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Abstract. Rice production in Ecuador is steadily affected
by extreme climatic events that make it difficult for farm-
ers to cope with production risk, threatening rural livelihoods
and food security in the country. Developing agricultural in-
surance is a policy option that has gained traction in the
last decade. Index-based agricultural insurance has become a
promising alternative that allows insurance companies to as-
certain and quantify losses without verifying a catastrophic
event in situ, lowering operative costs and easing implemen-
tation. But its development can be hindered by basis risk,
which occurs when real losses in farms do not fit accurately
with the selected index. Avoiding basis risk requires assess-
ing the variability within the insurance application area and
considering it for representative index selection. In this con-
text, we have designed an index-based insurance (IBI) that
uses a vegetation index (normalized difference vegetation in-
dex – NDVI) as an indicator of drought and flood impact on
rice in the canton of Babahoyo (Ecuador). Babahoyo was di-
vided in two agro-ecological homogeneous zones (AHZs) to
account for variability, and two NDVI threshold values were
defined to consider, first, the event impact on crops (physio-
logical threshold) and, second, its impact on the gross margin
(economic threshold). This design allows us to set up accu-
rate insurance premiums and compensation that fit the par-
ticular conditions of each AHZ, reducing basis risk.

1 Introduction

Rice-cropping area in Ecuador has witnessed a reduction
trend in recent years (FAO, 2018). From an average cul-
tivated area around 400 000 ha between 2005 and 2015,
the annual average decreased to 385 039 ha in 2016 and
to 370 406 ha in 2017, falling considerably to 301 853 ha
in 2018 (Aguilar et al., 2015, 2018; INEC, 2018; Montaño,
2005). Such a downward trend rises the government’s con-
cern, as rice production plays an important role in Ecuado-
rian food security (Pinstrup-Andersen, 2009) and is central
to rural livelihoods in certain areas of the country. Daily rice
consumption per person is 115 g (Montaño, 2005), which
currently represents an annual demand of 714 000 t. Ad-
ditionally, rice production in Ecuador offers employment
to 22 % of the economically active population, involving
around 140 000 families. For these reasons, the Ecuadorian
government supports rice producers through technical ad-
vice, subsidized inputs, credit lines for farm modernization
and minimum support prices (Eymond and Santos, 2013).
However, these supporting mechanisms have not efficiently
prevented the gradual reduction of rice-cropping area, which
is necessary to adopt additional measures that support the
stability of farmers’ revenues.

The FAO and UN-Habitat (2010) reported that out of the
29 most important disasters in Ecuador in the last 20 years,
59 % had a climatic origin. Additionally, the most common
extreme climatic events in Ecuador are flood and drought, ac-
cording to the CRED (2015). Sivakumar et al. (2005) men-
tioned that extreme climatic events have increased both in
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frequency and intensity, making it more difficult for farm-
ers to maintain their crop productions (Cai et al., 2014; Isch,
2011). These climatic phenomena, which are further accen-
tuated by climate change, are key drivers of economic losses
that hit especially small rice farmers in the tropics (Harvey
et al., 2014) and are one of the main reasons behind rice-
cropping area loss in Ecuador (Eymond and Santos, 2013;
Poveda and Andrade, 2013). For instance, the 2012 winter
impact census of agriculture (MAGAP, 2012) showed that
from 140 000 cultivated hectares analysed, 56 562 ha were
entirely destroyed by flood and 24 103 ha were partially dam-
aged by the same event. In this context, risk management
mechanisms, such as agricultural insurance, can importantly
contribute to reducing rice producers’ vulnerability and to
protecting them from the economic losses driven by climatic
extremes.

Agricultural insurance is an effective tool for transferring
production risk from farmers to other entities. It allows farm-
ers to meet their credit obligations and minimize the effect
of extreme climatic events on their revenue (Xu and Liao,
2014). Moreover, agricultural insurance contributes to keep-
ing farmers in the agricultural business, improving their re-
silience and preserving food security (Bullock et al., 2017;
Patt et al., 2009). In pursuit of these goals, Ecuador started
to implement, in 2010, conventional insurance through the
Agroseguro system that includes a 60 % subsidy of the in-
surance’s premium cost (MAG, 2018). This is a multi-peril
insurance system that covers some crops, including rice, re-
quiring an in situ verification in the case of disaster oc-
currence. Under the coverage of this insurance, in the case
of a generalized extreme event, the insurance company’s in
situ verification capacity could be exceeded, delaying pay-
outs, and some remote regions could be uncovered. More-
over, Medina (2017) suggests that conventional insurance in
Ecuador may be inefficient due to asymmetric information
that may increase adverse selection and moral hazard. There-
fore, even if the current Agroseguro insurance system has
importantly supported farmers along the last decade, it is im-
portant for the Ecuadorian government to step forward to the
next level in the agricultural insurance field to expand the in-
surance coverage and reduce transaction costs, resulting in
lower premium prices and a more efficient system.

Among different types of agricultural insurance schemes,
index-based insurance (IBI) is a promising tool for providing
coverage to large agricultural areas around the world (Mo-
barak and Rosenzweig, 2013), based on the use of an index
highly correlated with loss that avoids the need for field loss
verification (Carter et al., 2011). The use of such an index
as a trigger for indemnity payments significantly reduces the
costs for the insurance company in relation to loss verifica-
tion and payment procedure and reduces fraud, moral hazard
and adverse selection (Barnett and Mahul, 2007; de Leeuw
et al., 2014), which are frequent drawbacks of conventional
insurance. IBI has been underlined as a feasible and efficient
risk management tool (Jensen and Barrett, 2017; Jensen et

al., 2018; Takahashi et al., 2016), and several studies demon-
strated its successful implementation using the weather and
vegetation index among small- and medium-sized farms in
developing countries (Mcintosh et al., 2013; Mude et al.,
2009, among others) that can benefit from lower insurance
premiums due to lower implementation costs. In this regard,
IBI represents an alternative to conventional insurance in
Ecuador, which could be applied by insurance companies and
the government to satisfy the risk management needs of rice
producers.

However, the technical, economic and administrative hur-
dles are significant. A major problem that may arise in the
implementation of IBI is the lack of proper correlation be-
tween the index and the losses experienced by farmers in
the index influence area (IIA), which is the area for which
a defined index is representative (Elabed et al., 2013). This
problem, known as basis risk, occurs when some farmers
from the pool of insured agents do not receive any compen-
sation, even when experiencing losses, and some others that
are not affected are indemnified (Clarke, 2016; Hellmuth et
al., 2009). To avoid this, IBI can only be applied over spa-
tially homogeneous areas because its main principle is based
on the use of a single index over the IIA. Nevertheless, these
conditions of homogeneity are rarely found because agricul-
ture is practised in heterogeneous areas. To keep basis risk
in non-significant levels, index selection and analysis may be
crucial, especially with respect to the way variability within
the IIA could influence index values.

Among the indices used in IBI design, several authors
(e.g. Jensen et al., 2018; Rao, 2010) underlined vegetation
indices as options that reduce basis risk and provide rea-
sonably accurate loss estimations and that can significantly
profit from recent advances in remote sensing, geographical
information systems, and satellite and drone imagery, among
others. Particularly, the normalized difference vegetation in-
dex (NDVI) or the enhanced vegetation index (EVI) are the
ones performing the best in terms of detection of drought and
flood impacts and estimating yields, with the NDVI being
one of the most used current IBI systems in crop monitor-
ing, as mentioned in much of the literature (e.g. Rhee et al.,
2010; Van Tricht et al., 2018; Vroege et al., 2019; Zhang et
al., 2017). In line with this, in this research we aim to design
an IBI based on the NDVI for rice crops in Ecuador that cov-
ers farmers against drought and flood events, accounting for
variability within the IIA. For this, we build upon previous
work developed by Arias et al. (2018) for the rice-producing
coastal region of Ecuador that identified agro-ecological ho-
mogeneous zones (AHZs) based on topographic, soil and cli-
matic characteristics using principal components and hier-
archical cluster analysis. Within that area, in the canton of
Babahoyo, two AHZs (f7 and f15) were located, and their
influence on the NDVI in rice cultivation was found to be
significant (Valverde-Arias et al., 2019). For the IBI design,
two thresholds in the NDVI values will be defined. The phys-
iological threshold evidences the occurrence of an extreme
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climatic event and its impact over rice crop yield. While
the economic threshold is reached when a moderate climatic
event occurs, its impact over the rice crop yield is not so
deep, letting farmers at least cover the production costs. For
these thresholds, two scenarios are investigated; the first one
considers a differentiated production cost for each AHZ. The
second scenario uses the same average production cost for
both zones f7 and f15. Then, the damage compensation and
the premium cost are calculated for each threshold, consider-
ing the two scenarios and the AHZs.

2 Materials and methods

This section presents the data and methods followed for the
development of an IBI. Starting with a description of the
study area location (Sect. 2.1) and data used (Sect. 2.2),
Sect. 2.3 explains how we assessed the significance of the
AHZ impact on the NDVI. Then, we estimate the functional
relationship between the NDVI and rice yield (Sect. 2.4), de-
termine the NDVI thresholds (Sect. 2.5), and assess risk in
each AHZ (section 2.6). Finally, for the design of the IBI
contract, in Sect. 2.7 we explain first how indemnities are
calculated and how the insurance premiums are estimated
considering different zones and different coverages.

2.1 Location of study area

This study is located in Ecuador, South America (Fig. 1a).
Rice production in Ecuador is concentrated in the coastal
area of the country (see Fig. 1b), especially in the provinces
of Guayas and Los Ríos (55 % and 37 % of rice-cropping area
respectively during the rainy season). This study focuses on
rice cultivation area in Babahoyo, which is one of the main
rice-producing areas in the province of Los Ríos (Fig. 1c),
where 84 % of the rural population of Babahoyo is involved
in agriculture, with rice being the main crop in the region
and having 46 556 ha, which represents 45 % of the total cul-
tivated area in this canton (IEE, 2009; MAGAP, 2014). The
location of Babahoyo on an extensive plain of the Ecuado-
rian coastal region makes it very vulnerable to floods, and
as Valverde-Arias et al. (2018) mentioned in their study, this
canton is also susceptible to droughts. Therefore, given the
importance of rice production in the region’s economy and
its vulnerability to hazardous climatic events, designing and
implementing an IBI that accounts for variability within the
area and that provides accurate premium prices and indem-
nities may importantly contribute to rice producers’ welfare
and stability.

2.2 Cartographic data

2.2.1 Agro-ecological homogeneous zones map

In this research we build on the AHZ map generated for the
Ecuadorian coastal region in the study of Arias et al. (2018)

that includes our study area (Babahoyo). In this map, por-
tions of land with similar agro-ecological characteristics
were grouped in homogeneous zones (AHZs) using a sta-
tistical method of principal component analysis and hierar-
chical cluster analysis. This zoning was evaluated through
NDVI imagery in the study of Valverde-Arias et al. (2019),
which proved that this zoning is adequate and necessary for
designing an efficient IBI, reducing basis risk. According to
the map, there are 11 AHZs in Babahoyo, from which seven
include rice crop cultivation land. Two of these seven AHZs,
f7 and f15, were selected for the study, as they account for
more than 90 % of the total rice-cultivated area in Babahoyo
(see Fig. 1c; f7 in yellow and f17 in green).

2.2.2 Data from satellite imagery

Satellite imagery data were obtained from the MODIS
MOD13Q1V6 product (NASA LP DAAC, 2015; see Didan
et al., 2015, for a description of its characteristics). MODIS
imagery was selected due to its long temporal coverage (im-
agery data available since 2001), which is necessary for con-
structing a historical sequence of the NDVI. MODIS’s spatial
resolution 250 m is moderate, but for regional applications of
crop monitoring this resolution is sufficient (Jiao et al., 2019;
Sánchez et al., 2018). Since 2015, Sentinel 2 imagery has
been available with a resolution of 10 to 60 m, depending on
the bands. Many studies have used Sentinel for monitoring
the crop state, with very positive results (Inglada et al., 2015;
Van Tricht et al., 2018; Veloso et al., 2017). However, cur-
rent time data series availability of Sentinel does not allow
its use for IBI design, as at least 10 years of historical data
are needed for insurance design (Rao, 2010). Despite this,
Sentinel will become, in the coming years, an important al-
ternative in the insurance field. Also, Sentinel 1, which is a
radar sensor, could be an interesting option for rice monitor-
ing in the zones where the steady presence of clouds repre-
sents a problem, as Torbick et al. (2017) mentioned in their
study.

The imagery covers the rice cycle during the rainy sea-
son (January to May). There is one image for each 16 d pe-
riod from 2001 to 2017, which makes 170 images in total
(17 years× 5 months× two per month). The rice crop cycle
in Ecuador takes 120 d. The sowing date starts around 15 Jan-
uary, and sometimes it is delayed, depending on the onset of
the rainy season.

The downloaded imagery have a hierarchical data for-
mat (HDF), which is a multilayer file (12 layers; Didan,
2015); however, we used the layer HDF:0, which corre-
sponds to NDVI values. Additionally, we used the quality as-
surance layer (quality layer: 250 m 16 d VI quality) included
in the HDF file of NDVI MODIS imagery. In this layer, each
pixel has a rank key that identifies the pixel quality, and the
rank key of 0 means good data; it should be with confidence.
Then, we used only pixels with a rank key of 0 (Didan et al.,
2015).
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Figure 1. (a) Location of Ecuador in South America, (b) location of Babahoyo in Ecuador, and (c) agro-ecological homogeneous zones f7
and f15 over rice cultivation area with yield observations in Babahoyo.

2.3 Statistical analysis

NDVI values over rice along its crop cycle were analysed for
the period 2001 to 2017. NDVI_ave is the average of all the
NDVI measures of the rice crop cycle (January to May) for
each observation point. We sampled 30 % of the total pix-
els of rice crops in Babahoyo, resulting in 31 756 observa-
tions: 13 498 in AHZ f7 and 18 258 in AHZ f15. Following
Olofsson et al. (2014) we used Eq. (1) to calculate the min-
imum size of the sample. The adequate sample size for this
stratified design should be above 12.77 % of the total pixels
in each stratum (AHZ f7 and f15). Also, Valverde-Arias et
al. (2019) demonstrated that a 10 % sample was significantly
representative in this case. Therefore, 30 % is an adequate
sampling size that ensures representativeness of the sample:

n=

(∑
WiSi

)2
[S(Ô)]2+

(
1
N

)∑
WiS

2
i

≈

(∑
WiSi

S(Ô)

)2

, (1)

where N is number of the total spatial units in the area of
interest (pixels), S(Ô) is the standard error of the overall ac-
curacy that we would like to achieve, Wi is the mapped pro-
portion of area of class i, and Si is the standard deviation of
stratum i.

Descriptive statistics were applied to the NDVI_ave
dataset, including the normality test of Kolmogorov–
Smirnov, which is recommended for more than 50 observa-
tions (Razali and Wah, 2011). If the dataset fits a normal dis-

tribution, an analysis of variance (ANOVA) will be applied
for comparing the means of two variability factors (zones and
years). Otherwise, we will determine which distribution this
dataset fits, and the test of Kruskal–Wallis will be used for
comparing the median of AHZs and years. If significant dif-
ferences are found among years, the least significant differ-
ence (LSD) multiple-rank test for means (Williams and Abdi,
2010) or the Bonferroni test for medians will be applied.
Years that are not significantly different will be grouped into
five categories based on NDVI_ave values: very low, low,
normal, high and very high years.

2.4 Rice yield estimation through NDVI_ave

According to Huang et al. (2013) remote-sensing products
can be used for generating yield estimation models that do
not require variables, as crop management or fertilizer ap-
plications. Robust results are obtained in rice yield predic-
tion even at the province level. Quarmby et al. (1993) men-
tioned that rice and maize yields could be estimated accu-
rately by simple linear regression between the NDVI and
yield; in addition, Son et al. (2014) suggested that the use
of multi-temporal NDVI data for estimating rice yield on a
large scale should be a possible and accurate alternative. In
this research, we used the normal distribution Eq. (2) for esti-
mating rice yield from NDVI_ave values, quantifying in this
way the economic losses in rice cultivation caused by ex-
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treme climatic events. The estimation of rice yield was based
on the relationship with the NDVI_ave and the crop state:

Y =
1

σ
√

2π
e
−
(X−µ)2

2σ2 , (2)

where σ is the standard deviation, σ 2 is variance, X is the
independent variable (NDVI_ave), Y is the dependent vari-
able (estimated rice yield), and µ is the arithmetical mean of
NDVI_ave in the years 2016 and 2017.

The General Coordination of the National Information
System (CGSIN – acronym in Spanish) of the Ecuadorian
Ministry of Agriculture, Livestock, Aquaculture and Fish-
eries (MAG) has conducted a rice yield estimation project
since 2014, when it began sampling yields across mapped
rice areas (Moreno, 2014). Thus, 369 georeferenced rice
yield observations (t ha−1) were available for 2014–2017
rain-fed cycles (January to May) in the study area over AHZs
f7 and f15 (see Fig. 1c). Therefore, we used these rice yield
observations with their corresponding spatial and tempo-
ral NDVI_ave values for obtaining the parameters included
in Eq. (2) (Valverde-Arias et al., 2019). The robustness of
this model was evaluated through the root-mean-square error
(RMSE; %) and R2 coefficient.

2.5 Threshold determination

There are three different levels of rice crop loss impacts,
caused by drought and flood, that should be evaluated based
on the vegetation index selected. In the first one, catastrophic
impact, the crops are acutely affected, and the farmers can-
not recover any part of their investment. In the second level,
physiological impact, the crops are strongly affected but
farmers can recover part of their investment. Finally, with
economic impact, the crop loss impact still allows farmers to
recover their investment to break even or have null profit.
To differentiate between these three levels two NDVI_ave
thresholds are needed.

According to LSD and Bonferroni multiple-range tests,
years with the lowest NDVI_ave means and medians are
selected as the more representative physiological threshold.
Then, we investigate whether these years have actually been
affected by floods or drought through the climatic applica-
tion of the National Oceanic and Atmospheric Administra-
tion (NOAA, 2018). Finally, we verified that these thresh-
olds correspond to the reality, comparing the estimated yield
obtained using the NDVI_ave thresholds with the expected
yields in each AHZ and cantonal level (at the Babahoyo can-
tonal level) in normal years.

For the economic threshold, we set an NDVI_ave value
that let farmers cover at least their production cost. Thus,
we considered the sale price at farm-gate value for a tonne
of rice and the production cost in two scenarios: scenario 1
(when we consider differentiated production cost for AHZs
f7 and f15) and scenario 2 (non-differentiated production
cost for AHZs).

According to CGSIN, there are officially three different
rice crop production systems in Ecuador for rain-fed agricul-
ture and two for irrigated agriculture in 2017. Each of them
has different production costs, as shown in Table 1, and they
depend on the level of farm modernization and whether they
are rain-fed or irrigated.

Since we assessed rice production during the rainy sea-
son (January–May), irrigation is not required in normal con-
ditions. For this reason, we use production costs of rain-
fed agro-systems. Among rain-fed production systems, we
chose the non-technical and semi-technical systems, which
are more likely to suffer the impacts of extreme climatic
events and therefore are the ones that should acquire in-
surance. We assigned, to f7, the production cost of a non-
technical production system (USD 1022 ha−1), and for f15,
we assigned the cost of a semi-technical production system
(USD 1629 ha−1) for scenario 1 (see Table 1), as according to
Valverde-Arias et al. (2019), f15 has an expected yield higher
than f7’s yield in regular years, which could be explained by
f15’s better soil conditions and by having a more technical
production system than f7. Then, when we do not consider
AHZs, i.e. at the cantonal level, we used a weighted aver-
age production cost of these two systems (USD 1259 ha−1).
In scenario 2, i.e. when similar costs are assumed for both
AHZs, we used the weighted average (USD 1259 ha−1) for
all the cases (f7, f15 and cantonal zone).

2.6 Risk assessment in AHZs

Once we found the distribution that fits our data for each
AHZ and cantonal zone, we simulated, through these dis-
tributions, a determined number of NDVI_ave values. Then,
we compared the frequency of observed NDVI_ave values
with the estimated ones. The basis risk of the estimation was
evaluated through the adjusted R2 coefficient (Vedenov and
Barnett, 2004).

Lastly, we calculated the proportion of positive events –
that is, the number of events equal to or under each threshold
(physiological and economic) for each estimated distribution
(f7, f15 and cantonal zone). Finally, we tested whether these
proportions of f7 and f15 are significantly different from each
other or not. This analysis was performed through the Z test
of two independent proportions. It consists of determining
whether these two proportions, which came from two differ-
ent populations, are equal (Pardo et al., 1998; Polasek, 2013).

1. Hypothesis.

H0 : p1 = p2; H1 : p1 6= p2.

2. Postulation. The studied variable (NDVI_ave) is di-
chotomous (below or equal to or above the threshold) in
these two populations (f7 and f15). From these two pop-
ulations, two random samples were extracted indepen-
dently with n1 and n2 sizes. These samples had p1 and
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Table 1. Official production cost of different rice-production systems in Ecuador in 2017.

Rice cultivation production cost (USD ha−1)

Rain-fed production system Irrigated production system

Non-technical Semi-technical Technical Semi-technical Technical

1022.0 1629.7 1955.9 1631.0 1997.4

Source: MAG (2017).

p2 success probability, which are constant in each ex-
traction. Positive events occur when the observation is
equal to or below the threshold.

3. Contrast statistics.

Sample f 7 : n1, P1, where n1 = population of f 7
and P1 = ratio of positive events.
Sample f 15 : n2, P2, where n2 = population of f 1
and P2 = ratio of positive events :

P =
n1P1+ n2P2

n1+ n2
, (3)

Z =
P1−P2√

P(1−P)
(

1
n1
+

1
n2

) . (4)

4. Critical ratio.

Bilateral:

Z≤∝/2z,

Z≥1−∝/2z.

5. Decision. Reject H0 if contrast statistics falls in critical
rate or p ≤∝.

2.7 Insurance contract design

2.7.1 Indemnity calculation

The indemnity is the amount of money that an insured indi-
vidual receives when a covered hazard occurs. In this case,
we have two insurance policy options. The first one is work-
ing capital, where the insured amount corresponds to the
money necessary for recovering the investment (production
cost) that a farmer has spent. The second one is the profit
(gross margin), where the insured amount is the money that
a farmer would obtain selling their production after covering
their production cost in a normal year.

In other words, for the first option the compensation will
cover the yield reduction between the economic and physio-
logical threshold. In the second case, the compensation will
cover the difference between the expected yield in a normal
year and the yield obtained at the economic threshold.

Thus, the indemnity calculation follows the next equation
(Maestro et al., 2016):

Isz = Yz×P −Pcsz, (5)

where Isz is the net income expected per hectare (USD ha−1)
in a normal year, differentiated by the s scenario (it could
be 1 or 2) and z zone (f7, f15 or cantonal zone). Yz is the
expected yield (t ha−1) in normal years for the z zone. P is
the price of a tonne of rice at a farm (USD t−1). Pcsz is the
production cost per hectare of rice cultivation (USD ha−1),
differentiated by the s scenario (it could be 1 or 2) and
z zone (f7, f15 or cantonal zone). Yz is obtained by apply-
ing Eq. (1), and P was calculated from rice price monthly
variation along the last 2 years. This value is assumed to be
constant (USD 371 t−1) for both AHZs and cantonal zones
and for scenario 1 or 2.

To estimate Pcsz, we evaluated two scenarios: scenario 1,
with production costs differentiated for each z zone (f7, f15
or cantonal zone), and scenario 2, with the same production
costs for all z zones (f7, f15 or cantonal zone).

2.7.2 Premium determination

The commercial or loaded premium cost CPsz is equal to the
net premium multiplied by a factor that covers the insurance
company profit and loading cost. The net premium or risk
premium NPsz has to cover the expected compensation that
an insurance company would have to pay during the anal-
ysed period. The net premium is calculated as a percentage
of Isz. This percentage corresponds to the probability that the
insurance company has to compensate Isz in a period of time
(Jasiulewicz, 2001; van de Ven et al., 2000). It was expected
that the probability of occurrence would be different for each
AHZ (f7 and f15). It is also different when the NDVI_ave
measure is made at the cantonal level. Thus, we calculated
differentiated premium rates for each one of these cases:

NPsz = Isz×Prsz, (6)
CPsz = NPsz (1+ (β1+β2)) , (7)

where NPsz is the net premium rate (USD ha−1) for sce-
nario s (scenario 1 or 2) and z zone (f7, f15 and cantonal
zone). CPsz is the commercial premium rate (USD ha−1) for
scenario s (scenario 1 or 2) and z zone (f7, f15 and cantonal
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zone). Prsz is the probability of sinister occurrence for the
s scenario (scenario 1 or 2) and z zone (f7, f15 and cantonal
zone). β1 is the insurance company profit (20 % of NPsz).
β2 is the operative cost of the insurance plus taxes (5 %
of NPsz).

The commercial premium value CPsz in index-based in-
surance is generally subsidized by the government by around
60 % to small farmers in developing countries (Höppe, 2007;
Ricome et al., 2017).

3 Results and discussion

3.1 Statistical analysis

From descriptive statistical analysis, the kurtosis (0.56) and
skewness (−0.78) indicated that the dataset of NDVI_ave fits
a normal distribution; however, the Lilliefors (Kolmogorov–
Smirnov) normality test showed that D = 0.080207 and a p
value < 2.2× 10−16 lower than 0.05; then we rejected the
null hypothesis because the dataset does not come from a
normal distribution. We found that our data fit a generalized-
minimum extreme value (GEVmin) distribution (Kotz and
Nadarajah, 2000) for the cantonal dataset and for the two
AHZs (f7 and f15) based on χ2 statistics (Table 2).

Because the datasets did not fit normal distributions, we
used a non-parametric test to determine if NDVI_ave me-
dians in zones f7 and f15 are significantly different. The
Kruskal–Wallis test for these zones (χ2

= 345.48; F.D.= 1;
p value< 2.2× 10−16) shows us that the null hypothesis of
f7 and f15 that is equal can be rejected because the p value
is lower than 0.05. The same test mentioned before shows
us that years are also significant different (χ2

= 7507.4;
F.D.= 16; p value< 2.2× 10−16 is also lower than 0.05).
Five categories in years are established when the LSD (mean)
and Bonferroni (median) test are applied to NDVI_ave values
(see Table 3).

3.2 Rice yield estimation

The observed rice yield was plotted versus NDVI_ave in
a rice crop cycle. A normal accumulative curve was ad-
justed (see Eq. 2 in Fig. 2a) to relate both variables; where
µ (0.49) is the mean of NDVI_ave measured in yield sam-
pling points of years 2014 through 2017, σ (0.14) is the stan-
dard deviation, and X is the NDVI_ave value for which we
want to estimate rice yield (Y ). The RMSE (%) of 3.3 and an
R2 of 0.71 indicate a robust model. This type of curve was se-
lected, instead of a linear regression, to take into account the
high values of the NDVI saturation effect on plant biomass
(Gu et al., 2013) and the soil saturation effect on low NDVI
values (Rondeaux et al., 1996). The correlation coefficient of
observed versus estimated rice yield was high (0.89), show-
ing that NDVI_ave is an adequate indicator for assessing the
impact of drought and flood over rice crops (Fig. 2b).

3.3 Threshold determination

Since the years have been classified into five categories, we
could define the different levels of impact or no impact over
rice crops (NDVI_ave), as shown in Table 3. When rice yield
is less than 0.5 t ha−1 (NDVI_ave≤ 0.26), due to damage in
rice crops by extreme events, the total loss threshold is nei-
ther detectable at the cantonal level nor at the AHZ (f7 and
f15) level. Individual NDVI_ave observations equal to or un-
der the total loss threshold can be found but not as a regional
measure of NDVI_ave. However, in our IBI design the index
measure is an average of all observations within a homoge-
neous zone, whether cantonal zones or AHZs (f7 and f15).

The physiological threshold represents the maximum rice
crop damage that can be detected through NDVI_ave at the
regional scale, which has been caused by an extreme climatic
event. It is fixed (0.4) for both AHZs (f7 and f15) and can-
tonal zones (see Table 4). The years when we reached the
physiological threshold in our dataset were 2008, 2012, 2013
and 2016. These years belong to the “very low category”,
and according to climatic application (NOAA, 2018) these
years were affected by extreme climatic events. This applica-
tion contains and plots historical climatic data. In this case,
we analysed the combined precipitation anomalies. Zero rep-
resents no precipitation anomaly, i.e. average precipitation;
positive anomalies occur in years that precipitation is above
the average (floods), and negative anomalies occur when the
precipitation is below the average (drought). As we can see in
Fig. 3a and b, Babahoyo presented positive anomalies of pre-
cipitation (floods) in 2008 and 2012 and negative anomalies
of precipitation (drought) for 2013 and 2016 (Fig. 3c and d).

On the other hand, the economic threshold depends on
economic factors such as the sale rice price and production
cost. These are not constant and must be set regarding the
necessary yield for covering the farmer’s expenses during the
rice cultivation campaign, as shown in Table 4.

The economic threshold represents the minimum yield
that farmers must reach for covering at least the produc-
tion cost. It is higher than the physiological threshold, and
it varies according to the scenario. In scenario 1, the eco-
nomic threshold is different for each AHZ (f7 and f15); f7
has a lower production cost (USD 1022 ha−1) than that for
f15 (USD 1629 ha−1). Thus, the economic threshold of f7
is 0.41, while for f15, it is 0.47 (see Table 4). The years from
our dataset that reached the economic threshold were 2010,
2014, 2015 and 2017. They were impacted by moderate cli-
matic events (flood for 2010 and 2017 and drought for 2014
and 2015) according to the NOAA (2018; see Fig. 3e–h).

For scenario 2, the production cost is a weighted average
(USD 1259 ha−1) both for AHZs (f7 and f15) and cantonal
zones. Therefore, the economic threshold (0.43) is the same
for AHZs and cantonal zones (see Table 4).
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Figure 2. (a) Scatter plot of observed rice yield and NDVI_ave, curve of Eq. (1) for estimating yield (Valverde-Arias et al., 2019), and
(b) correlation of observed and estimated rice yield.

Table 2. Parameters of generalized-minimum extreme value (GEVmin) distribution for each AHZ and cantonal zone and distribution adjust-
ment statistic of maximum likelihood.

Mode Scale n k Freedom degrees χ2 χ2

(n− 1)× (k− 1) table calculated

Cantonal 0.52 0.09 100 11 990 1064.31 9.42
f7 0.51 0.11 100 11 990 1064.31 2.75
f15 0.53 0.08 100 10 891 961.55 2.16

3.4 Risk assessment of AHZ and Babahoyo

The risk status of f7 and f15 was found to differ based on
the following results. We found that 25 % of events are un-
der the physiological threshold for f7, and 17 % are under
the threshold for f15 (see Fig. 4b and c); when we do not
consider AHZs (cantonal), this value is 21 % (Fig. 4a). AHZ
f7’s probability is higher because of its soil conditions (see
Table 5). These conditions make the zone more vulnerable
to floods due to its very fine texture (> 60 % clay), flat lands
(0 %–5 % slope), very low altitude (1–12 m) and proximity
to river banks that contribute to very poor drainage of this
zone. In the same way, these characteristics could give, to
f7, better capacity for long-term water retention during a
drought. However, when drought is extreme, the f7’s soil
(vertisol) gets very dry (Soil Survey Staff, 2014); conse-
quently, it becomes very hard and develops deep cracks. This
phenomenon physically affects the crop roots and consider-
ably hinders the soil tillage (Valverde-Arias et al., 2019).

For economic thresholds, we also found differences be-
tween the risk status of AHZs f7 and f15. Furthermore, for
scenario 1, the probability of having events equal to or un-
der the economic threshold is higher in f15 (37 %) than in
f7 (26 %) and in cantonal zones (29 %), as we can see in
Fig. 5a, c and e. The reason for this is that in this sce-
nario, f15’s farmers have to cover a higher production cost

(which corresponds to a semi-technical production system),
and, therefore, they have to reach an economic threshold also
higher (0.47) than that in the f7.

In scenario 2, the economic threshold is equal (0.43) for
f7, f15 and cantonal zones, but the probability of finding
events under the threshold is higher in f7 (32 %) than in f15
(25 %) and in cantonal zones (29 %). Although the economic
threshold is the same for both AHZs (f7 and f15) and at the
cantonal level, in this scenario, the frequency distributions of
NDVI_ave were different for each zone. Consequently, they
accumulated different probabilities under the same threshold,
as shown in Fig. 5b, d and f.

At this point, we evaluated the Z test results for deter-
mining if the differences found have statistical significance.
Based on the Z test (see Table 6), the null hypothesis (H0 :

p1 = p2) can be rejected in both scenarios 1 and 2, so we can
assert that the proportion of positive cases (equal to or under
physiological and economic thresholds) in f7 is significantly
different from that in f15. For the economic threshold in sce-
nario 1 (differentiated production cost), the calculated Z is
negative because in this case the probability in f15 is higher
than in f7.

As the NDVI_ave dataset fits a GEVmin distribution, we
used this distribution, with its specific parameters (mode and
scale; shown in Table 2), for estimating NDVI_ave density

Nat. Hazards Earth Syst. Sci., 20, 345–362, 2020 www.nat-hazards-earth-syst-sci.net/20/345/2020/



O. R. Valverde-Arias et al.: Remote sensing in an index-based insurance design 353

Figure 3. Positive anomalies of precipitation (flood) in the year (a) 2008, (b) 2012, (e) 2010 and (f) 2017. Negative anomalies of precipitation
(drought) in the year (c) 2013, (d) 2016, (g) 2014 and (h) 2015. Source: NOAA (2018).
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Table 3. Fisher’s least significant difference (LSD) test for comparing means, and Bonferroni test for comparing medians, for years.

Year Mean Year Median Category
(NDVI_ave) (NDVI_ave)

2008 0.39 2008 0.39 Very low
2012 0.40 2013 0.42 (years affected by extreme
2013 0.40 2016 0.43 climatic events)
2016 0.40 2012 0.43

2017 0.42 2017 0.44 Low
2014 0.42 2014 0.45 (years affected by moderate
2015 0.45 2010 0.47 climatic events)
2010 0.46 2015 0.48

2002 0.48 2011 0.48 Normal
2005 0.49 2005 0.49 (normal years)
2011 0.49 2002 0.49

2001 0.51 2001 0.52 High
2009 0.51 2009 0.52 (years with good climatic
2007 0.52 2007 0.52 conditions)

2003 0.54 2004 0.54 Very high
2004 0.55 2003 0.55 (years with very good
2006 0.55 2006 0.56 climatic conditions)

frequencies for f7, f15 and cantonal zones. With these distri-
butions, we calculated the positive events under physiologi-
cal and economic thresholds in scenarios 1 and 2. Then, we
estimated the basis risk of these calculations. In this case,
basis risk could arise if the estimated distribution does not fit
properly with the distribution observed from measured data.

We found that the basis risk for this estimation is negligi-
ble, according to the adjusted R2 shown in Fig. 6a–c. There-
fore, we can confidently use these estimations for determin-
ing the event proportion that reached the physiological and
economic thresholds, i.e. the occurrence probability of ex-
treme events that warrant compensation.

3.5 Indemnity calculation

The indemnity for farms that reach the physiological thresh-
old in scenario 1 is reported in Table 7. These values show
us the deficit (negative numbers) that farmers face for re-
covering their production costs when their crop yield falls
below the break-even point in each AHZ (f7 and f15) and
cantonal zone. The indemnity would make up the difference
between crop costs and revenue in the case of an extreme
event. In f7 the indemnity would be USD 38 ha−1, meaning
that when a farmer reaches the physiological threshold, they
only lack USD 38 ha−1 for covering their production cost. A
farmer from this scenario could dispense with the insurance
contract, because the deficit to hit the break-even point is not
representative. On the contrary, when f15 reaches the phys-
iological threshold, its deficit is very high (USD 645 ha−1),
which is the money that an f15’s policyholder would receive
as compensation in the case of an extreme event occurrence.

For scenario 2 of the physiological threshold, the indem-
nity would be USD 275 ha−1 for all AHZs (f7 and f15) and
for cantonal zones, due to having the same production cost
(USD 1259 ha−1). As was mentioned before, in Ecuador, cur-
rently, agricultural conventional insurance exists that covers
the rice growers’ working capital; but we included this cal-
culation as an alternative to conventional insurance or for the
areas where conventional insurance is not feasible.

When looking at the economic threshold, as we can ob-
serve in Table 7, the indemnity (gross margin) in scenario 1 is
very similar between AHZs (f7 and f15) and cantonal zones
though their expected yields are different. This is because
their assigned production cost is compared with their ex-
pected yield. For example, since farmers have invested more
money in their crops in f15, their expected yield is higher.
Moreover, the difference in the premium price of these zones
will be determined by the different probability of extreme
event occurrence in each AHZ (f7 and f15) and cantonal
zone.

In scenario 2, on the other hand, we have assumed the
same production cost for f7 and f15; thus, f15 has higher ex-
pected yield in normal years than f7. Obviously, in this sce-
nario f15 obtains the highest gross margin (USD 1223 ha−1),
having also the highest compensation, which would be re-
flected in a higher premium cost. However, f7 has the lowest
insured amount (USD 640 ha−1), so its premium cost should
be low. But we have to consider that premium cost calcula-
tion also depends on the occurrence probability of the insured
event.
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Figure 4. Physiological threshold (red line) within generalized-
minimum extreme value (GEVmin) distribution of NDVI_ave;
(a) cantonal and (b) f7 and (c) f15 zones.

For the economic threshold, the indemnity calculation
(USD 840 ha−1) for cantonal zones is equal in both scenar-
ios 1 and 2, as shown in Table 7, because we used the same
weighted average as production cost (USD 1259 ha−1). For
f7 a higher gross margin is expected in scenario 1 than in
scenario 2 due to scenario 2’s production cost being higher.
On the contrary, for f15 the gross margin is higher in sce-
nario 2 than in scenario 1 because in scenario 2, f15 has a
lower production cost than in scenario 1.
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Figure 5. Economic threshold (red line) within generalized-minimum extreme value (GEVmin) distribution of NDVI_ave for differentiated
production cost (scenario 1) for (a) cantonal and agro-ecological homogeneous zones (c) f7 and (e) f15 and for non-differentiated production
cost (scenario 2) for (b) cantonal and agro-ecological homogeneous zones (d) f7 and (f) f15.

Table 5. Soil and climatic characteristics of agro-ecological homo-
geneous zones AHZs in Babahoyo.

Zone f7 Zone f15

Slope 0 %–5 % 5 %–12 %
Altitude 1–12 m 12–35 m
Clay > 50 % 35 %–50 %
Effective depth 50–100 cm > 100 cm
pH 5.6–6.5 6.6–7.4
Organic matter 2 %–4 % 2 %–4 %
Temperature 24–25 ◦C 24–25 ◦C
Precipitation 500–700 mm yr−1 700–900 mm yr−1

Soil classification∗ Typic Hapluderts Vertic Eutrudepts

Source: Valverde-Arias et al. (2019). ∗ According to USDA Soil Taxonomy (Soil
Survey Staff, 2014).

3.6 Premium determination

The premium value is related to the insured amount (the in-
demnity or compensation that insurance company must pay
to farmers when an insured extreme event occurs) and the
probability of the ensured extreme event occurring in a de-
termined period. Table 8 shows the net and commercial pre-
mium calculation for the two different thresholds under both
scenario 1 and scenario 2 and for each AHZ and at the can-
tonal level.

In general terms, it can be appreciated that premium cost
for economic thresholds are more expensive than that for the
physiological threshold in both scenarios (1 and 2). This is
because the insured amounts for the economic threshold are
higher than those for the physiological threshold. In the first
case, the compensation covers the entire lost profit, while in
the second one, the compensation covers only the deficit nec-
essary for recovering the investment (production cost).
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Figure 6. Frequency distribution of NDVI_ave values both observed in imagery data and estimated through GEVmin distribution in (a) f7,
(b) f15 and (c) cantonal zones.

Table 6. Z test for probability of events susceptible to compensation under physiological and economic thresholds in agro-ecological homo-
geneous zones (f7 and f15) and cantonal zones.

Type of threshold Observations Positive Probability Critical rate Z test
events

Non-differentiated Physiological threshold cantonal 31 756 6669 0.21 Z ≤ z_0.025=−1.96
production cost and Physiological threshold f7 13 498 3375 0.25 Z ≥ z_0.975= 1.96 18.06
differentiated Physiological threshold f15 18 258 3041 0.17
production cost

Differentiated Economic threshold cantonal 31 756 9209 0.29 Z ≤ z_0.025=−1.96
production cost Economic threshold f7 13 498 3510 0.26 Z ≥ z_0.975= 1.96 −21.35
(scenario 1) Economic threshold f15 18 258 6756 0.37

Non-differentiated Economic threshold cantonal 31 756 9209 0.29 Z ≤ z_0.025=−1.96
production cost Economic threshold f7 13 498 4320 0.32 Z ≥ z_0.975= 1.96 13.59
(scenario 2) Economic threshold f15 18 258 4565 0.25

If the insured amounts are similar among AHZs (f7 and
f15) and cantonal zones, the difference among premium costs
is determined by the occurrence probability. However, when
there are sharp differences among insured amounts of AHZs
(f7 and f15) and cantonal zones, these influence the premium
cost variation more than the occurrence probability.

Moreover, for the physiological threshold in scenario 1,
the premium cost is determined mainly by the insured
amount; for instance, for f15 the premium cost is the high-
est (USD 136.98 ha−1) despite its occurrence probability be-
ing the lowest. On the contrary, for f7 the premium cost is
very low, despite having the highest occurrence probability,
because of having a greater insured amount.

While under the economic threshold in scenario 1,
the insured amount of AHZs (f7 and f15) and cantonal
zones are similar, the premium cost for f15 is the high-
est (USD 394.66 ha−1) due to having the highest occurrence
probability.

When costs are not differentiated across AHZ (scenario 2),
for the physiological threshold the insured amount is equal
in all AHZs (f7 and f15) and cantonal zones, and thus their
premium cost has been differentiated through the occurrence
probability, which is the highest for f7 (USD 85.82 ha−1). In
the same scenario, the economic threshold f15 has the high-
est gross margin and therefore a high insured amount despite
its low occurrence probability (0.25). It has a high premium
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Table 7. Indemnity calculation for physiological and economic thresholds, for each AHZ (f7 and f15) and cantonal zone, both in scenario 1
and 2.

Expected Price Gross Production Gross margin Production Gross margin
yielda (USD t−1) incomes cost scenario 1 scenario 1 cost scenario 2 scenario 2

(t ha−1) (USD ha−1) (USD ha−1)b (USD ha−1) (USD ha−1)c (USD ha−1)

Physiological threshold

Cantonal 2.65 371.50 984.4 1259 −274.62 1259 −274.62
f7 2.65 371.50 984.4 1022 −37.62 1259 −274.62
f15 2.65 371.50 984.4 1629 −644.62 1259 −274.62

Economic threshold

Cantonal 5.65 371.50 2099 1259 840.21 1259 840.21
f7 5.11 371.50 1899 1022 877.28 1259 640.28
f15 6.68 371.50 2482 1629 853.31 1259 1223.32

a Yield at physiological threshold; for economic threshold it is the yield reached in regular years. b Differentiated production cost. c Non-differentiated
production cost.

Table 8. Calculation of commercial premium rate for physiological and economic thresholds in scenarios 1 and 2 and for AHZs (f7 and f15)
and cantonal zones.

Threshold Zone Threshold Insured Occurrence Net Commercial Production Compensation Compensation
type value amount probability premium premium cost+ to a policyholder to a policyholder

(USD ha−1) of IEE cost cost subsidized of a farm
(USD ha−1) (USD ha−1) premium cost (USD ha−1)∗ of 20 ha (USD)∗

(USD ha−1)

Scenario 1 (differentiated production cost)

Physiological
Cantonal 0.40 274.62 0.21 57.67 72.09 1287.83 245.78 4915.68
f7 0.40 37.62 0.25 9.4 11.76 1026.70 32.92 658.32
f15 0.40 644.62 0.17 109.59 136.98 1683.79 589.83 11 796.56

Economic
Cantonal 0.43 840.21 0.29 243.66 304.58 1380.83 718.38 14 367.56
f7 0.41 877.28 0.26 228.09 285.12 1136.05 763.23 15 264.64
f15 0.47 853.31 0.37 315.73 394.66 1786.86 695.45 13 908.92

Scenario 2 (non-differentiated production cost)

Physiological
Cantonal 0.40 274.62 0.21 57.67 72.09 1287.83 245.78 4915.68
f7 0.40 274.62 0.25 68.65 85.82 1293.33 240.29 4805.84
f15 0.40 274.62 0.17 46.68 58.36 1282.34 251.28 5025.52

Economic
Cantonal 0.43 840.21 0.29 243.66 304.58 1380.83 718.38 14 367.56
f7 0.43 640.28 0.32 204.89 256.11 1361.44 537.84 10 756.72
f15 0.43 1223.32 0.25 305.83 382.29 1411.91 1070.40 21 408.08

∗ In a year when an ensured extreme event (drought and flood) occurs, 20 ha is the average size of a rice farm in Ecuador.

price (USD 382.29 ha−1), but it is lower than in scenario 1
(USD 394.66 ha−1), where the occurrence probability is the
highest (0.37).

As it can be seen in Table 8, after we divided the study area
through the AHZ map into f7 and f15 zones, we can perform
more accurate calculations and reduce basis risk of the pre-
mium costs according to the expected yield, insured amount
and occurrence probability of each AHZ (f7 and f15). This
means that by differentiating the study area through AHZs,
we can design an accurate insurance policy where farmers
from each zone pay a premium that corresponds to the risk
that they are facing. To illustrate this, for the physiologi-
cal threshold in scenario 1, if we do not divide Babahoyo

through AHZs and instead use cantonal zones as IIA, an
average Babahoyo producer (≈ 20 ha) from f15 would pay
only USD 72.09 ha−1 as an insurance premium. But if an ex-
treme event occurs, they would receive only USD 4915.68 as
compensation, which is less than half of the actual loss in a
year that an extreme event occurs (USD 11 796.56). At the
same time, for the same threshold and scenario, farms from
f7 would pay a much lower premium (USD 11.76 ha−1) and
in the case of disaster receive a small compensation which
is adjusted to the actual losses experienced by the farmers.
This can be of great relevance, as if we assume that farms in
f7 are non-technical production systems that achieve lower
yields and get lower economic returns, providing access to
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affordable insurance with fair premium prices may impor-
tantly contribute to expanding insurance uptake and reducing
socio-economic vulnerability substantially in this area.

Though the price of the premium could be expensive for
some farmers, we must consider that this insurance will cover
both of the most frequent and intense extreme events that af-
fect Babahoyo (drought and flood). For example, for the eco-
nomic threshold in scenario 1, the premium cost without sub-
sidy would reach 22 % of the total production cost of a poli-
cyholder of f7 and 20 % for f15. This means that subsidizing
premium cost may still be necessary in order to incentivise
taking the insurance contract (Garrido and Zilberman, 2008;
Yuanchang and Jiyu, 2010), and the government subsidy of
60 % of the premium cost that is currently offered in Ecuador
with the conventional insurance would still be required.

Furthermore, if the government would apply prevention
policies to promote farm modernization, farmer technical
training and civil works, the occurrence probability of ex-
treme events could be reduced or at least mitigated. For in-
stance, dams and irrigation infrastructure could improve the
risk status of Babahoyo’s farmers facing drought and floods.
Consequently, it could be reflected in an insurance premium
price reduction.

4 Conclusions

Floods and droughts are a major threat for rice production
in Ecuador that undermines food security and endangers the
sustainability of rural livelihoods in many areas of the coun-
try. Risk management mechanisms, such as agricultural in-
surance, may play an important role in stabilizing production
and contributing to reducing the vulnerability of rice farm-
ers. In this context, IBI is a promising tool that facilitates the
implementation of agricultural insurance and reduces oper-
ational and transaction costs. However, basis risk may lead
to inadequate premium prices and to unfair indemnity calcu-
lations and payment. To avoid this, the identification of an
adequate index and proper knowledge of variability within
the IIA are crucial.

In this research, we developed an IBI based on NDVI_ave
that accounts for variability across the insured area. For this,
we considered AHZs to be the starting point for risk assess-
ment and indemnity calculation and compared them with the
insurance design at the cantonal level. Two levels of climatic
impact over rice cultivation have been identified. The first
one is the physiological impact that is determined by a phys-
iological threshold in that when a climatic event is extreme,
its policy contract will cover losses related to the rice grow-
ers’ working capital. The second level is the economic impact
when the climatic event is moderate, and its policy will cover
the crops’ gross margin.

The results of the analysis presented evidence that the two
AHZs show significantly different risk profiles for physio-
logical and economic thresholds. Therefore, the design of

differentiated premium calculation based on the risk status
and insured amount of each AHZ (f7 and f15) will facilitate
farmers paying a fair insurance premium. This insurance pre-
mium would be as consistent as possible with their risk status
and would help them receive compensation that effectively
covers the totality of their losses.

The basis risk arising from modelling the risk frequency
of drought and flood events in Babahoyo (cantonal) and in
AHZs (f7 and f15) through GEVmin distribution is negligi-
ble. The basis risk associated with the spatial heterogeneity
of Babahoyo has been reduced in our IBI design. We have ac-
complished this by dividing this canton into f7 and f15 homo-
geneous zones, which have a significant different risk status,
have different expected yields and may have also different
production costs. Considering that all these factors and the
two different impact levels in the IBI design have allowed
setting up a fair premium, this reduces, in this way, the pos-
sible bias caused by not taking Babahoyo variability into ac-
count.

The cost for contracting an insurance policy could be ex-
pensive in some cases. However, the fact that this kind of in-
surance is generally partially subsidized by the government
in developing countries (like Ecuador) could make this insur-
ance affordable to farmers. Moreover, even if the premium
price may be high, the index design guarantees policyhold-
ers that the premium price is fair and proportional to the risk
they are facing.

The implementation of IBI for rice crops in Babahoyo
could let the Ecuadorian government respond efficiently and
rapidly in the case of an extreme climatic event, paying
compensation faster than with the conventional insurance. It
could stabilize rice-producer incomes and reduce small farm-
ers’ vulnerability by providing access to insurance through
premium and indemnities adjusted to the specific risk and
technology conditions. Consequently, it can incentivise rice
cultivation to the desirable levels for covering national de-
mand ensuring food security of Ecuador.

Finally, it is worth mentioning that even if the IBI has
been defined for rice crops in a particular area, the method-
ology applied for developing such an insurance scheme can
be applied for other crops and regions if the data for defining
AHZs, NDVI distributions, crop yield and cost production
are available. This is, therefore, a promising approach for
defining IBI schemes that minimizes basis risk, which can
importantly profit from current advances in remote sensing,
satellite imagery and improved information systems.
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