resolving model
Hotspots for warm and dry summers in Romania
Development of a forecast-oriented kilometre-resolution ocean–atmosphere coupled system for western Europe and sensitivity study for a severe weather situation
Tropical cyclone storm surge probabilities for the east coast of the United States: a cyclone-based perspective
Hydrometeorological analysis of the 12 and 13 September 2019 widespread flash flooding in eastern Spain
Monitoring the daily evolution and extent of snow drought
Characteristics of precipitation extremes over the Nordic region: added value of convection-permitting modeling
Adaptation and application of the large LAERTES-EU regional climate model ensemble for modeling hydrological extremes: a pilot study for the Rhine basin
Invited perspectives: how does climate change affect the risk of natural hazards? Challenges and step changes from the reinsurance perspective
An observation operator for geostationary lightning imager data assimilation in the French storm-scale numerical weather prediction system AROME
Nowcasting thunderstorm hazards using machine learning: the impact of data sources on performance
Spatio-temporal evolution of wet–dry event features and their transition across the Upper Jhelum Basin (UJB) in South Asia
Precipitation stable isotopic signatures of tropical cyclones in Metropolitan Manila, Philippines, show significant negative isotopic excursions
Evaluation of Mei-yu heavy-rainfall quantitative precipitation forecasts in Taiwan by a cloud-resolving model for three seasons of 2012–2014
Modelling the volcanic ash plume from Eyjafjallajökull eruption (May 2010) over Europe: evaluation of the benefit of source term improvements and of the assimilation of aerosol measurements
Applying machine learning for drought prediction in a perfect model framework using data from a large ensemble of climate simulations
Using high-resolution regional climate models to estimate return levels of daily extreme precipitation over Bavaria
An ensemble of state-of-the-art ash dispersion models: towards probabilistic forecasts to increase the resilience of air traffic against volcanic eruptions
A climatology of sub-seasonal temporal clustering of extreme precipitation in Switzerland and its links to extreme discharge
Impact of large wildfires on PM10 levels and human mortality in Portugal
Investigating 3D and 4D variational rapid-update-cycling assimilation of weather radar reflectivity for a heavy rain event in central Italy
Variability in lightning hazard over Indian region with respect to El Niño–Southern Oscillation (ENSO) phases
Social sensing of high-impact rainfall events worldwide: a benchmark comparison against manually curated impact observations
Attribution of the role of climate change in the forest fires in Sweden 2018
Invited perspectives: The ECMWF strategy 2021–2030 challenges in the area of natural hazards
Implementation of WRF-Hydro at two drainage basins in the region of Attica, Greece, for operational flood forecasting
Intense windstorms in the northeastern United States
Review article: Risk management framework of environmental hazards and extremes in Mediterranean ecosystems
Global ground strike point characteristics in negative downward lightning flashes – Part 1: Observations
Global ground strike point characteristics in negative downward lightning flashes – Part 2: Algorithm validation
Assessing internal changes in the future structure of dry–hot compound events: the case of the Pyrenees
Changes in drought features at the European level over the last 120 years
Assimilation of Himawari-8 imager radiance data with the WRF-3DVAR system for the prediction of Typhoon Soudelor
Atmospheric conditions leading to an exceptional fatal flash flood in the Negev Desert, Israel
Review article: Towards resilient vital infrastructure systems – challenges, opportunities, and future research agenda
Fatalities associated with the severe weather conditions in the Czech Republic, 2000–2019
Drought propagation and construction of a comprehensive drought index based on the Soil and Water Assessment Tool (SWAT) and empirical Kendall distribution function (KC′): a case study for the Jinta River basin in northwestern China
Extreme wind return periods from tropical cyclones in Bangladesh: insights from a high-resolution convection-permitting numerical model
Review article: Observations for high-impact weather and their use in verification
An analysis of temporal scaling behaviour of extreme rainfall in Germany based on radar precipitation QPE data
The heavy precipitation event of 14–15 October 2018 in the Aude catchment: a meteorological study based on operational numerical weather prediction systems and standard and personal observations
Wet and dry spells in Senegal: comparison of detection based on satellite products, reanalysis, and in situ estimates
Drought impact in the Bolivian Altiplano agriculture associated with the El Niño–Southern Oscillation using satellite imagery data
A statistical–parametric model of tropical cyclones for hazard assessment
The impact of drought on soil moisture trends across Brazilian biomes
Simulating synthetic tropical cyclone tracks for statistically reliable wind and pressure estimations
Radar-based assessment of hail frequency in Europe
A new view on the risk of typhoon occurrence in the western North Pacific
Data assimilation impact studies with the AROME-WMED reanalysis of the first special observation period of the Hydrological cycle in the Mediterranean Experiment
Veit Blauhut, Michael Stoelzle, Lauri Ahopelto, Manuela I. Brunner, Claudia Teutschbein, Doris E. Wendt, Vytautas Akstinas, Sigrid J. Bakke, Lucy J. Barker, Lenka Bartošová, Agrita Briede, Carmelo Cammalleri, Ksenija Cindrić Kalin, Lucia De Stefano, Miriam Fendeková, David C. Finger, Marijke Huysmans, Mirjana Ivanov, Jaak Jaagus, Jiří Jakubínský, Svitlana Krakovska, Gregor Laaha, Monika Lakatos, Kiril Manevski, Mathias Neumann Andersen, Nina Nikolova, Marzena Osuch, Pieter van Oel, Kalina Radeva, Renata J. Romanowicz, Elena Toth, Mirek Trnka, Marko Urošev, Julia Urquijo Reguera, Eric Sauquet, Aleksandra Stevkov, Lena M. Tallaksen, Iryna Trofimova, Anne F. Van Loon, Michelle T. H. van Vliet, Jean-Philippe Vidal, Niko Wanders, Micha Werner, Patrick Willems, and Nenad Živković
Nat. Hazards Earth Syst. Sci., 22, 2201–2217, https://doi.org/10.5194/nhess-22-2201-2022, https://doi.org/10.5194/nhess-22-2201-2022, 2022
Short summary
Short summary
Recent drought events caused enormous damage in Europe. We therefore questioned the existence and effect of current drought management strategies on the actual impacts and how drought is perceived by relevant stakeholders. Over 700 participants from 28 European countries provided insights into drought hazard and impact perception and current management strategies. The study concludes with an urgent need to collectively combat drought risk via a European macro-level drought governance approach.
Chung-Chieh Wang, Pi-Yu Chuang, Shi-Ting Chen, Dong-In Lee, and Kazuhisa Tsuboki
Nat. Hazards Earth Syst. Sci., 22, 1795–1817, https://doi.org/10.5194/nhess-22-1795-2022, https://doi.org/10.5194/nhess-22-1795-2022, 2022
Short summary
Short summary
In this study, cloud-resolving simulations are performed under idealized and uniform southwesterly flow direction and speed to investigate the rainfall regimes in the Mei-yu season and the role of complex mesoscale topography on rainfall without the influence of unwanted disturbances, including a low-Froude number regime where the thermodynamic effects and island circulation dominate, a high-Froude number regime where topographic rainfall in a flow-over scenario prevails, and a mixed regime.
Viorica Nagavciuc, Patrick Scholz, and Monica Ionita
Nat. Hazards Earth Syst. Sci., 22, 1347–1369, https://doi.org/10.5194/nhess-22-1347-2022, https://doi.org/10.5194/nhess-22-1347-2022, 2022
Short summary
Short summary
Here we have assessed the variability and trends of hot and dry summers in Romania. The length, spatial extent, and frequency of heat waves in Romania have increased significantly over the last 70 years, while no significant changes have been observed in the drought conditions. The increased frequency of heat waves, especially after the 1990s, could be partially explained by an increase in the geopotential height over the eastern part of Europe.
Joris Pianezze, Jonathan Beuvier, Cindy Lebeaupin Brossier, Guillaume Samson, Ghislain Faure, and Gilles Garric
Nat. Hazards Earth Syst. Sci., 22, 1301–1324, https://doi.org/10.5194/nhess-22-1301-2022, https://doi.org/10.5194/nhess-22-1301-2022, 2022
Short summary
Short summary
Most numerical weather and oceanic prediction systems do not consider ocean–atmosphere feedback during forecast, and this can lead to significant forecast errors, notably in cases of severe situations. A new high-resolution coupled ocean–atmosphere system is presented in this paper. This forecast-oriented system, based on current regional operational systems and evaluated using satellite and in situ observations, shows that the coupling improves both atmospheric and oceanic forecasts.
Katherine L. Towey, James F. Booth, Alejandra Rodriguez Enriquez, and Thomas Wahl
Nat. Hazards Earth Syst. Sci., 22, 1287–1300, https://doi.org/10.5194/nhess-22-1287-2022, https://doi.org/10.5194/nhess-22-1287-2022, 2022
Short summary
Short summary
Coastal flooding due to storm surge from tropical cyclones is a significant hazard. The influence of tropical cyclone characteristics, including its proximity, intensity, path angle, and speed, on the magnitude of storm surge is examined along the eastern United States. No individual characteristic was found to be strongly related to how much surge occurred at a site, though there is an increased likelihood of high surge occurring when tropical cyclones are both strong and close to a location.
Arnau Amengual
Nat. Hazards Earth Syst. Sci., 22, 1159–1179, https://doi.org/10.5194/nhess-22-1159-2022, https://doi.org/10.5194/nhess-22-1159-2022, 2022
Short summary
Short summary
On 12 and 13 September 2019, a long-lasting heavy precipitation episode resulted in widespread flash flooding over eastern Spain. Well-organized and quasi-stationary convective structures impacted a vast area with rainfall amounts over 200 mm. The very dry initial soil moisture conditions resulted in a dampened hydrological response: until runoff thresholds were exceeded, infiltration-excess generation did not start. This threshold-based behaviour is explored through simple scaling theory.
Benjamin J. Hatchett, Alan M. Rhoades, and Daniel J. McEvoy
Nat. Hazards Earth Syst. Sci., 22, 869–890, https://doi.org/10.5194/nhess-22-869-2022, https://doi.org/10.5194/nhess-22-869-2022, 2022
Short summary
Short summary
Snow droughts, or below-average snowpack, can result from either dry conditions and/or rainfall instead of snowfall. Monitoring snow drought through time and across space is important to evaluate when snow drought onset occurred, its duration, spatial extent, and severity as well as what conditions created it or led to its termination. We present visualization techniques, including a web-based snow-drought-tracking tool, to evaluate snow droughts and assess their impacts in the western US.
Erika Médus, Emma D. Thomassen, Danijel Belušić, Petter Lind, Peter Berg, Jens H. Christensen, Ole B. Christensen, Andreas Dobler, Erik Kjellström, Jonas Olsson, and Wei Yang
Nat. Hazards Earth Syst. Sci., 22, 693–711, https://doi.org/10.5194/nhess-22-693-2022, https://doi.org/10.5194/nhess-22-693-2022, 2022
Short summary
Short summary
We evaluate the skill of a regional climate model, HARMONIE-Climate, to capture the present-day characteristics of heavy precipitation in the Nordic region and investigate the added value provided by a convection-permitting model version. The higher model resolution improves the representation of hourly heavy- and extreme-precipitation events and their diurnal cycle. The results indicate the benefits of convection-permitting models for constructing climate change projections over the region.
Florian Ehmele, Lisa-Ann Kautz, Hendrik Feldmann, Yi He, Martin Kadlec, Fanni D. Kelemen, Hilke S. Lentink, Patrick Ludwig, Desmond Manful, and Joaquim G. Pinto
Nat. Hazards Earth Syst. Sci., 22, 677–692, https://doi.org/10.5194/nhess-22-677-2022, https://doi.org/10.5194/nhess-22-677-2022, 2022
Short summary
Short summary
For various applications, it is crucial to have profound knowledge of the frequency, severity, and risk of extreme flood events. Such events are characterized by very long return periods which observations can not cover. We use a large ensemble of regional climate model simulations as input for a hydrological model. Precipitation data were post-processed to reduce systematic errors. The representation of precipitation and discharge is improved, and estimates of long return periods become robust.
Anja T. Rädler
Nat. Hazards Earth Syst. Sci., 22, 659–664, https://doi.org/10.5194/nhess-22-659-2022, https://doi.org/10.5194/nhess-22-659-2022, 2022
Short summary
Short summary
Natural disasters are causing high losses worldwide. To adequately deal with this loss potential, a reinsurer has to quantitatively assess the individual risks of natural catastrophes and how these risks are changing over time with respect to climate change. From a reinsurance perspective, the most pressing scientific challenges related to natural hazards are addressed, and broad changes are suggested that should be achieved by the scientific community to address these hazards in the future.
Pauline Combarnous, Felix Erdmann, Olivier Caumont, Éric Defer, and Maud Martet
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-39, https://doi.org/10.5194/nhess-2022-39, 2022
Revised manuscript accepted for NHESS
Short summary
Short summary
The objective of this study is to prepare the assimilation of satellite lightning data in the French regional numerical weather prediction system. The assimilation of lightning data requires an observation operator, based on empirical relationships between the lightning observations and a set of proxies derived from the numerical weather prediction system variables. We fit machine learning regression models to our data to yield those relationships and to investigate the best proxy for lightning.
Jussi Leinonen, Ulrich Hamann, Urs Germann, and John R. Mecikalski
Nat. Hazards Earth Syst. Sci., 22, 577–597, https://doi.org/10.5194/nhess-22-577-2022, https://doi.org/10.5194/nhess-22-577-2022, 2022
Short summary
Short summary
We evaluate the usefulness of different data sources and variables to the short-term prediction (
nowcasting) of severe thunderstorms using machine learning. Machine-learning models are trained with data from weather radars, satellite images, lightning detection and weather forecasts and with terrain elevation data. We analyze the benefits provided by each of the data sources to predicting hazards (heavy precipitation, lightning and hail) caused by the thunderstorms.
Rubina Ansari and Giovanna Grossi
Nat. Hazards Earth Syst. Sci., 22, 287–302, https://doi.org/10.5194/nhess-22-287-2022, https://doi.org/10.5194/nhess-22-287-2022, 2022
Short summary
Short summary
The current research investigated spatio-temporal evolution of wet–dry events collectively, their characteristics, and their transition (wet to dry and dry to wet) across the Upper Jhelum Basin using the standardized precipitation evapotranspiration (SPEI) at a monthly timescale. The results provide significant knowledge to identify and locate most vulnerable geographical hotspots of extreme events, providing the basis for more effective risk reduction and climate change adaptation plans.
Dominik Jackisch, Bi Xuan Yeo, Adam D. Switzer, Shaoneng He, Danica Linda M. Cantarero, Fernando P. Siringan, and Nathalie F. Goodkin
Nat. Hazards Earth Syst. Sci., 22, 213–226, https://doi.org/10.5194/nhess-22-213-2022, https://doi.org/10.5194/nhess-22-213-2022, 2022
Short summary
Short summary
The Philippines is a nation very vulnerable to devastating typhoons. We investigate if stable isotopes of precipitation can be used to detect typhoon activities in the Philippines based on daily isotope measurements from Metropolitan Manila. We find that strong typhoons such as Rammasun, which occurred in July 2014, leave detectable isotopic signals in precipitation. Besides other factors, the distance of the typhoon to the sampling site plays a key role in influencing the signal.
Chung-Chieh Wang, Pi-Yu Chuang, Chih-Sheng Chang, Kazuhisa Tsuboki, Shin-Yi Huang, and Guo-Chen Leu
Nat. Hazards Earth Syst. Sci., 22, 23–40, https://doi.org/10.5194/nhess-22-23-2022, https://doi.org/10.5194/nhess-22-23-2022, 2022
Short summary
Short summary
This study indicated that the Cloud-Resolving Storm Simulator (CReSS) model significantly improved heavy-rainfall quantitative precipitation forecasts in the Taiwan Mei-yu season. At high resolution, the model has higher threat scores and is more skillful in predicting larger rainfall events compared to smaller ones. And the strength of the model mainly lies in the topographic rainfall rather than less predictable and migratory events due to nonlinearity.
Matthieu Plu, Guillaume Bigeard, Bojan Sič, Emanuele Emili, Luca Bugliaro, Laaziz El Amraoui, Jonathan Guth, Beatrice Josse, Lucia Mona, and Dennis Piontek
Nat. Hazards Earth Syst. Sci., 21, 3731–3747, https://doi.org/10.5194/nhess-21-3731-2021, https://doi.org/10.5194/nhess-21-3731-2021, 2021
Short summary
Short summary
Volcanic eruptions that spread out ash over large areas, like Eyjafjallajökull in 2010, may have huge economic consequences due to flight cancellations. In this article, we demonstrate the benefits of source term improvement and of data assimilation for quantifying volcanic ash concentrations. The work, which was supported by the EUNADICS-AV project, is the first one, to our knowledge, that demonstrates the benefit of the assimilation of ground-based lidar data over Europe during an eruption.
Elizaveta Felsche and Ralf Ludwig
Nat. Hazards Earth Syst. Sci., 21, 3679–3691, https://doi.org/10.5194/nhess-21-3679-2021, https://doi.org/10.5194/nhess-21-3679-2021, 2021
Short summary
Short summary
This study applies artificial neural networks to predict drought occurrence in Munich and Lisbon, with a lead time of 1 month. An analysis of the variables that have the highest impact on the prediction is performed. The study shows that the North Atlantic Oscillation index and air pressure 1 month before the event have the highest importance for the prediction. Moreover, it shows that seasonality strongly influences the goodness of prediction for the Lisbon domain.
Benjamin Poschlod
Nat. Hazards Earth Syst. Sci., 21, 3573–3598, https://doi.org/10.5194/nhess-21-3573-2021, https://doi.org/10.5194/nhess-21-3573-2021, 2021
Short summary
Short summary
Three regional climate models (RCMs) are used to simulate extreme daily rainfall in Bavaria statistically occurring once every 10 or even 100 years. Results are validated with observations. The RCMs can reproduce spatial patterns and intensities, and setups with higher spatial resolutions show better results. These findings suggest that RCMs are suitable for assessing the probability of the occurrence of such rare rainfall events.
Matthieu Plu, Barbara Scherllin-Pirscher, Delia Arnold Arias, Rocio Baro, Guillaume Bigeard, Luca Bugliaro, Ana Carvalho, Laaziz El Amraoui, Kurt Eschbacher, Marcus Hirtl, Christian Maurer, Marie D. Mulder, Dennis Piontek, Lennart Robertson, Carl-Herbert Rokitansky, Fritz Zobl, and Raimund Zopp
Nat. Hazards Earth Syst. Sci., 21, 2973–2992, https://doi.org/10.5194/nhess-21-2973-2021, https://doi.org/10.5194/nhess-21-2973-2021, 2021
Short summary
Short summary
Past volcanic eruptions that spread out ash over large areas, like Eyjafjallajökull in 2010, forced the cancellation of thousands of flights and had huge economic consequences.
In this article, an international team in the H2020 EU-funded EUNADICS-AV project has designed a probabilistic model approach to quantify ash concentrations. This approach is evaluated against measurements, and its potential use to mitigate the impact of future large-scale eruptions is discussed.
Alexandre Tuel and Olivia Martius
Nat. Hazards Earth Syst. Sci., 21, 2949–2972, https://doi.org/10.5194/nhess-21-2949-2021, https://doi.org/10.5194/nhess-21-2949-2021, 2021
Short summary
Short summary
Extreme river discharge may be triggered by large accumulations of precipitation over short time periods, which can result from the successive occurrence of extreme-precipitation events. We find a distinct spatiotemporal pattern in the temporal clustering behavior of precipitation extremes over Switzerland, with clustering occurring on the northern side of the Alps in winter and on their southern side in fall. Clusters tend to be followed by extreme discharge, particularly in the southern Alps.
Patricia Tarín-Carrasco, Sofia Augusto, Laura Palacios-Peña, Nuno Ratola, and Pedro Jiménez-Guerrero
Nat. Hazards Earth Syst. Sci., 21, 2867–2880, https://doi.org/10.5194/nhess-21-2867-2021, https://doi.org/10.5194/nhess-21-2867-2021, 2021
Short summary
Short summary
Uncontrolled wildfires have a substantial impact on the environment and local populations. Although most southern European countries have been impacted by wildfires in the last decades, Portugal has the highest percentage of burned area compared to its whole territory. Under this umbrella, associations between large fires, PM10, and all-cause and cause-specific mortality (circulatory and respiratory) have been explored using Poisson regression models for 2001–2016.
Vincenzo Mazzarella, Rossella Ferretti, Errico Picciotti, and Frank Silvio Marzano
Nat. Hazards Earth Syst. Sci., 21, 2849–2865, https://doi.org/10.5194/nhess-21-2849-2021, https://doi.org/10.5194/nhess-21-2849-2021, 2021
Short summary
Short summary
Forecasting precipitation over the Mediterranean basin is still a challenge. In this context, data assimilation techniques play a key role in improving the initial conditions and consequently the timing and position of the precipitation forecast. For the first time, the ability of a cycling 4D-Var to reproduce a heavy rain event in central Italy, as well as to provide a comparison with the largely used cycling 3D-Var, is evaluated in this study.
Avaronthan Veettil Sreenath, Sukumarapillai Abhilash, and Pattathil Vijaykumar
Nat. Hazards Earth Syst. Sci., 21, 2597–2609, https://doi.org/10.5194/nhess-21-2597-2021, https://doi.org/10.5194/nhess-21-2597-2021, 2021
Short summary
Short summary
Lightning is a multifaceted hazard with widespread negative consequences for the environment and society. We explore how El Niño–Southern Oscillation (ENSO) phases impact the lightning over India by modulating the deep convection and associated atmospheric thermodynamics. Results show that ENSO phases directly influence lightning during monsoon and postmonsoon seasons by pushing the mean position of subtropical westerlies southward.
Michelle D. Spruce, Rudy Arthur, Joanne Robbins, and Hywel T. P. Williams
Nat. Hazards Earth Syst. Sci., 21, 2407–2425, https://doi.org/10.5194/nhess-21-2407-2021, https://doi.org/10.5194/nhess-21-2407-2021, 2021
Short summary
Short summary
Despite increased use of impact-based weather warnings, the social impacts of extreme weather events lie beyond the reach of conventional meteorological observations and remain difficult to quantify. This study compares data collected from the social media platform Twitter with a manually curated database of high-impact rainfall events across the globe between January–June 2017. Twitter is found to be a good detector of impactful rainfall events and, therefore, a useful source of impact data.
Folmer Krikken, Flavio Lehner, Karsten Haustein, Igor Drobyshev, and Geert Jan van Oldenborgh
Nat. Hazards Earth Syst. Sci., 21, 2169–2179, https://doi.org/10.5194/nhess-21-2169-2021, https://doi.org/10.5194/nhess-21-2169-2021, 2021
Short summary
Short summary
In this study, we analyse the role of climate change in the forest fires that raged through large parts of Sweden in the summer of 2018 from a meteorological perspective. This is done by studying observationally constrained data and multiple climate models. We find a small reduced probability of such events, based on reanalyses, but a small increased probability due to global warming up to now and a more robust increase in the risk for such events in the future, based on climate models.
Florian Pappenberger, Florence Rabier, and Fabio Venuti
Nat. Hazards Earth Syst. Sci., 21, 2163–2167, https://doi.org/10.5194/nhess-21-2163-2021, https://doi.org/10.5194/nhess-21-2163-2021, 2021
Short summary
Short summary
The European Centre for Medium-Range Weather Forecasts mission is to deliver high-quality global medium‐range (3–15 d ahead of time) weather forecasts and monitoring of the Earth system. We have published a new strategy, and in this paper we discuss what this means for forecasting and monitoring natural hazards.
Elissavet Galanaki, Konstantinos Lagouvardos, Vassiliki Kotroni, Theodore Giannaros, and Christos Giannaros
Nat. Hazards Earth Syst. Sci., 21, 1983–2000, https://doi.org/10.5194/nhess-21-1983-2021, https://doi.org/10.5194/nhess-21-1983-2021, 2021
Short summary
Short summary
A two-way coupled hydrometeorological model (WRF-Hydro) is used for flood forecasting purposes in medium-catchment-size basins in Greece. The results showed the capability of WRF-Hydro to adequately simulate the observed discharge and the slight improvement in terms of quantitative precipitation forecasting compared to the WRF-only simulations.
Frederick W. Letson, Rebecca J. Barthelmie, Kevin I. Hodges, and Sara C. Pryor
Nat. Hazards Earth Syst. Sci., 21, 2001–2020, https://doi.org/10.5194/nhess-21-2001-2021, https://doi.org/10.5194/nhess-21-2001-2021, 2021
Short summary
Short summary
Windstorms during the last 40 years in the US Northeast are identified and characterized using the spatial extent of extreme wind speeds at 100 m height from the ERA5 reanalysis. During all of the top 10 windstorms, wind speeds exceeding the local 99.9th percentile cover at least one-third of the land area in this high-population-density region. These 10 storms followed frequently observed cyclone tracks but have intensities 5–10 times the mean values for cyclones affecting this region.
Panagiotis T. Nastos, Nicolas R. Dalezios, Ioannis N. Faraslis, Kostas Mitrakopoulos, Anna Blanta, Marios Spiliotopoulos, Stavros Sakellariou, Pantelis Sidiropoulos, and Ana M. Tarquis
Nat. Hazards Earth Syst. Sci., 21, 1935–1954, https://doi.org/10.5194/nhess-21-1935-2021, https://doi.org/10.5194/nhess-21-1935-2021, 2021
Short summary
Short summary
Risk assessment consists of three steps: identification, estimation and evaluation. Nevertheless, the risk management framework also includes a fourth step, the need for feedback on all the risk assessment undertakings. However, there is a lack of such feedback, which constitutes a serious deficiency in the reduction of environmental hazards at the present time. The objective of this review paper consists of addressing meteorological hazards and extremes within the risk management framework.
Dieter R. Poelman, Wolfgang Schulz, Stephane Pedeboy, Dustin Hill, Marcelo Saba, Hugh Hunt, Lukas Schwalt, Christian Vergeiner, Carlos T. Mata, Carina Schumann, and Tom Warner
Nat. Hazards Earth Syst. Sci., 21, 1909–1919, https://doi.org/10.5194/nhess-21-1909-2021, https://doi.org/10.5194/nhess-21-1909-2021, 2021
Short summary
Short summary
Information about lightning properties is important in order to advance the current understanding of lightning, whereby the characteristics of ground strike points are in particular helpful to improving the risk estimation for lightning protection. High-speed video recordings of 1174 negative downward lightning flashes are taken in different regions around the world and analyzed in terms of flash multiplicity, duration, interstroke intervals and ground strike point properties.
Dieter R. Poelman, Wolfgang Schulz, Stephane Pedeboy, Leandro Z. S. Campos, Michihiro Matsui, Dustin Hill, Marcelo Saba, and Hugh Hunt
Nat. Hazards Earth Syst. Sci., 21, 1921–1933, https://doi.org/10.5194/nhess-21-1921-2021, https://doi.org/10.5194/nhess-21-1921-2021, 2021
Short summary
Short summary
The lightning flash density is a key input parameter for assessing the risk of occurrence of a lightning strike. Flashes tend to have more than one ground termination point on average; therefore the use of ground strike point densities is more appropriate. The aim of this study is to assess the ability of three distinct ground strike point algorithms to correctly determine the observed ground-truth strike points.
Marc Lemus-Canovas and Joan Albert Lopez-Bustins
Nat. Hazards Earth Syst. Sci., 21, 1721–1738, https://doi.org/10.5194/nhess-21-1721-2021, https://doi.org/10.5194/nhess-21-1721-2021, 2021
Short summary
Short summary
We present research that attempts to address recent and future changes in hot and dry compound events in the Pyrenees, which can induce severe environmental hazards in this area. The results show that during the last few decades, these kinds of compound events have only increased due to temperature increase. However, for the future, it is expected that the risk associated with these compound events will be raised by both the thermal increase and the longer duration of drought periods.
Monica Ionita and Viorica Nagavciuc
Nat. Hazards Earth Syst. Sci., 21, 1685–1701, https://doi.org/10.5194/nhess-21-1685-2021, https://doi.org/10.5194/nhess-21-1685-2021, 2021
Short summary
Short summary
By analyzing the joint frequency of compound events (e.g., high temperatures and droughts), we show that the potential evapotranspiration and mean air temperature are becoming essential components for drought occurrence over Central Europe and the Mediterranean region. This, together with the projected increase in potential evapotranspiration under a warming climate, has significant implications concerning the future occurrence of drought events over these regions.
Feifei Shen, Aiqing Shu, Hong Li, Dongmei Xu, and Jinzhong Min
Nat. Hazards Earth Syst. Sci., 21, 1569–1582, https://doi.org/10.5194/nhess-21-1569-2021, https://doi.org/10.5194/nhess-21-1569-2021, 2021
Short summary
Short summary
The Advanced Himawari Imager (AHI) on Himawari-8 can continuously monitor high-impact weather events with high frequency in space and time. The assimilation of AHI radiance data was implemented with the three-dimensional variational data assimilation system of the Weather Research and Forecasting Model for the analysis and prediction of Typhoon Soudelor (2015) in the Pacific typhoon season.
Uri Dayan, Itamar M. Lensky, Baruch Ziv, and Pavel Khain
Nat. Hazards Earth Syst. Sci., 21, 1583–1597, https://doi.org/10.5194/nhess-21-1583-2021, https://doi.org/10.5194/nhess-21-1583-2021, 2021
Short summary
Short summary
An intense rainstorm hit the Middle East between 24 and 27 April 2018. The storm reached its peak over Israel on 26 April when a heavy flash flood took the lives of 10 people. The rainfall was comparable to the long-term annual rainfall in the southern Negev. The timing was the end of the rainy season when rain is rare and spotty. The study analyses the dynamic and thermodynamic conditions that made this rainstorm one of the latest spring severe events in the region during the last 3 decades.
Seyedabdolhossein Mehvar, Kathelijne Wijnberg, Bas Borsje, Norman Kerle, Jan Maarten Schraagen, Joanne Vinke-de Kruijf, Karst Geurs, Andreas Hartmann, Rick Hogeboom, and Suzanne Hulscher
Nat. Hazards Earth Syst. Sci., 21, 1383–1407, https://doi.org/10.5194/nhess-21-1383-2021, https://doi.org/10.5194/nhess-21-1383-2021, 2021
Short summary
Short summary
This review synthesizes and complements existing knowledge in designing resilient vital infrastructure systems (VIS). Results from a systematic literature review indicate that (i) VIS are still being built without taking resilience explicitly into account and (ii) measures to enhance the resilience of VIS have not been widely applied in practice. The main pressing topic to address is the integration of the combined social, ecological, and technical resilience of these systems.
Rudolf Brázdil, Kateřina Chromá, Lukáš Dolák, Jan Řehoř, Ladislava Řezníčková, Pavel Zahradníček, and Petr Dobrovolný
Nat. Hazards Earth Syst. Sci., 21, 1355–1382, https://doi.org/10.5194/nhess-21-1355-2021, https://doi.org/10.5194/nhess-21-1355-2021, 2021
Short summary
Short summary
We present an analysis of fatalities attributable to weather conditions in the Czech Republic during the 2000–2019 period based on our own database created from newspaper reports, on the database of the Czech Statistical Office, and on the database of the police of the Czech Republic as well as on their comparison. Despite some uncertainties, generally declining trends in the number of fatalities appear for the majority of weather variables. The structure of fatalities is described in detail.
Zheng Liang, Xiaoling Su, and Kai Feng
Nat. Hazards Earth Syst. Sci., 21, 1323–1335, https://doi.org/10.5194/nhess-21-1323-2021, https://doi.org/10.5194/nhess-21-1323-2021, 2021
Short summary
Short summary
In view of the shortage of data in alpine mountainous areas and the difficulty of a single drought index to reflect all the characteristics of drought, this paper constructs a comprehensive drought index (MAHDI) based on the SWAT model and the empirical Kendall distribution function, which connects multiple drought elements. The results show that MAHDI can simultaneously characterize meteorological, agricultural and hydrological drought and has strong applicability and comprehensiveness.
Hamish Steptoe and Theodoros Economou
Nat. Hazards Earth Syst. Sci., 21, 1313–1322, https://doi.org/10.5194/nhess-21-1313-2021, https://doi.org/10.5194/nhess-21-1313-2021, 2021
Short summary
Short summary
We use high-resolution computer simulations of tropical cyclones to investigate extreme wind speeds over Bangladesh. We show that some northern provinces, up to 200 km inland, may experience conditions equal to or exceeding a very severe cyclonic storm event with a likelihood equal to coastal regions less than 50 km inland. We hope that these kilometre-scale hazard maps facilitate one part of the risk assessment chain to improve local ability to make effective risk management decisions.
Chiara Marsigli, Elizabeth Ebert, Raghavendra Ashrit, Barbara Casati, Jing Chen, Caio A. S. Coelho, Manfred Dorninger, Eric Gilleland, Thomas Haiden, Stephanie Landman, and Marion Mittermaier
Nat. Hazards Earth Syst. Sci., 21, 1297–1312, https://doi.org/10.5194/nhess-21-1297-2021, https://doi.org/10.5194/nhess-21-1297-2021, 2021
Short summary
Short summary
This paper reviews new observations for the verification of high-impact weather and provides advice for their usage in objective verification. New observations include remote sensing datasets, products developed for nowcasting, datasets derived from telecommunication systems, data collected from citizens, reports of impacts and reports from insurance companies. This work has been performed in the framework of the Joint Working Group on Forecast Verification Research (JWGFVR) of the WMO.
Judith Marie Pöschmann, Dongkyun Kim, Rico Kronenberg, and Christian Bernhofer
Nat. Hazards Earth Syst. Sci., 21, 1195–1207, https://doi.org/10.5194/nhess-21-1195-2021, https://doi.org/10.5194/nhess-21-1195-2021, 2021
Short summary
Short summary
We examined maximum rainfall values for different durations from 16 years of radar-based rainfall records for whole Germany. Unlike existing observations based on rain gauge data no clear linear relationship could be identified. However, by classifying all time series, we could identify three similar groups determined by the temporal structure of rainfall extremes observed in the study period. The study highlights the importance of using long data records and a dense measurement network.
Olivier Caumont, Marc Mandement, François Bouttier, Judith Eeckman, Cindy Lebeaupin Brossier, Alexane Lovat, Olivier Nuissier, and Olivier Laurantin
Nat. Hazards Earth Syst. Sci., 21, 1135–1157, https://doi.org/10.5194/nhess-21-1135-2021, https://doi.org/10.5194/nhess-21-1135-2021, 2021
Short summary
Short summary
This study focuses on the heavy precipitation event of 14 and 15 October 2018, which caused deadly flash floods in the Aude basin in south-western France.
The case is studied from a meteorological point of view using various operational numerical weather prediction systems, as well as a unique combination of observations from both standard and personal weather stations. The peculiarities of this case compared to other cases of Mediterranean heavy precipitation events are presented.
Cheikh Modou Noreyni Fall, Christophe Lavaysse, Mamadou Simina Drame, Geremy Panthou, and Amadou Thierno Gaye
Nat. Hazards Earth Syst. Sci., 21, 1051–1069, https://doi.org/10.5194/nhess-21-1051-2021, https://doi.org/10.5194/nhess-21-1051-2021, 2021
Short summary
Short summary
Extreme wet and dry rainfall periods over Senegal provided by satellite, reanalyses, and ground observations are compared. Despite a spatial coherence of seasonal rainfall accumulation between all products, discrepancies are found at intra-seasonal timescales. All datasets highlight comparable seasonal cycles of dry and wet spells. Nevertheless, CHIRPS and TAMSAT are close to observations for the dry spells, whereas TRMM obtains the closest values of wet spells as regards the observations.
Claudia Canedo-Rosso, Stefan Hochrainer-Stigler, Georg Pflug, Bruno Condori, and Ronny Berndtsson
Nat. Hazards Earth Syst. Sci., 21, 995–1010, https://doi.org/10.5194/nhess-21-995-2021, https://doi.org/10.5194/nhess-21-995-2021, 2021
Short summary
Short summary
Drought is a major natural hazard that causes large losses for farmers. This study evaluated drought severity based on a drought classification scheme using NDVI and LST, which was related to the ENSO anomalies. In addition, the spatial distribution of NDVI was associated with precipitation and air temperature at the local level. Our findings show that drought severity increases during El Niño years, and as a consequence the socio-economic drought risk of farmers will likely increase.
William C. Arthur
Nat. Hazards Earth Syst. Sci., 21, 893–916, https://doi.org/10.5194/nhess-21-893-2021, https://doi.org/10.5194/nhess-21-893-2021, 2021
Short summary
Short summary
We have developed a statistical–parametric model of tropical cyclones (TCs), to undertake hazard and risk assessments at continental scales. The model enables users to build an understanding of the likelihood and magnitude of TC-related wind speeds across full ocean basins but at a fine spatial resolution. The model can also be applied to single events, either scenarios or forecast events, to inform detailed impact assessments.
Flavio Lopes Ribeiro, Mario Guevara, Alma Vázquez-Lule, Ana Paula Cunha, Marcelo Zeri, and Rodrigo Vargas
Nat. Hazards Earth Syst. Sci., 21, 879–892, https://doi.org/10.5194/nhess-21-879-2021, https://doi.org/10.5194/nhess-21-879-2021, 2021
Short summary
Short summary
The main objective of this paper was to analyze differences in soil moisture responses to drought for each biome of Brazil. For that we used satellite data from the European Space Agency from 2009 to 2015. We found an overall soil moisture decline of −0.5 % yr−1 at the country level and identified the most vulnerable biomes of Brazil. This information is crucial to enhance the national drought early warning system and develop strategies for drought risk reduction and soil moisture conservation.
Kees Nederhoff, Jasper Hoek, Tim Leijnse, Maarten van Ormondt, Sofia Caires, and Alessio Giardino
Nat. Hazards Earth Syst. Sci., 21, 861–878, https://doi.org/10.5194/nhess-21-861-2021, https://doi.org/10.5194/nhess-21-861-2021, 2021
Short summary
Short summary
The design of coastal protection affected by tropical cyclones is often based solely on the analysis of historical tropical cyclones (TCs). The simulation of numerous synthetic TC tracks based on historical data can overcome this limitation. In this paper, a new method for the generation of synthetic TC tracks is proposed, called the Tropical Cyclone Wind Statistical Estimation Tool (TCWiSE). TCWiSE can simulate thousands of tracks and wind fields in any oceanic basin based on any data source.
Elody Fluck, Michael Kunz, Peter Geissbuehler, and Stefan P. Ritz
Nat. Hazards Earth Syst. Sci., 21, 683–701, https://doi.org/10.5194/nhess-21-683-2021, https://doi.org/10.5194/nhess-21-683-2021, 2021
Short summary
Short summary
Severe convective storms (SCSs) and the related hail events constitute major atmospheric hazards in parts of Europe. In our study, we identified the regions of France, Germany, Belgium and Luxembourg that were most affected by hail over a 10 year period (2005 to 2014). A cell-tracking algorithm was computed on remote-sensing data to enable the reconstruction of several thousand SCS tracks. The location of hail hotspots will help us understand hail formation and improve hail forecasting.
Kelvin S. Ng and Gregor C. Leckebusch
Nat. Hazards Earth Syst. Sci., 21, 663–682, https://doi.org/10.5194/nhess-21-663-2021, https://doi.org/10.5194/nhess-21-663-2021, 2021
Short summary
Short summary
Due to the rarity of high-impact tropical cyclones (TCs), it is difficult to achieve a robust TC hazard assessment based on historical observations only. Here we present an approach to construct a TC event set that contains more than 10 000 years of TC events by using a computationally simple and efficient method. This event set has similar characteristics as the historical observations but includes a better representation of intense TCs. Thus, a robust TC hazard assessment can be achieved.
Nadia Fourrié, Mathieu Nuret, Pierre Brousseau, and Olivier Caumont
Nat. Hazards Earth Syst. Sci., 21, 463–480, https://doi.org/10.5194/nhess-21-463-2021, https://doi.org/10.5194/nhess-21-463-2021, 2021
Short summary
Short summary
The assimilation impact of four observation data sets on forecasts is studied in a mesoscale weather model. The ground-based Global Navigation Satellite System (GNSS) zenithal total delay data set with information on humidity has the largest impact on analyses and forecasts, representing an evenly spread and frequent data set for each analysis time over the model domain. Moreover, the reprocessing of these data also improves the forecast quality, but this impact is not statistically significant.
Cited articles
Aguilar, D., Andrade, D., Alava, D., Burbano, J., Díaz, M., Garcés, A. L., Jiménez, W., Leiva, D., Loayza, V., Muyulema, W., Pérez, P.,
Ruiz, V., Simbaña, B., and Yépez, R.: Estimación de superficie
sembrada de arroz (Oryza sativa l.) Y maíz amarillo duro (Zea mays l.)
En las épocas de invierno y verano año 2015, en las provincias de
Manabí, Los Ríos, Guayas, Santa Elena, Loja y El Oro, Quito, Ecuador, available at:
http://sinagap.agricultura.gob.ec/pdf/estudios_agroeconomicos/estimacion_superficie_arroz_maiz-2015.pdf (last access: 11 September 2018), 2015.
Aguilar, D., Alava, D., Burbano, J., Garcés, A. L., Jácome, D.,
Leiva, D., Simbaña, B., and Yépez, R.: Estimación de superficie
sembrada de arroz (Oryza sativa l.), maíz amarillo duro (Zea mays l.) y
soya (Glycine max) en las épocas del año 2017, en las provincias de:
Guayas, Los Ríos, Manabí, Santa Elena, Loja y El Oro, Quito, Ecuador, 2018.
Arias, O. V., Garrido, A., Villeta, M., and Tarquis, A. M.: Homogenisation of
a soil properties map by principal component analysis to define index
agricultural insurance policies, Geoderma, 311, 149–158, https://doi.org/10.1016/j.geoderma.2017.01.018, 2018.
Barnett, B. J. and Mahul, O.: Weather Index Insurance for Agriculture and
Rural Areas in Lower-Income Countries, Am. J. Agric. Econ., 89, 1241–1247, https://doi.org/10.1111/j.1467-8276.2007.01091.x, 2007.
Bullock, J. M., Dhanjal-Adams, K. L., Milne, A., Oliver, T. H., Todman, L. C., Whitmore, A. P., and Pywell, R. F.: Resilience and food security:
rethinking an ecological concept, J. Ecol., 105, 880–884,
https://doi.org/10.1111/1365-2745.12791, 2017.
Cai, W., Borlace, S., Lengaigne, M., van Rensch, P., Collins, M., Vecchi, G., Timmermann, A., Santoso, A., McPhaden, M. J., Wu, L., England, M. H., Wang, G., Guilyardi, E., and Jin, F.-F.: Increasing frequency of extreme El Nino events due to greenhouse warming, Nat. Clim. Change, 4, 111–116
https://doi.org/10.1038/nclimate2100, 2014.
Carter, M., Cheng, L., and Sarris, A.: The Impact of Inter-linked Index
Insurance and Credit Contracts on Financial Market Deepening and Small Farm
Productivity, Unpubl. manuscript, Univ. California, Davis, available at:
http://www.aueb.gr/conferences/Crete2012/papers/papers senior/Sarris.pdf (last access: 16 July 2018), 2011.
Clarke, D. J.: A theory of rational demand for index insurance, Am. Econ. J.
Microecon., 8, 283–306, https://doi.org/10.1257/mic.20140103, 2016.
CRED – Centre for Research on the Epidemiology of Disasters: EM DAT The
International Disaster Database, available at:
http://www.emdat.be/database (last access: 26 August 2019), 2015.
de Leeuw, J., Vrieling, A., Shee, A., Atzberger, C., Hadgu, K. M., Biradar, C. M., Keah, H., and Turvey, C.: The potential and uptake of remote sensing in insurance: a review, Remote Sens., 6, 10888–10912, 2014.
Didan, K.: MOD13Q1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250 m SIN
Grid V006, NASA EOSDIS Land Processes DAAC, University of Arizona, Tucson, 2015.
Didan, K., Barreto, A., Solano, R., and Huete, A.: MODIS Vegetation Index
User's Guide (MOD13 Series) Version 3.00 (Collection 6), available at: https://vip.arizona.edu/documents/MODIS/MODIS_VI_UsersGuide_June_2015_C6.pdf
(last access: 20 March 2018), 2015.
Elabed, G., Bellemare, M. F., Carter, M. R., and Guirkinger, C.: Managing
basis risk with multiscale index insurance, Agric. Econ., 44, 419–431, https://doi.org/10.1111/agec.12025, 2013.
Eymond, M. and Santos, A.: Asociatividad para el acceso a la comercialización de pequeños arroceros en Ecuador, in: Dinámicas
de comercialización para la agricultura familiar campesina: desafíos y alternativas en el escenario ecuatoriano, edited by: Proaño, V. and Lacroix, P., Sistema de Investigación sobre la Problemática Agraria en el Ecuador (SIPAE), Quito, Ecuador, 65–96, available at:
https://www.avsf.org/public/posts/1704/dinamicas_comercializacion_avsf_ecuador_2014.pdf#page=66
(last access: 2 January 2019), 2013.
FAO: Seguimiento del mercado del arroz de la FAO, Comer. y mercados, FAO,
XXI, 9, https://doi.org/I9243ES/1/05.18, 2018.
FAO and Un-Habitat: On solid ground. Addressing land tenure issues following
natural disasters, Rome, 2010.
Garrido, A. and Zilberman, D.: Revisiting the demand for agricultural insurance: the case of Spain, edited by: David, Z., Agric. Financ. Rev., 68, 43–66, https://doi.org/10.1108/00214660880001218, 2008.
Gu, Y., Wylie, B. K., Howard, D. M., Phuyal, K. P., and Ji, L.: NDVI
saturation adjustment: A new approach for improving cropland performance
estimates in the Greater Platte River Basin, USA, Ecol. Indic., 30, 1–6,
https://doi.org/10.1016/j.ecolind.2013.01.041, 2013.
Harvey, C. a, Rakotobe, Z. L., Rao, N. S., Dave, R., Razafimahatratra, H.,
Rabarijohn, R. H., Rajaofara, H., and Mackinnon, J. L.: Extreme vulnerability
of smallholder farmers to agricultural risks and climate change in
Madagascar, Philos. T. Roy. Soc. Lond. B, 369, 20130089, https://doi.org/10.1098/rstb.2013.0089, 2014.
Hellmuth, M. E., Osgood, D. E., Hess, U., Moorhead, A., and Bhojwani, H. (Eds.): Index insurance and climate risk: prospects for development and disaster management, Climate and Society No. 2, International Research Institute for Climate and Society (IRI), Columbia University, New York, USA, 2009.
Höppe, P.: Scientific and Economic Rationale for Weather Risk Insurance For Agriculture, in: Managing Weather and Climate Risks in Agriculture, edited by: Sivakumar, M. V. K. and Motha, R. P., Springer, Berlin, Heidelberg, 367–375, 2007.
Huang, J., Wang, X., Li, X., Tian, H., and Pan, Z.: Remotely sensed rice yield prediction using multi-temporal NDVI data derived from NOAA's-AVHRR, PLoS One, 8, e70816, https://doi.org/10.1371/journal.pone.0070816, 2013.
IEE – Instituto Espacial Ecuatoriano: Technical report of production systems
in Babahoyo canton, Quito-Ecuador, available at:
http://181.211.99.244/geodescargas/babahoyo/mt_babahoyo_sistemas_productivos.pdf
(last access: 16 April 2018), 2009.
INEC: Rice-cultivated area. Historical database, Contin. Agric. Prod. Surv. (ESPAC), Ecuador en cifras, available at:
http://www.ecuadorencifras.gob.ec/encuesta-de-superficie-y-produccion-agropecuaria-continua-2015
(last access: 2 March 2019), 2018.
Inglada, J., Arias, M., Tardy, B., Hagolle, O., Valero, S., Morin, D., Dedieu, G., Sepulcre, G., Bontemps, S., Defourny, P., and Koetz, B.: Assessment of an Operational System for Crop Type Map Production Using High
Temporal and Spatial Resolution Satellite Optical Imagery, Remote Sens., 7, 12356–12379, https://doi.org/10.3390/rs70912356, 2015.
Isch, E.: El cambio climático y el agua: efectos y medidas de adaptación, Quito, Ecuador, available at:
http://www.pacc-ecuador.org/wp-content/uploads/2014/01/CapacitacionCC_Modulo_dos.pdf
(last access: 18 February 2019), 2011.
Jasiulewicz, H.: Probability of ruin with variable premium rate in a Markovian environment, Insur. Math. Econ., 29, 291–296,
https://doi.org/10.1016/S0167-6687(01)00090-7, 2001.
Jensen, N. and Barrett, C.: Agricultural Index Insurance for Development, Appl. Econ. Perspect. Policy, 39, 199–219, https://doi.org/10.1093/aepp/ppw022, 2017.
Jensen, N. D., Mude, A. G., and Barrett, C. B.: How basis risk and
spatiotemporal adverse selection influence demand for index insurance: Evidence from northern Kenya, Food Policy, 74, 172–198,
https://doi.org/10.1016/j.foodpol.2018.01.002, 2018.
Jiao, W., Tian, C., Chang, Q., Novick, K. A., and Wang, L.: A new multi-sensor integrated index for drought monitoring, Agr. Forest. Meteorol.,
268, 74–85, https://doi.org/10.1016/j.agrformet.2019.01.008, 2019.
Kotz, S. and Nadarajah, S.: Extreme Value distribution: Theory and
applications, 1st Edn., Imperial College Press, London, 2000.
Maestro, T., Bielza, M., and Garrido, A.: Hydrological drought index insurance for irrigation districts in Spain, Spanish J. Agric. Res., 14, e0105, https://doi.org/10.5424/sjar/2016143-8981, 2016.
MAG: Costos de producción del cultivo de arroz en secano y riego, Quito, Ecuador, available at: http://sinagap.agricultura.gob.ec/ (last access: 25 January 2019), 2017.
MAGAP – Ministerio de Agricultura Ganaderia Acuacultura y Pesca: Censo por
Impactos de Invierno 2012, Resultados, Quito, Ecuador, available at:
http://sinagap.agricultura.gob.ec/images/flippingbook/censoimpacto2012/files/assets/downloads/publication.pdf
(last access: 21 March 2018), 2012.
MAGAP – Ministerio de Agricultura Ganaderia Acuacultura y Pesca: Map of
estimated area of rice and maize cultivation in the provinces of Guayas, Santa Elena, Los Rios, Manabí, El Oro and Loja in 2014, Geoportal del
Agro Ecuatoriano, available at:
http://geoportal.agricultura.gob.ec/catalogo_datos/visualizador.html
(last access: 12 November 2018), 2014.
Mcintosh, C., Sarris, A., and Papadopoulos, F.: Productivity, credit, risk,
and the demand for weather index insurance in smallholder agriculture in
Ethiopia, Agric. Econ., 44, 399–417, https://doi.org/10.1111/agec.12024, 2013.
Medina, N.: Agricultural insurance in Ecuador: Evidence of asymmetric
information, J. Account. Tax., 9, 68–87, https://doi.org/10.5897/JAT2017.0262, 2017.
Ministerio de Agricultura y Ganaderia MAG: Ministerial Agreement No. 168,
Ministerio de Agricultura y Ganaderia, Ecuador, available at:
http://servicios.agricultura.gob.ec/mag01/pdfs/aministerial/2018/2018-168.pdf,
last access: 5 June 2018.
Mobarak, A. M. and Rosenzweig, M. R.: Informal risk sharing, index insurance, and risk taking in developing countries, Am. Econ. Rev., 103, 375–380, 2013.
Montaño, M.: Estudio de la aplicación de Azolla Anabaena como bioabono en el cultivo de arroz en el Litoral ecuatoriano, Rev.
Tecnológica ESPOL, 18, 147–151, 2005.
Moreno, B.: Yield rice in Ecuador, First quarter 2014, Quito, Ecuador,
available at:
http://sinagap.agricultura.gob.ec/pdf/estudios_agroeconomicos/rendimiento_arroz_1er_cuatrimestre.pdf
(last access: 21 May 2019), 2014.
Mude, A., Barrett, C. B., Carter, M. R., Chantarat, S., Ikegami, M., and McPeak, J. G.: Index based livestock insurance for northern Kenya's arid and
semi-arid lands: the Marsabit pilot, SSRN 1844758, ILRI, Nairobi, Kenya, 2009.
NASA LP DAAC: MOD13Q1: MODIS/Terra Vegetation Indices 16-Day L3 Global 250 m
Grid SIN V006, USGS Earth Resour. Obs. Sci. Center, Sioux Falls, South Dakota, https://doi.org/10.5067/MODIS/MOD13Q1.006, 2015.
NOAA: Anomalies of GPCC Precipitation, Phys. Sci. Div. Earth Syst. Res. Lab., available at:
https://www.esrl.noaa.gov/psd/cgi-bin/data/composites/printpage.pl, last access: 8 February 2018.
Olofsson, P., Foody, G. M., Herold, M., Stehman, S. V, Woodcock, C. E., and
Wulder, M. A.: Good practices for estimating area and assessing accuracy of
land change, Remote Sens. Environ., 148, 42–57, https://doi.org/10.1016/j.rse.2014.02.015, 2014.
Pardo, A., Merino, A. P., and Castellanos, R. S. M.: Análisis de datos en
psicología II, Pirámide, available at:
https://books.google.es/books?id=k4OWAAAACAAJ (last access: 13 March 2018), 1998.
Patt, A., Peterson, N., Carter, M., Velez, M., Hess, U., and Suarez, P.:
Making index insurance attractive to farmers, Mitig. Adapt. Strateg. Glob.
Change, 14, 737–753, https://doi.org/10.1007/s11027-009-9196-3, 2009.
Pinstrup-Andersen, P.: Food security: definition and measurement, Food
Secur., 1, 5–7, https://doi.org/10.1007/s12571-008-0002-y, 2009.
Polasek, W.: Multivariate Analysis for the Biobehavioral and Social Sciences: A Graphical Approach by Bruce L. Brown, Suzanne B. Hendrix, Dawson W. Hedges, Timothy B. Smith, Int. Stat. Rev., 81, 463–465, https://doi.org/10.1111/insr.12042_5, 2013.
Poveda, G. and Andrade, C.: Producción Sostenible De Arroz En La Provincia Del Guayas, Rev. Contrib. a las Ciencias Soc., Universidad de Guayaquil, Guayaquil, Ecuador, 2013.
Quarmby, N. A., Milnes, M., Hindel, T. L., and Sileos, N.: The use of
multi-temporal NDVI measurements from AVHRR data for crop yield estimation
and prediction, Int. J. Remote Sens., 14, 199–210, https://doi.org/10.1080/01431169308904332, 1993.
Rao, K.: International Conference on Agricultural Risk and Food Security 2010, Agric. Agric. Sci. Procedia, 1, 193–203, https://doi.org/10.1016/j.aaspro.2010.09.024, 2010.
Razali, N. M. and Wah, Y. B.: Power comparisons of Shapiro-Wilk,
Kolmogorov–Smirnov, Lilliefors and Anderson-Darling tests, J. Stat. Model.
Anal., 2, 21–33, 2011.
Rhee, J., Im, J., and Carbone, G. J.: Monitoring agricultural drought for
arid and humid regions using multi-sensor remote sensing data, Remote Sens.
Environ., 114, 2875–2887, https://doi.org/10.1016/j.rse.2010.07.005, 2010.
Ricome, A., Affholder, F., Gérard, F., Muller, B., Poeydebat, C., Quirion, P., and Sall, M.: Are subsidies to weather-index insurance the best
use of public funds? A bio-economic farm model applied to the Senegalese
groundnut basin, Agric. Syst., 156, 149–176, https://doi.org/10.1016/j.agsy.2017.05.015, 2017.
Rondeaux, G., Steven, M., and Baret, F.: Optimization of soil-adjusted
vegetation indices, Remote Sens. Environ., 55, 95–107, https://doi.org/10.1016/0034-4257(95)00186-7, 1996.
Sánchez, N., González-Zamora, Á., Martínez-Fernández, J., Piles, M., and Pablos, M.: Integrated remote sensing approach to global
agricultural drought monitoring, Agr. Forest. Meteorol., 259, 141–153,
https://doi.org/10.1016/j.agrformet.2018.04.022, 2018.
Sivakumar, M., Motha, R., and Das, H.: Natural Disasters and Extreme Events
in Agriculture, in: Impacts and Mitigation, edited by: Sivakumar, M., Motha, R., and Das, F., Springer, Berlin, 2005.
Soil Survey Staff: Keys to soil taxonomy, 12th Edn., USDA – Natural Resources Conservation Service, Washington, D.C., 2014.
Son, N. T., Chen, C. F., Chen, C. R., Minh, V. Q., and Trung, N. H.: A
comparative analysis of multitemporal MODIS EVI and NDVI data for large-scale rice yield estimation, Agr. Forest. Meteorol., 197, 52–64,
https://doi.org/10.1016/j.agrformet.2014.06.007, 2014.
Takahashi, K., Ikegami, M., Sheahan, M., and Barrett, C. B.: Experimental
Evidence on the Drivers of Index-Based Livestock Insurance Demand in Southern Ethiopia, World Dev., 78, 324–340, https://doi.org/10.1016/j.worlddev.2015.10.039, 2016.
Torbick, N., Chowdhury, D., Salas, W., and Qi, J.: Monitoring rice agriculture across myanmar using time series Sentinel-1 assisted by
Landsat-8 and PALSAR-2, Remote Sens., 9, 119, https://doi.org/10.3390/rs9020119, 2017.
Valverde-Arias, O., Garrido, A., Valencia, J. L., and Tarquis, A. M.: Using
geographical information system to generate a drought risk map for rice
cultivation: Case study in Babahoyo canton (Ecuador), Biosyst. Eng., 168, 26–41, https://doi.org/10.1016/j.biosystemseng.2017.08.007, 2018.
Valverde-Arias, O., Garrido, A., Saa-Requejo, A., Carreño, F., and Tarquis, A. M.: Agro-ecological variability effects on an index-based
insurance design for extreme events, Geoderma, 337, 1341–1350,
https://doi.org/10.1016/j.geoderma.2018.10.043, 2019.
van de Ven, W. P. M. M., van Vliet, R. C. J. A., Schut, F. T., and van Barneveld, E. M.: Access to coverage for high-risks in a competitive
individual health insurance market: via premium rate restrictions or
risk-adjusted premium subsidies?, J. Health Econ., 19, 311–339,
https://doi.org/10.1016/S0167-6296(99)00028-4, 2000.
Van Tricht, K., Gobin, A., Gilliams, S., and Piccard, I.: Synergistic Use of
Radar Sentinel-1 and Optical Sentinel-2 Imagery for Crop Mapping: A Case
Study for Belgium, Remote Sens., 10, 1642, https://doi.org/10.3390/rs10101642, 2018.
Vedenov, D. V. and Barnett, B. J.: Efficiency of Weather Derivatives as
Primary Crop Insurance Instruments, J. Agric. Resour. Econ., 29, 387–403, 2004.
Veloso, A., Mermoz, S., Bouvet, A., Le Toan, T. , Planells, M., Dejoux, J.-F., and Ceschia, E.: Understanding the temporal behavior of crops using
Sentinel-1 and Sentinel-2-like data for agricultural applications, Remote
Sens. Environ., 199, 415–426, https://doi.org/10.1016/j.rse.2017.07.015, 2017.
Vroege, W., Dalhaus, T., and Finger, R.: Index insurances for grasslands – A
review for Europe and North-America, Agric. Syst., 168, 101–111,
https://doi.org/10.1016/j.agsy.2018.10.009, 2019.
Williams, L. J. and Abdi, H.: Fisher's least significant difference (LSD) test, Encycl. Res. Des., 218, 840–853, 2010.
Xu, J. and Liao, P.: Crop Insurance, Premium Subsidy and Agricultural
Output, J. Integr. Agric., 13, 2537–2545, https://doi.org/10.1016/S2095-3119(13)60674-7, 2014.
Yuanchang, X. and Jiyu, J.: The optimal boundary of political subsidies for
agricultural insurance in welfare economic prospect, Agric. Agric. Sci.
Procedia, 1, 163–169, https://doi.org/10.1016/j.aaspro.2010.09.020, 2010.
Zhang, X., Chen, N., Li, J., Chen, Z., and Niyogi, D.: Multi-sensor integrated framework and index for agricultural drought monitoring, Remote
Sens. Environ., 188, 141–163, https://doi.org/10.1016/j.rse.2016.10.045, 2017.
Short summary
We designed an index-based insurance (IBI) for drought and flood in rice crops in Babahoyo (Ecuador). We assessed Babahoyo's soil, climatic and topographic variability, finding two homogeneous zones inside this area. We set differentiated insurance premiums according to the particular risk status of each zone. Results demonstrate that this IBI is an efficient risk transfer tool for policyholders. This insurance design could contribute to stabilizing farmers' incomes and rice production.
We designed an index-based insurance (IBI) for drought and flood in rice crops in Babahoyo...
Altmetrics
Final-revised paper
Preprint