Articles | Volume 20, issue 11
https://doi.org/10.5194/nhess-20-2997-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-20-2997-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Are flood damage models converging to “reality”? Lessons learnt from a blind test
Daniela Molinari
CORRESPONDING AUTHOR
Department of Civil and Environmental Engineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
Anna Rita Scorzini
CORRESPONDING AUTHOR
Department of Civil, Environmental and Architectural Engineering, University of L'Aquila, Via Gronchi 18, 67100 L'Aquila, Italy
Chiara Arrighi
Department of Civil and Environmental Engineering, University of Florence, Piazza San Marco 4, 50121 Florence, Italy
Francesca Carisi
Department of Civil, Chemical, Environmental and Material Engineering, University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy
Fabio Castelli
Department of Civil and Environmental Engineering, University of Florence, Piazza San Marco 4, 50121 Florence, Italy
Alessio Domeneghetti
Department of Civil, Chemical, Environmental and Material Engineering, University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy
Alice Gallazzi
Department of Civil and Environmental Engineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
Marta Galliani
Department of Civil and Environmental Engineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
Frédéric Grelot
G-EAU, Univ Montpellier, AgroParisTech, CIRAD, IRD, INRAE, Montpellier SupAgro, Montpellier, France
Patric Kellermann
GFZ German Research Centre for Geosciences, Section Hydrology, Telegrafenberg, 14473 Potsdam, Germany
Heidi Kreibich
GFZ German Research Centre for Geosciences, Section Hydrology, Telegrafenberg, 14473 Potsdam, Germany
Guilherme S. Mohor
Institute of Environmental Science and Geography, University of Potsdam, Karl-Liebknecht-Strasse 24–25, 14476 Potsdam, Germany
Markus Mosimann
Institute of Geography, Mobiliar Lab for Natural Risks, Oeschger Centre for Climate Change Research, University of Bern, Hallerstrasse 12, 3012 Bern, Switzerland
Stephanie Natho
Institute of Environmental Science and Geography, University of Potsdam, Karl-Liebknecht-Strasse 24–25, 14476 Potsdam, Germany
Claire Richert
G-EAU, Univ Montpellier, AgroParisTech, CIRAD, IRD, INRAE, Montpellier SupAgro, Montpellier, France
Kai Schroeter
GFZ German Research Centre for Geosciences, Section Hydrology, Telegrafenberg, 14473 Potsdam, Germany
Annegret H. Thieken
Institute of Environmental Science and Geography, University of Potsdam, Karl-Liebknecht-Strasse 24–25, 14476 Potsdam, Germany
Andreas Paul Zischg
Institute of Geography, Mobiliar Lab for Natural Risks, Oeschger Centre for Climate Change Research, University of Bern, Hallerstrasse 12, 3012 Bern, Switzerland
Francesco Ballio
Department of Civil and Environmental Engineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
Related authors
Sara Rrokaj, Chiara Arrighi, Marta Ballocci, Gabriele Bertoli, Francesca da Porto, Claudia De Lucia, Mario Di Bacco, Paola Di Fluri, Alessio Domeneghetti, Marco Donà, Alice Gallazzi, Andrea Gennaro, Gianluca Lelli, Sara Mozzon, Natasha Petruccelli, Elisa Saler, Anna Rita Scorzini, Simone Sterlacchini, Gaia Treglia, Debora Voltolina, Marco Zazzeri, and Daniela Molinari
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-358, https://doi.org/10.5194/essd-2025-358, 2025
Preprint under review for ESSD
Short summary
Short summary
Flood damage data are key to understanding territorial risks and supporting the design of mitigation measures. However, such data are scarce, and the available ones often lack a high level of detail. We conducted a field survey of residential, commercial, and industrial buildings affected by the record-breaking flood event that hit Italy’s Marche region in 2022. The resulting datasets cover 256 assets and include detailed information on damage, building features, and mitigation measures.
Pradeep Acharya, Mario Di Bacco, Daniela Molinari, and Anna Rita Scorzini
EGUsphere, https://doi.org/10.5194/egusphere-2025-1413, https://doi.org/10.5194/egusphere-2025-1413, 2025
Short summary
Short summary
INSYDE-content is a novel probabilistic model designed to estimate flood damage to household items with a component-based approach. By incorporating multiple variables and addressing uncertainties, the model enables more comprehensive and insightful damage assessments by accounting for an often-overlooked asset
Marta Ballocci, Daniela Molinari, Giovanni Marin, Marta Galliani, Alessio Domeneghetti, Giovanni Menduni, Simone Sterlacchini, and Francesco Ballio
EGUsphere, https://doi.org/10.5194/egusphere-2024-3017, https://doi.org/10.5194/egusphere-2024-3017, 2024
Short summary
Short summary
This study estimates flood direct damage to businesses in Italy using 812 damage records from five riverine flood case studies. A multiple regression model predicts economic damage based on business size, water depth, and economic sectors. The results show that damage increases non-proportionally with firm size, while water depth mainly affects stock damage. Healthcare, commercial, and manufacturing sectors are most vulnerable to building, stock, and equipment damage, respectively.
Cristina Prieto, Dhruvesh Patel, Dawei Han, Benjamin Dewals, Michaela Bray, and Daniela Molinari
Nat. Hazards Earth Syst. Sci., 24, 3381–3386, https://doi.org/10.5194/nhess-24-3381-2024, https://doi.org/10.5194/nhess-24-3381-2024, 2024
Mario Di Bacco, Daniela Molinari, and Anna Rita Scorzini
Nat. Hazards Earth Syst. Sci., 24, 1681–1696, https://doi.org/10.5194/nhess-24-1681-2024, https://doi.org/10.5194/nhess-24-1681-2024, 2024
Short summary
Short summary
INSYDE 2.0 is a tool for modelling flood damage to residential buildings. By incorporating ultra-detailed survey and desk-based data, it improves the reliability and informativeness of damage assessments while addressing input data uncertainties.
Natasha Petruccelli, Luca Mantecchini, Alice Gallazzi, Daniela Molinari, Mohammed Hammouti, Marco Zazzeri, Simone Sterlacchini, Francesco Ballio, Armando Brath, and Alessio Domeneghetti
Proc. IAHS, 385, 407–413, https://doi.org/10.5194/piahs-385-407-2024, https://doi.org/10.5194/piahs-385-407-2024, 2024
Short summary
Short summary
The study illustrates the methodology developed for flood risk assessment for road and railway infrastructures. Through the creation of a detailed database, using different data sources, and the definition of a risk matrix, a risk level (High, Medium, Low and Null) is assigned to each section, considering the physical and functional characteristics of the infrastructure, as well as its relevance and the magnitude of the expected event.
Panagiotis Asaridis and Daniela Molinari
Adv. Geosci., 61, 1–21, https://doi.org/10.5194/adgeo-61-1-2023, https://doi.org/10.5194/adgeo-61-1-2023, 2023
Short summary
Short summary
This paper presents a conceptual model for the estimation of flood damage to power grids and reviews the available methodologies, to better understand current modelling approaches, challenges, and limitations. The model adopts an interdisciplinary and multi-scale evaluation approach to handle the complex damage mechanisms and capture the cascading effects. In doing so, it adapts to different geographical and economic contexts, allowing stakeholders to implement comprehensive damage assessments.
Tommaso Simonelli, Laura Zoppi, Daniela Molinari, and Francesco Ballio
Nat. Hazards Earth Syst. Sci., 22, 1819–1823, https://doi.org/10.5194/nhess-22-1819-2022, https://doi.org/10.5194/nhess-22-1819-2022, 2022
Short summary
Short summary
The paper discusses challenges (and solutions) emerged during a collaboration among practitioners, stakeholders, and scientists in the definition of flood damage maps in the Po River District. Social aspects were proven to be fundamental components of the risk assessment; variety of competences in the working group was key in finding solutions and revealing weaknesses of intermediate proposals. This paper finally highlights the need of duplicating such an experience at a broader European level.
Anna Rita Scorzini, Benjamin Dewals, Daniela Rodriguez Castro, Pierre Archambeau, and Daniela Molinari
Nat. Hazards Earth Syst. Sci., 22, 1743–1761, https://doi.org/10.5194/nhess-22-1743-2022, https://doi.org/10.5194/nhess-22-1743-2022, 2022
Short summary
Short summary
This study presents a replicable procedure for the adaptation of synthetic, multi-variable flood damage models among countries that may have different hazard and vulnerability features. The procedure is exemplified here for the case of adaptation to the Belgian context of a flood damage model, INSYDE, for the residential sector, originally developed for Italy. The study describes necessary changes in model assumptions and input parameters to properly represent the new context of implementation.
Animesh K. Gain, Yves Bühler, Pascal Haegeli, Daniela Molinari, Mario Parise, David J. Peres, Joaquim G. Pinto, Kai Schröter, Ricardo M. Trigo, María Carmen Llasat, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 22, 985–993, https://doi.org/10.5194/nhess-22-985-2022, https://doi.org/10.5194/nhess-22-985-2022, 2022
Short summary
Short summary
To mark the 20th anniversary of Natural Hazards and Earth System Sciences (NHESS), an interdisciplinary and international journal dedicated to the public discussion and open-access publication of high-quality studies and original research on natural hazards and their consequences, we highlight 11 key publications covering major subject areas of NHESS that stood out within the past 20 years.
Marta Galliani, Daniela Molinari, and Francesco Ballio
Nat. Hazards Earth Syst. Sci., 20, 2937–2941, https://doi.org/10.5194/nhess-20-2937-2020, https://doi.org/10.5194/nhess-20-2937-2020, 2020
Short summary
Short summary
INSYDE is a multivariable synthetic model for flood damage assessment of dwellings. The analysis and use of this model highlighted some weaknesses, linked to its complexity, that can undermine its usability and correct implementation. This study proposes a simplified version of INSYDE which maintains its multivariable and synthetic nature but has simpler mathematical formulations permitting an easier use and a direct analysis of the relation between damage and its explanatory variables.
Lisa Dillenardt and Annegret H. Thieken
Nat. Hazards Earth Syst. Sci., 25, 3257–3278, https://doi.org/10.5194/nhess-25-3257-2025, https://doi.org/10.5194/nhess-25-3257-2025, 2025
Short summary
Short summary
The influence of flood types, i.e., fluvial, flash, and urban pluvial floods, on whether and how flood-affected people prepare for flooding is unclear but relevant for effective risk communication. Survey data revealed the influence of flood type on the adaptive behavior of households recently affected by flooding. Most respondents were motivated to protect themselves, but flood-type-specific differences have been identified to enhance future risk communication strategies.
Kai Schröter, Pia-Johanna Schweizer, Benedikt Gräler, Lydia Cumiskey, Sukaina Bharwani, Janne Parviainen, Chahan M. Kropf, Viktor Wattin Håkansson, Martin Drews, Tracy Irvine, Clarissa Dondi, Heiko Apel, Jana Löhrlein, Stefan Hochrainer-Stigler, Stefano Bagli, Levente Huszti, Christopher Genillard, Silvia Unguendoli, Fred Hattermann, and Max Steinhausen
Nat. Hazards Earth Syst. Sci., 25, 3055–3073, https://doi.org/10.5194/nhess-25-3055-2025, https://doi.org/10.5194/nhess-25-3055-2025, 2025
Short summary
Short summary
With the increasing negative impacts of extreme weather events globally, it is crucial to align efforts to manage disasters with measures to adapt to climate change. We identify challenges in systems and organizations working together. We suggest that collaboration across various fields is essential and propose an approach to improve collaboration, including a framework for better stakeholder engagement and an open-source data system that helps gather and connect important information.
Kasra Rafiezadeh Shahi, Nivedita Sairam, Lukas Schoppa, Le Thanh Sang, Do Ly Hoai Tan, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 25, 2845–2861, https://doi.org/10.5194/nhess-25-2845-2025, https://doi.org/10.5194/nhess-25-2845-2025, 2025
Short summary
Short summary
Ho Chi Minh City (HCMC) faces severe flood risks from climatic and socio-economic changes, requiring effective adaptation solutions. Flood loss estimation is crucial, but advanced probabilistic models accounting for key drivers and uncertainty are lacking. This study presents a probabilistic flood loss model with a feature selection paradigm for HCMC’s residential sector. Experiments using new survey data from flood-affected households demonstrate the model's superior performance.
Timothy Tiggeloven, Colin Raymond, Marleen C. de Ruiter, Jana Sillmann, Annegret H. Thieken, Sophie L. Buijs, Roxana Ciurean, Emma Cordier, Julia M. Crummy, Lydia Cumiskey, Kelley De Polt, Melanie Duncan, Davide M. Ferrario, Wiebke S. Jäger, Elco E. Koks, Nicole van Maanen, Heather J. Murdock, Jaroslav Mysiak, Sadhana Nirandjan, Benjamin Poschlod, Peter Priesmeier, Nivedita Sairam, Pia-Johanna Schweizer, Tristian R. Stolte, Marie-Luise Zenker, James E. Daniell, Alexander Fekete, Christian M. Geiß, Marc J. C. van den Homberg, Sirkku K. Juhola, Christian Kuhlicke, Karen Lebek, Robert Šakić Trogrlić, Stefan Schneiderbauer, Silvia Torresan, Cees J. van Westen, Judith N. Claassen, Bijan Khazai, Virginia Murray, Julius Schlumberger, and Philip J. Ward
EGUsphere, https://doi.org/10.5194/egusphere-2025-2771, https://doi.org/10.5194/egusphere-2025-2771, 2025
This preprint is open for discussion and under review for Geoscience Communication (GC).
Short summary
Short summary
Natural hazards like floods, earthquakes, and landslides are often interconnected which may create bigger problems than when they occur alone. We studied expert discussions from an international conference to understand how scientists and policymakers can better prepare for these multi-hazards and use new technologies to protect its communities while contributing to dialogues about future international agreements beyond the Sendai Framework and supporting global sustainability goals.
Anna Buch, Dominik Paprotny, Kasra Rafiezadeh Shahi, Heidi Kreibich, and Nivedita Sairam
Nat. Hazards Earth Syst. Sci., 25, 2437–2453, https://doi.org/10.5194/nhess-25-2437-2025, https://doi.org/10.5194/nhess-25-2437-2025, 2025
Short summary
Short summary
Many households in Vietnam depend on revenue from micro-businesses (shop houses). However, losses caused by regular flooding are not modelled. Business turnover, building age, and water depth were found to be the main drivers of flood losses of micro-businesses. We built and validated probabilistic models (non-parametric Bayesian networks) that estimate flood losses of micro-businesses. The results help with flood risk management and adaption decision making for micro-businesses.
Sara Rrokaj, Chiara Arrighi, Marta Ballocci, Gabriele Bertoli, Francesca da Porto, Claudia De Lucia, Mario Di Bacco, Paola Di Fluri, Alessio Domeneghetti, Marco Donà, Alice Gallazzi, Andrea Gennaro, Gianluca Lelli, Sara Mozzon, Natasha Petruccelli, Elisa Saler, Anna Rita Scorzini, Simone Sterlacchini, Gaia Treglia, Debora Voltolina, Marco Zazzeri, and Daniela Molinari
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-358, https://doi.org/10.5194/essd-2025-358, 2025
Preprint under review for ESSD
Short summary
Short summary
Flood damage data are key to understanding territorial risks and supporting the design of mitigation measures. However, such data are scarce, and the available ones often lack a high level of detail. We conducted a field survey of residential, commercial, and industrial buildings affected by the record-breaking flood event that hit Italy’s Marche region in 2022. The resulting datasets cover 256 assets and include detailed information on damage, building features, and mitigation measures.
Thi Dieu My Pham, Paul Hudson, Annegret H. Thieken, and Philip Bubeck
EGUsphere, https://doi.org/10.5194/egusphere-2025-3021, https://doi.org/10.5194/egusphere-2025-3021, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
Experiencing severe flooding and COVID-19 together adversely affects mental health. A 2020 survey in Vietnam found that 20 % of participants experienced mental distress, whereas 80 % did not. Flood risk factors include livelihood difficulties, seeing dead human bodies, and being rescued; COVID-19 stressors relate to individual health impacts and interrupted education. These findings highlight the need to address health risks from multiple sources and provide more support for at-risk communities.
Shahin Khosh Bin Ghomash, Heiko Apel, Kai Schröter, and Max Steinhausen
Nat. Hazards Earth Syst. Sci., 25, 1737–1749, https://doi.org/10.5194/nhess-25-1737-2025, https://doi.org/10.5194/nhess-25-1737-2025, 2025
Short summary
Short summary
This work introduces RIM2D (Rapid Inundation Model 2D), a hydrodynamic model for precise and rapid flood predictions that is ideal for early warning systems. We demonstrate RIM2D's ability to deliver detailed and localized flood forecasts using the June 2023 flood in Braunschweig, Germany, as a case study. This research highlights the readiness of RIM2D and the required hardware for integration into operational flood warning and impact-based forecasting systems.
Pradeep Acharya, Mario Di Bacco, Daniela Molinari, and Anna Rita Scorzini
EGUsphere, https://doi.org/10.5194/egusphere-2025-1413, https://doi.org/10.5194/egusphere-2025-1413, 2025
Short summary
Short summary
INSYDE-content is a novel probabilistic model designed to estimate flood damage to household items with a component-based approach. By incorporating multiple variables and addressing uncertainties, the model enables more comprehensive and insightful damage assessments by accounting for an often-overlooked asset
André Felipe Rocha Silva, Julian Cardoso Eleutério, Heiko Apel, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 25, 1501–1520, https://doi.org/10.5194/nhess-25-1501-2025, https://doi.org/10.5194/nhess-25-1501-2025, 2025
Short summary
Short summary
This work uses agent-based modelling to evaluate the impact of flood warning and evacuation systems on human losses during the 2021 Ahr Valley flood in Germany. While the first flood warning with evacuation instructions is identified as timely, its lack of detail and effectiveness resulted in low public risk awareness. Better dissemination of warnings and improved risk perception and preparedness among the population could reduce casualties by up to 80 %.
Ravi Kumar Guntu, Guilherme Samprogna Mohor, Annegret H. Thieken, Meike Müller, and Heidi Kreibich
EGUsphere, https://doi.org/10.5194/egusphere-2025-1715, https://doi.org/10.5194/egusphere-2025-1715, 2025
Short summary
Short summary
The 2021 flood in Germany caused severe damage to companies, with over half reporting losses above €100,000. Using probabilistic models, we identify key factors driving direct damage and business interruption. Water depth, flow velocity and company exposure were key factors, but preparedness played a crucial role. Companies that took good precaution recovered faster. Our findings stress the value of early warnings and risk communication to reduce damage from unprecedented flood events.
Apoorva Singh, Ravi Kumar Guntu, Nivedita Sairam, Kasra Rafiezadeh Shahi, Anna Buch, Melanie Fischer, Chandrika Thulaseedharan Dhanya, and Heidi Kreibich
EGUsphere, https://doi.org/10.5194/egusphere-2025-1512, https://doi.org/10.5194/egusphere-2025-1512, 2025
Short summary
Short summary
We develop novel probabilistic models to estimate flash flood losses of companies and households in Germany. Using multiple flash flood events, we identify key drivers of flash floods loss. FLEMO flash model reveals that for companies, the effectiveness of emergency measures is crucial in mitigating losses. In contrast, household benefit more from knowledge about emergency response, suggesting that enhancing preparedness can effectively reduce flash flood losses.
Tim Busker, Daniela Rodriguez Castro, Sergiy Vorogushyn, Jaap Kwadijk, Davide Zoccatelli, Rafaella Loureiro, Heather J. Murdock, Laurent Pfister, Benjamin Dewals, Kymo Slager, Annegret H. Thieken, Jan Verkade, Patrick Willems, and Jeroen C. J. H. Aerts
EGUsphere, https://doi.org/10.5194/egusphere-2025-828, https://doi.org/10.5194/egusphere-2025-828, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
In July 2021, the Netherlands, Luxembourg, Germany, and Belgium were hit by an extreme flood event with over 200 fatalities. Our study provides, for the first time, critical insights into the operational flood early-warning systems in this entire region. Based on 13 expert interviews, we conclude that the systems strongly improved in all countries. Interviewees stressed the need for operational impact-based forecasts, but emphasized that its operational implementation is challenging.
Christophe Lienert, Andreas Paul Zischg, Horst Kremers, Jamie McCaughey, Lara Zinkl, and David N. Bresch
Abstr. Int. Cartogr. Assoc., 9, 1, https://doi.org/10.5194/ica-abs-9-1-2025, https://doi.org/10.5194/ica-abs-9-1-2025, 2025
Sarah Lindenlaub, Guilherme Samprogna Mohor, and Annegret Thieken
Abstr. Int. Cartogr. Assoc., 9, 22, https://doi.org/10.5194/ica-abs-9-22-2025, https://doi.org/10.5194/ica-abs-9-22-2025, 2025
Markus Mosimann, Martina Kauzlaric, Olivia Martius, and Andreas Paul Zischg
Abstr. Int. Cartogr. Assoc., 9, 26, https://doi.org/10.5194/ica-abs-9-26-2025, https://doi.org/10.5194/ica-abs-9-26-2025, 2025
Maurice W. M. L. Kalthof, Jens de Bruijn, Hans de Moel, Heidi Kreibich, and Jeroen C. J. H. Aerts
Nat. Hazards Earth Syst. Sci., 25, 1013–1035, https://doi.org/10.5194/nhess-25-1013-2025, https://doi.org/10.5194/nhess-25-1013-2025, 2025
Short summary
Short summary
Our study explores how farmers in India's Bhima basin respond to consecutive droughts. We simulated farmers' individual choices – like changing crops or digging wells – and their effects on profits, yields, and water resources. Results show these adaptations, while improving incomes, ultimately increase drought vulnerability and damage. Such insights emphasize the need for alternative adaptations and highlight the value of socio-hydrological models in shaping policies to lessen drought impacts.
Nadja Veigel, Heidi Kreibich, Jens A. de Bruijn, Jeroen C. J. H. Aerts, and Andrea Cominola
Nat. Hazards Earth Syst. Sci., 25, 879–891, https://doi.org/10.5194/nhess-25-879-2025, https://doi.org/10.5194/nhess-25-879-2025, 2025
Short summary
Short summary
This study explores how social media, specifically Twitter (X), can help us understand public reactions to floods in Germany from 2014 to 2021. Using large language models, we extract topics and patterns of behavior from flood-related tweets. The findings offer insights to improve communication and disaster management. Topics related to low-impact flooding contain descriptive hazard-related content, while the focus shifts to catastrophic impacts and responsibilities during high-impact events.
Gabriele Bertoli, Chiara Arrighi, and Enrica Caporali
Nat. Hazards Earth Syst. Sci., 25, 565–580, https://doi.org/10.5194/nhess-25-565-2025, https://doi.org/10.5194/nhess-25-565-2025, 2025
Short summary
Short summary
Environmental assets are crucial to sustaining and fulfilling life on Earth via ecosystem services (ESs). Studying their flood risk is thus seminal, in addition to being required by several norms. However, this field is not yet adequately developed. We studied the exposure component of flood risk and developed an evaluating methodology based on the ESs provided by environmental assets to discern assets and areas that are more important than others with metrics suitable to large-scale studies.
Belinda Rhein and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 25, 581–589, https://doi.org/10.5194/nhess-25-581-2025, https://doi.org/10.5194/nhess-25-581-2025, 2025
Short summary
Short summary
In July 2021, flooding killed 190 people in Germany, 134 of them in the Ahr valley, making it the deadliest flood in recent German history. The flash flood was extreme in terms of water levels, flow velocities and flood extent, and early warning and evacuation were inadequate. Many died on the ground floor or in the street, with older and impaired individuals especially vulnerable. Clear warnings should urge people to seek safety rather than save belongings, and timely evacuations are essential.
Claudia De Lucia, Michele Amaddii, and Chiara Arrighi
Nat. Hazards Earth Syst. Sci., 24, 4317–4339, https://doi.org/10.5194/nhess-24-4317-2024, https://doi.org/10.5194/nhess-24-4317-2024, 2024
Short summary
Short summary
This work describes the flood damage to cultural heritage (CH) that occurred in September 2022 in central Italy. Datasets related to flood impacts on cultural heritage are rare, and this work aims at highlighting both tangible and intangible aspects and their correlation with physical characteristics of flood (i.e. water depth and flow velocity). The results show that current knowledge and datasets are inadequate for risk assessment of CH.
Marta Ballocci, Daniela Molinari, Giovanni Marin, Marta Galliani, Alessio Domeneghetti, Giovanni Menduni, Simone Sterlacchini, and Francesco Ballio
EGUsphere, https://doi.org/10.5194/egusphere-2024-3017, https://doi.org/10.5194/egusphere-2024-3017, 2024
Short summary
Short summary
This study estimates flood direct damage to businesses in Italy using 812 damage records from five riverine flood case studies. A multiple regression model predicts economic damage based on business size, water depth, and economic sectors. The results show that damage increases non-proportionally with firm size, while water depth mainly affects stock damage. Healthcare, commercial, and manufacturing sectors are most vulnerable to building, stock, and equipment damage, respectively.
Bruno Merz, Günter Blöschl, Robert Jüpner, Heidi Kreibich, Kai Schröter, and Sergiy Vorogushyn
Nat. Hazards Earth Syst. Sci., 24, 4015–4030, https://doi.org/10.5194/nhess-24-4015-2024, https://doi.org/10.5194/nhess-24-4015-2024, 2024
Short summary
Short summary
Flood risk assessments help us decide how to reduce the risk of flooding. Since these assessments are based on probabilities, it is hard to check their accuracy by comparing them to past data. We suggest a new way to validate these assessments, making sure they are practical for real-life decisions. This approach looks at both the technical details and the real-world situations where decisions are made. We demonstrate its practicality by applying it to flood emergency planning.
Cristina Prieto, Dhruvesh Patel, Dawei Han, Benjamin Dewals, Michaela Bray, and Daniela Molinari
Nat. Hazards Earth Syst. Sci., 24, 3381–3386, https://doi.org/10.5194/nhess-24-3381-2024, https://doi.org/10.5194/nhess-24-3381-2024, 2024
Cassiano Bastos Moroz and Annegret H. Thieken
Nat. Hazards Earth Syst. Sci., 24, 3299–3314, https://doi.org/10.5194/nhess-24-3299-2024, https://doi.org/10.5194/nhess-24-3299-2024, 2024
Short summary
Short summary
We evaluate the influence of urban processes on the impacts of the 2023 disaster that hit the North Coast of São Paulo, Brazil. The impacts of the disaster were largely associated with rapid urban expansion over the last 3 decades, with a recent occupation of risky areas. Moreover, lower-income neighborhoods were considerably more severely impacted, which evidences their increased exposure to such events. These results highlight the strong association between disaster risk and urban poverty.
Dominik Paprotny, Belinda Rhein, Michalis I. Vousdoukas, Paweł Terefenko, Francesco Dottori, Simon Treu, Jakub Śledziowski, Luc Feyen, and Heidi Kreibich
Hydrol. Earth Syst. Sci., 28, 3983–4010, https://doi.org/10.5194/hess-28-3983-2024, https://doi.org/10.5194/hess-28-3983-2024, 2024
Short summary
Short summary
Long-term trends in flood losses are regulated by multiple factors, including climate variation, population and economic growth, land-use transitions, reservoir construction, and flood risk reduction measures. Here, we reconstruct the factual circumstances in which almost 15 000 potential riverine, coastal and compound floods in Europe occurred between 1950 and 2020. About 10 % of those events are reported to have caused significant socioeconomic impacts.
Viet Dung Nguyen, Jeroen Aerts, Max Tesselaar, Wouter Botzen, Heidi Kreibich, Lorenzo Alfieri, and Bruno Merz
Nat. Hazards Earth Syst. Sci., 24, 2923–2937, https://doi.org/10.5194/nhess-24-2923-2024, https://doi.org/10.5194/nhess-24-2923-2024, 2024
Short summary
Short summary
Our study explored how seasonal flood forecasts could enhance insurance premium accuracy. Insurers traditionally rely on historical data, yet climate fluctuations influence flood risk. We employed a method that predicts seasonal floods to adjust premiums accordingly. Our findings showed significant year-to-year variations in flood risk and premiums, underscoring the importance of adaptability. Despite limitations, this research aids insurers in preparing for evolving risks.
Marie-Luise Zenker, Philip Bubeck, and Annegret H. Thieken
Nat. Hazards Earth Syst. Sci., 24, 2837–2856, https://doi.org/10.5194/nhess-24-2837-2024, https://doi.org/10.5194/nhess-24-2837-2024, 2024
Short summary
Short summary
Despite the visible flood damage, mental health is a growing concern. Yet, there is limited data in Germany on mental health impacts after floods. A survey in a heavily affected region revealed that 28 % of respondents showed signs of post-traumatic stress disorder 1 year later. Risk factors include gender, serious injury or illness due to flooding, and feeling left alone to cope with impacts. The study highlights the need for tailored mental health support for flood-affected populations.
Niklas Ebers, Kai Schröter, and Hannes Müller-Thomy
Nat. Hazards Earth Syst. Sci., 24, 2025–2043, https://doi.org/10.5194/nhess-24-2025-2024, https://doi.org/10.5194/nhess-24-2025-2024, 2024
Short summary
Short summary
Future changes in sub-daily rainfall extreme values are essential in various hydrological fields, but climate scenarios typically offer only daily resolution. One solution is rainfall generation. With a temperature-dependent rainfall generator climate scenario data were disaggregated to 5 min rainfall time series for 45 locations across Germany. The analysis of the future 5 min rainfall time series showed an increase in the rainfall extremes values for rainfall durations of 5 min and 1 h.
Mario Di Bacco, Daniela Molinari, and Anna Rita Scorzini
Nat. Hazards Earth Syst. Sci., 24, 1681–1696, https://doi.org/10.5194/nhess-24-1681-2024, https://doi.org/10.5194/nhess-24-1681-2024, 2024
Short summary
Short summary
INSYDE 2.0 is a tool for modelling flood damage to residential buildings. By incorporating ultra-detailed survey and desk-based data, it improves the reliability and informativeness of damage assessments while addressing input data uncertainties.
Natasha Petruccelli, Luca Mantecchini, Alice Gallazzi, Daniela Molinari, Mohammed Hammouti, Marco Zazzeri, Simone Sterlacchini, Francesco Ballio, Armando Brath, and Alessio Domeneghetti
Proc. IAHS, 385, 407–413, https://doi.org/10.5194/piahs-385-407-2024, https://doi.org/10.5194/piahs-385-407-2024, 2024
Short summary
Short summary
The study illustrates the methodology developed for flood risk assessment for road and railway infrastructures. Through the creation of a detailed database, using different data sources, and the definition of a risk matrix, a risk level (High, Medium, Low and Null) is assigned to each section, considering the physical and functional characteristics of the infrastructure, as well as its relevance and the magnitude of the expected event.
Seth Bryant, Heidi Kreibich, and Bruno Merz
Proc. IAHS, 386, 181–187, https://doi.org/10.5194/piahs-386-181-2024, https://doi.org/10.5194/piahs-386-181-2024, 2024
Short summary
Short summary
Our study found that simplifying data in flood risk models can introduce errors. We tested 344 damage functions and found errors up to 40 % of the total asset value. This means large-scale flood risk assessments may have significant errors due to the modelling approach. Our research highlights the need for more attention to data aggregation in flood risk models.
David Nortes Martinez, Frédéric Grelot, Cécile Choley, and Pascal Finaud-Guyot
Proc. IAHS, 385, 247–252, https://doi.org/10.5194/piahs-385-247-2024, https://doi.org/10.5194/piahs-385-247-2024, 2024
Short summary
Short summary
Classical hydraulic approaches of urban floods do not consider flow exchanges between streets and buildings, which might be introducing a bias in the estimation of property damage. Using coupled hydraulic-economic models we analyze the effect of considering porous buildings in the assessment of material damage at a district level. Our results show potentially significant differences in flood damage when using porous buildings in comparison with more classic approaches.
Chiara Arrighi and Alessio Domeneghetti
Nat. Hazards Earth Syst. Sci., 24, 673–679, https://doi.org/10.5194/nhess-24-673-2024, https://doi.org/10.5194/nhess-24-673-2024, 2024
Short summary
Short summary
In this communication, we reflect on environmental flood impacts by analysing the reported environmental consequences of the 2023 Emilia-Romagna floods. The most frequently reported damage involves water resources and water-related ecosystems. Indirect effects in time and space, intrinsic recovery capacity, cascade impacts on socio-economic systems, and the lack of established monitoring activities appear to be the most challenging aspects for future research.
Seth Bryant, Guy Schumann, Heiko Apel, Heidi Kreibich, and Bruno Merz
Hydrol. Earth Syst. Sci., 28, 575–588, https://doi.org/10.5194/hess-28-575-2024, https://doi.org/10.5194/hess-28-575-2024, 2024
Short summary
Short summary
A new algorithm has been developed to quickly produce high-resolution flood maps. It is faster and more accurate than current methods and is available as open-source scripts. This can help communities better prepare for and mitigate flood damages without expensive modelling.
Panagiotis Asaridis and Daniela Molinari
Adv. Geosci., 61, 1–21, https://doi.org/10.5194/adgeo-61-1-2023, https://doi.org/10.5194/adgeo-61-1-2023, 2023
Short summary
Short summary
This paper presents a conceptual model for the estimation of flood damage to power grids and reviews the available methodologies, to better understand current modelling approaches, challenges, and limitations. The model adopts an interdisciplinary and multi-scale evaluation approach to handle the complex damage mechanisms and capture the cascading effects. In doing so, it adapts to different geographical and economic contexts, allowing stakeholders to implement comprehensive damage assessments.
Heidi Kreibich, Kai Schröter, Giuliano Di Baldassarre, Anne F. Van Loon, Maurizio Mazzoleni, Guta Wakbulcho Abeshu, Svetlana Agafonova, Amir AghaKouchak, Hafzullah Aksoy, Camila Alvarez-Garreton, Blanca Aznar, Laila Balkhi, Marlies H. Barendrecht, Sylvain Biancamaria, Liduin Bos-Burgering, Chris Bradley, Yus Budiyono, Wouter Buytaert, Lucinda Capewell, Hayley Carlson, Yonca Cavus, Anaïs Couasnon, Gemma Coxon, Ioannis Daliakopoulos, Marleen C. de Ruiter, Claire Delus, Mathilde Erfurt, Giuseppe Esposito, Didier François, Frédéric Frappart, Jim Freer, Natalia Frolova, Animesh K. Gain, Manolis Grillakis, Jordi Oriol Grima, Diego A. Guzmán, Laurie S. Huning, Monica Ionita, Maxim Kharlamov, Dao Nguyen Khoi, Natalie Kieboom, Maria Kireeva, Aristeidis Koutroulis, Waldo Lavado-Casimiro, Hong-Yi Li, Maria Carmen LLasat, David Macdonald, Johanna Mård, Hannah Mathew-Richards, Andrew McKenzie, Alfonso Mejia, Eduardo Mario Mendiondo, Marjolein Mens, Shifteh Mobini, Guilherme Samprogna Mohor, Viorica Nagavciuc, Thanh Ngo-Duc, Huynh Thi Thao Nguyen, Pham Thi Thao Nhi, Olga Petrucci, Nguyen Hong Quan, Pere Quintana-Seguí, Saman Razavi, Elena Ridolfi, Jannik Riegel, Md Shibly Sadik, Nivedita Sairam, Elisa Savelli, Alexey Sazonov, Sanjib Sharma, Johanna Sörensen, Felipe Augusto Arguello Souza, Kerstin Stahl, Max Steinhausen, Michael Stoelzle, Wiwiana Szalińska, Qiuhong Tang, Fuqiang Tian, Tamara Tokarczyk, Carolina Tovar, Thi Van Thu Tran, Marjolein H. J. van Huijgevoort, Michelle T. H. van Vliet, Sergiy Vorogushyn, Thorsten Wagener, Yueling Wang, Doris E. Wendt, Elliot Wickham, Long Yang, Mauricio Zambrano-Bigiarini, and Philip J. Ward
Earth Syst. Sci. Data, 15, 2009–2023, https://doi.org/10.5194/essd-15-2009-2023, https://doi.org/10.5194/essd-15-2009-2023, 2023
Short summary
Short summary
As the adverse impacts of hydrological extremes increase in many regions of the world, a better understanding of the drivers of changes in risk and impacts is essential for effective flood and drought risk management. We present a dataset containing data of paired events, i.e. two floods or two droughts that occurred in the same area. The dataset enables comparative analyses and allows detailed context-specific assessments. Additionally, it supports the testing of socio-hydrological models.
Thulasi Vishwanath Harish, Nivedita Sairam, Liang Emlyn Yang, Matthias Garschagen, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 23, 1125–1138, https://doi.org/10.5194/nhess-23-1125-2023, https://doi.org/10.5194/nhess-23-1125-2023, 2023
Short summary
Short summary
Coastal Asian cities are becoming more vulnerable to flooding. In this study we analyse the data collected from flood-prone houses in Ho Chi Minh City to identify what motivates the households to adopt flood precautionary measures. The results revealed that educating the households about the available flood precautionary measures and communicating the flood protection measures taken by the government encourage the households to adopt measures without having to experience multiple flood events.
Annegret H. Thieken, Philip Bubeck, Anna Heidenreich, Jennifer von Keyserlingk, Lisa Dillenardt, and Antje Otto
Nat. Hazards Earth Syst. Sci., 23, 973–990, https://doi.org/10.5194/nhess-23-973-2023, https://doi.org/10.5194/nhess-23-973-2023, 2023
Short summary
Short summary
In July 2021 intense rainfall caused devastating floods in western Europe with 184 fatalities in the German federal states of North Rhine-Westphalia (NW) and Rhineland-Palatinate (RP), calling their warning system into question. An online survey revealed that 35 % of respondents from NW and 29 % from RP did not receive any warning. Many of those who were warned did not expect severe flooding, nor did they know how to react. The study provides entry points for improving Germany's warning system.
Alberto Caldas-Alvarez, Markus Augenstein, Georgy Ayzel, Klemens Barfus, Ribu Cherian, Lisa Dillenardt, Felix Fauer, Hendrik Feldmann, Maik Heistermann, Alexia Karwat, Frank Kaspar, Heidi Kreibich, Etor Emanuel Lucio-Eceiza, Edmund P. Meredith, Susanna Mohr, Deborah Niermann, Stephan Pfahl, Florian Ruff, Henning W. Rust, Lukas Schoppa, Thomas Schwitalla, Stella Steidl, Annegret H. Thieken, Jordis S. Tradowsky, Volker Wulfmeyer, and Johannes Quaas
Nat. Hazards Earth Syst. Sci., 22, 3701–3724, https://doi.org/10.5194/nhess-22-3701-2022, https://doi.org/10.5194/nhess-22-3701-2022, 2022
Short summary
Short summary
In a warming climate, extreme precipitation events are becoming more frequent. To advance our knowledge on such phenomena, we present a multidisciplinary analysis of a selected case study that took place on 29 June 2017 in the Berlin metropolitan area. Our analysis provides evidence of the extremeness of the case from the atmospheric and the impacts perspectives as well as new insights on the physical mechanisms of the event at the meteorological and climate scales.
Pauline Brémond, Anne-Laurence Agenais, Frédéric Grelot, and Claire Richert
Nat. Hazards Earth Syst. Sci., 22, 3385–3412, https://doi.org/10.5194/nhess-22-3385-2022, https://doi.org/10.5194/nhess-22-3385-2022, 2022
Short summary
Short summary
It is impossible to protect all issues against flood risk. To prioritise protection, economic analyses are conducted. The French Ministry of the Environment wanted to make available damage functions that we have developed for several sectors. For this, we propose a methodological framework and apply it to the model we have developed to assess damage to agriculture. This improves the description, validation, transferability and updatability of models based on expert knowledge.
Tommaso Simonelli, Laura Zoppi, Daniela Molinari, and Francesco Ballio
Nat. Hazards Earth Syst. Sci., 22, 1819–1823, https://doi.org/10.5194/nhess-22-1819-2022, https://doi.org/10.5194/nhess-22-1819-2022, 2022
Short summary
Short summary
The paper discusses challenges (and solutions) emerged during a collaboration among practitioners, stakeholders, and scientists in the definition of flood damage maps in the Po River District. Social aspects were proven to be fundamental components of the risk assessment; variety of competences in the working group was key in finding solutions and revealing weaknesses of intermediate proposals. This paper finally highlights the need of duplicating such an experience at a broader European level.
Michael Dietze, Rainer Bell, Ugur Ozturk, Kristen L. Cook, Christoff Andermann, Alexander R. Beer, Bodo Damm, Ana Lucia, Felix S. Fauer, Katrin M. Nissen, Tobias Sieg, and Annegret H. Thieken
Nat. Hazards Earth Syst. Sci., 22, 1845–1856, https://doi.org/10.5194/nhess-22-1845-2022, https://doi.org/10.5194/nhess-22-1845-2022, 2022
Short summary
Short summary
The flood that hit Europe in July 2021, specifically the Eifel, Germany, was more than a lot of fast-flowing water. The heavy rain that fell during the 3 d before also caused the slope to fail, recruited tree trunks that clogged bridges, and routed debris across the landscape. Especially in the upper parts of the catchments the flood was able to gain momentum. Here, we discuss how different landscape elements interacted and highlight the challenges of holistic future flood anticipation.
Brunella Bonaccorso, Carmelo Cammalleri, Athanasios Loukas, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 22, 1857–1862, https://doi.org/10.5194/nhess-22-1857-2022, https://doi.org/10.5194/nhess-22-1857-2022, 2022
Anna Rita Scorzini, Benjamin Dewals, Daniela Rodriguez Castro, Pierre Archambeau, and Daniela Molinari
Nat. Hazards Earth Syst. Sci., 22, 1743–1761, https://doi.org/10.5194/nhess-22-1743-2022, https://doi.org/10.5194/nhess-22-1743-2022, 2022
Short summary
Short summary
This study presents a replicable procedure for the adaptation of synthetic, multi-variable flood damage models among countries that may have different hazard and vulnerability features. The procedure is exemplified here for the case of adaptation to the Belgian context of a flood damage model, INSYDE, for the residential sector, originally developed for Italy. The study describes necessary changes in model assumptions and input parameters to properly represent the new context of implementation.
Animesh K. Gain, Yves Bühler, Pascal Haegeli, Daniela Molinari, Mario Parise, David J. Peres, Joaquim G. Pinto, Kai Schröter, Ricardo M. Trigo, María Carmen Llasat, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 22, 985–993, https://doi.org/10.5194/nhess-22-985-2022, https://doi.org/10.5194/nhess-22-985-2022, 2022
Short summary
Short summary
To mark the 20th anniversary of Natural Hazards and Earth System Sciences (NHESS), an interdisciplinary and international journal dedicated to the public discussion and open-access publication of high-quality studies and original research on natural hazards and their consequences, we highlight 11 key publications covering major subject areas of NHESS that stood out within the past 20 years.
Francisco Peña, Fernando Nardi, Assefa Melesse, Jayantha Obeysekera, Fabio Castelli, René M. Price, Todd Crowl, and Noemi Gonzalez-Ramirez
Nat. Hazards Earth Syst. Sci., 22, 775–793, https://doi.org/10.5194/nhess-22-775-2022, https://doi.org/10.5194/nhess-22-775-2022, 2022
Short summary
Short summary
Groundwater-induced flooding, a rare phenomenon that is increasing in low-elevation coastal cities due to higher water tables, is often neglected in flood risk mapping due to its sporadic frequency and considerably lower severity with respect to other flood hazards. A loosely coupled flood model is used to simulate the interplay between surface and subsurface flooding mechanisms simultaneously. This work opens new horizons on the development of compound flood models from a holistic perspective.
Antonio Annis, Fernando Nardi, and Fabio Castelli
Hydrol. Earth Syst. Sci., 26, 1019–1041, https://doi.org/10.5194/hess-26-1019-2022, https://doi.org/10.5194/hess-26-1019-2022, 2022
Short summary
Short summary
In this work, we proposed a multi-source data assimilation framework for near-real-time flood mapping. We used a quasi-2D hydraulic model to update model states by injecting both stage gauge observations and satellite-derived flood extents. Results showed improvements in terms of water level prediction and reduction of flood extent uncertainty when assimilating both stage gauges and satellite images with respect to the disjoint assimilation of both observations.
Annegret H. Thieken, Guilherme Samprogna Mohor, Heidi Kreibich, and Meike Müller
Nat. Hazards Earth Syst. Sci., 22, 165–185, https://doi.org/10.5194/nhess-22-165-2022, https://doi.org/10.5194/nhess-22-165-2022, 2022
Short summary
Short summary
Various floods hit Germany recently. While there was a river flood with some dike breaches in 2013, flooding in 2016 resulted directly from heavy rainfall, causing overflowing drainage systems in urban areas and destructive flash floods in steep catchments. Based on survey data, we analysed how residents coped with these different floods. We observed significantly different flood impacts, warnings, behaviour and recovery, offering entry points for tailored risk communication and support.
Valeria Cigala, Giulia Roder, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 22, 85–96, https://doi.org/10.5194/nhess-22-85-2022, https://doi.org/10.5194/nhess-22-85-2022, 2022
Short summary
Short summary
Non-male scientists constitute a minority in the geoscience professional environment, and they are underrepresented in disaster risk reduction planning. So far the international agenda has failed to effectively promote gender inclusion in disaster policy, preventing non-male scientists from career development and recognition. Here we share the thoughts, experiences, and priorities of women and non-binary scientists as a starting point to expand the discourse and promote intersectional research.
Philipp Wanner, Noemi Buri, Kevin Wyss, Andreas Zischg, Rolf Weingartner, Jan Baumgartner, Benjamin Berger, and Christoph Wanner
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-512, https://doi.org/10.5194/hess-2021-512, 2021
Preprint withdrawn
Short summary
Short summary
In this study, we quantified the glacial meltwater contribution to mountainous streams using high-resolution stable water isotope analysis. The glacial meltwater made up almost 28 % of the annual mountainous stream discharges. This high contribution demonstrates that the mountainous streamflow regimes will change in the future when the glacial meltwater contribution will disappear due to global warming posing a major challenge for hydropower energy production in mountainous regions.
David Nortes Martínez, Frédéric Grelot, Pauline Brémond, Stefano Farolfi, and Juliette Rouchier
Nat. Hazards Earth Syst. Sci., 21, 3057–3084, https://doi.org/10.5194/nhess-21-3057-2021, https://doi.org/10.5194/nhess-21-3057-2021, 2021
Short summary
Short summary
Estimating flood damage, although crucial for assessing flood risk and for designing mitigation policies, continues to face numerous challenges, notably the assessment of indirect damage. We focus on flood damage induced by the interactions between economic activities. By modeling the production processes of a cooperative wine-making system, we show that these interactions are important depending on their spatial and temporal characteristics.
Chiara Arrighi, Maria Pregnolato, and Fabio Castelli
Nat. Hazards Earth Syst. Sci., 21, 1955–1969, https://doi.org/10.5194/nhess-21-1955-2021, https://doi.org/10.5194/nhess-21-1955-2021, 2021
Short summary
Short summary
Floods may affect critical infrastructure which provides essential services to people. We analyse the impact of floods on road networks and water supply systems, and we investigate how cascade effects propagate if interdependencies among networks are not considered. The analysis shows that if preparedness plans include information on accessibility to key sections of water supply plants, less people suffer from water shortage in case of flood. The method is tested in the city of Florence (Italy).
Guilherme S. Mohor, Annegret H. Thieken, and Oliver Korup
Nat. Hazards Earth Syst. Sci., 21, 1599–1614, https://doi.org/10.5194/nhess-21-1599-2021, https://doi.org/10.5194/nhess-21-1599-2021, 2021
Short summary
Short summary
We explored differences in the damaging process across different flood types, regions within Germany, and six flood events through a numerical model in which the groups can learn from each other. Differences were found mostly across flood types, indicating the importance of identifying them, but there is great overlap across regions and flood events, indicating either that socioeconomic or temporal information was not well represented or that they are in fact less different within our cases.
Gustavo Andrei Speckhann, Heidi Kreibich, and Bruno Merz
Earth Syst. Sci. Data, 13, 731–740, https://doi.org/10.5194/essd-13-731-2021, https://doi.org/10.5194/essd-13-731-2021, 2021
Short summary
Short summary
Dams are an important element of water resources management. Data about dams are crucial for practitioners, scientists, and policymakers. We present the most comprehensive open-access dam inventory for Germany to date. The inventory combines multiple sources of information. It comprises 530 dams with information on name, location, river, start year of construction and operation, crest length, dam height, lake area, lake volume, purpose, dam structure, and building characteristics.
Marco Cerri, Max Steinhausen, Heidi Kreibich, and Kai Schröter
Nat. Hazards Earth Syst. Sci., 21, 643–662, https://doi.org/10.5194/nhess-21-643-2021, https://doi.org/10.5194/nhess-21-643-2021, 2021
Short summary
Short summary
Effective flood management requires information about the potential consequences of flooding. We show how openly accessible data from OpenStreetMap can support the estimation of flood damage for residential buildings. Working with methods of machine learning, the building geometry is used to predict flood damage in combination with information about inundation depth. Our approach makes it easier to transfer models to regions where no detailed data of flood impacts have been observed yet.
Marta Galliani, Daniela Molinari, and Francesco Ballio
Nat. Hazards Earth Syst. Sci., 20, 2937–2941, https://doi.org/10.5194/nhess-20-2937-2020, https://doi.org/10.5194/nhess-20-2937-2020, 2020
Short summary
Short summary
INSYDE is a multivariable synthetic model for flood damage assessment of dwellings. The analysis and use of this model highlighted some weaknesses, linked to its complexity, that can undermine its usability and correct implementation. This study proposes a simplified version of INSYDE which maintains its multivariable and synthetic nature but has simpler mathematical formulations permitting an easier use and a direct analysis of the relation between damage and its explanatory variables.
Patric Kellermann, Kai Schröter, Annegret H. Thieken, Sören-Nils Haubrock, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 20, 2503–2519, https://doi.org/10.5194/nhess-20-2503-2020, https://doi.org/10.5194/nhess-20-2503-2020, 2020
Short summary
Short summary
The flood damage database HOWAS 21 contains object-specific flood damage data resulting from fluvial, pluvial and groundwater flooding. The datasets incorporate various variables of flood hazard, exposure, vulnerability and direct tangible damage at properties from several economic sectors. This paper presents HOWAS 21 and highlights exemplary analyses to demonstrate the use of HOWAS 21 flood damage data.
Cited articles
Amadio, M., Scorzini, A. R., Carisi, F., Essenfelder, A. H., Domeneghetti, A., Mysiak, J., and Castellarin, A.: Testing empirical and synthetic flood damage models: the case of Italy, Nat. Hazards Earth Syst. Sci., 19, 661–678, https://doi.org/10.5194/nhess-19-661-2019, 2019.
André, C., Monfort, D., Bouzit, M., and Vinchon, C.: Contribution of insurance data to cost assessment of coastal flood damage to residential buildings: insights gained from Johanna (2008) and Xynthia (2010) storm events, Nat. Hazards Earth Syst. Sci., 13, 2003–2012, https://doi.org/10.5194/nhess-13-2003-2013, 2013.
Andreani, M., Gaikwad, A. J., Ganju, S., Gera, B., Grigoryev, S., Herranz, L. E., Huhtanen, R., Kale, V., Kanaev, A., Kapulla, R., Kelm, S., Kim, J., Nishimurai, T., Paladino, D., Paranjape, S., Schramm, B., Sharabi, M., Shen, F., Wei, B., Yan, D., and Zhang, R.:
Synthesis of a CFD benchmark exercise based on a test in the PANDA facility addressing the stratification erosion by a vertical jet in presence of a flow obstruction,
Nucl. Eng. Des.,
354, 110177, https://doi.org/10.1016/j.nucengdes.2019.110177, 2019.
Arrighi, C., Brugioni, M., Castelli, F., Franceschini, S., and Mazzanti, B.:
Flood risk assessment in art cities: the exemplary case of Florence (Italy),
J. Flood Risk Manage.,
11, 616–631, https://doi.org/10.1111/jfr3.12226, 2018a.
Arrighi, C., Rossi, L., Trasforini, E., Rudari, R., Ferraris, L., Brugioni, M., Franceschini, S., and Castelli, F.:
Quantification of flood risk mitigation benefits: A building-scale damage assessment through the RASOR platform,
J. Environ. Manage.,
207, 92–104, https://doi.org/10.1016/j.jenvman.2017.11.017, 2018b.
Ballio, F., Molinari, D., Minucci, G., Mazuran, M., Arias Munoz, C., Menoni, S., Atun, F., Ardagna, D., Berni, N., and Pandolfo, C.:
The RISPOSTA procedure for the collection, storage and analysis of high quality, consistent and reliable damage data in the aftermath of floods,
J. Flood Risk Manag.,
11, S604–S615, https://doi.org/10.1111/jfr3.12216, 2018.
Breiman, L.:
Random forests,
Mach. Learn.,
45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001.
Breiman, L., Friedman, J., Olshen, R. A., and Stone, C. J.:
CART: Classification and Regression Trees,
Wadsworth, Belmont, CA, 1984.
Bundesministerium für Verkehr und digitale Infrastruktur:
“Hochwasserkatastrophe 2013 – Bericht über die Verwendung der Finanzhilfe aus dem EU-Solidaritätsfonds zur Bewältigung der durch das Hochwasser 2013 in der Bundesrepublik Deutschland entstandenen Schäden der öffentlichen Hand”,
Projektgruppe Hochwasser, Bundesministerium für Verkehr und digitale Infrastruktur, Berlin,
available at: https://www.bmvi.de/SharedDocs/DE/Anlage/WS/hochwasserkatastrophe-2013-bericht.pdf?__blob=publicationFile (last access: 13 January 2020), 2016.
Cammerer, H., Thieken, A. H., and Lammel, J.: Adaptability and transferability of flood loss functions in residential areas, Nat. Hazards Earth Syst. Sci., 13, 3063–3081, https://doi.org/10.5194/nhess-13-3063-2013, 2013.
Carisi, F., Schröter, K., Domeneghetti, A., Kreibich, H., and Castellarin, A.: Development and assessment of uni- and multivariable flood loss models for Emilia-Romagna (Italy), Nat. Hazards Earth Syst. Sci., 18, 2057–2079, https://doi.org/10.5194/nhess-18-2057-2018, 2018.
Cellerino, R.:
L'Italia delle alluvioni. Un'analisi economica,
Franco Angeli Editore, 2004.
CEPRI – Centre Européen de Prévention et de gestion des Risques d'Inondation: Evaluation des dommages liés aux inondations sur les logements, 2014a.
CEPRI – Centre Européen de Prévention et de gestion des Risques d'Inondation: Evaluation des dommages aux logements liés aux submersions marines, 2014b.
Deutscher Bundestag:
“Bericht zur Flutkatastrophe 2013: Katastrophenhilfe, Entschädigung, Wiederaufbau”, Berlin,
available at: http://dip21.bundestag.de/dip21/btd/17/147/1714743.pdf (last access: 13 January 2020), 2013.
Dottori, F., Figueiredo, R., Martina, M. L. V., Molinari, D., and Scorzini, A. R.: INSYDE: a synthetic, probabilistic flood damage model based on explicit cost analysis, Nat. Hazards Earth Syst. Sci., 16, 2577–2591, https://doi.org/10.5194/nhess-16-2577-2016, 2016.
Dutta, D., Herath, S., and Musiake, K.:
A mathematical model for flood loss estimation,
J. Hydrol.,
277, 24–49, https://doi.org/10.1016/S0022-1694(03)00084-2, 2003.
Figueiredo, R., Schröter, K., Weiss-Motz, A., Martina, M. L. V., and Kreibich, H.: Multi-model ensembles for assessment of flood losses and associated uncertainty, Nat. Hazards Earth Syst. Sci., 18, 1297–1314, https://doi.org/10.5194/nhess-18-1297-2018, 2018.
Fuchs, S., Keiler, M., Ortlepp, R., Schinke, R., and Papathoma-Köhle, M.:
Recent advances in vulnerability assessment for the built environment exposed to torrential hazards: Challenges and the way forward,
J. Hydrol.,
575, 587–595, https://doi.org/10.1016/j.jhydrol.2019.05.067, 2019a.
Fuchs, S., Heiser, M., Schlögl, M., Zischg, A., Papathoma-Köhle, M., and Keiler, M.:
Short communication: A model to predict flood loss in mountain areas,
Environ. Modell. Softw.,
117, 176–180, https://doi.org/10.1016/j.envsoft.2019.03.026, 2019b.
Gerl, T., Kreibich, H., Franco, G., Marechal, D., and Schroter, K.:
A Review of Flood Loss Models as Basis for Harmonization and Benchmarking,
PLoS ONE,
11, e0159791, https://doi.org/10.1371/journal.pone.0159791, 2016.
Jongman, B., Kreibich, H., Apel, H., Barredo, J. I., Bates, P. D., Feyen, L., Gericke, A., Neal, J., Aerts, J. C. J. H., and Ward, P. J.: Comparative flood damage model assessment: towards a European approach, Nat. Hazards Earth Syst. Sci., 12, 3733–3752, https://doi.org/10.5194/nhess-12-3733-2012, 2012.
Jonkman, S. N., Bočkarjova, M., Kok, M., and Bernardini, P.:
Integrated hydrodynamic and economic modelling of flood damage in the Netherlands,
Ecol. Econ.,
66, 77–90, https://doi.org/10.1016/j.ecolecon.2007.12.022, 2008.
Krogstad, P. Å. and Eriksen, P. E.:
“Blind test” calculations of the performance and wake development for a model wind turbine,
Renew. Energ.,
50, 325–333, https://doi.org/10.1016/j.renene.2012.06.044, 2013.
Merz, B., Kreibich, H., Thieken, A., and Schmidtke, R.: Estimation uncertainty of direct monetary flood damage to buildings, Nat. Hazards Earth Syst. Sci., 4, 153–163, https://doi.org/10.5194/nhess-4-153-2004, 2004.
Merz, B., Kreibich, H., Schwarze, R., and Thieken, A.: Review article “Assessment of economic flood damage”, Nat. Hazards Earth Syst. Sci., 10, 1697–1724, https://doi.org/10.5194/nhess-10-1697-2010, 2010.
Merz, B., Kreibich, H., and Lall, U.: Multi-variate flood damage assessment: a tree-based data-mining approach, Nat. Hazards Earth Syst. Sci., 13, 53–64, https://doi.org/10.5194/nhess-13-53-2013, 2013.
Meyer, V., Becker, N., Markantonis, V., Schwarze, R., van den Bergh, J. C. J. M., Bouwer, L. M., Bubeck, P., Ciavola, P., Genovese, E., Green, C., Hallegatte, S., Kreibich, H., Lequeux, Q., Logar, I., Papyrakis, E., Pfurtscheller, C., Poussin, J., Przyluski, V., Thieken, A. H., and Viavattene, C.: Review article: Assessing the costs of natural hazards – state of the art and knowledge gaps, Nat. Hazards Earth Syst. Sci., 13, 1351–1373, https://doi.org/10.5194/nhess-13-1351-2013, 2013.
Molinari, D. and Scorzini A. R.:
On the Influence of Input Data Quality to Flood Damage Estimation: The Performance of the INSYDE Model,
Water,
9, 688, https://doi.org/10.3390/w9090688, 2017.
Molinari, D., Menoni, S., and Ballio, F. (Eds.):
Flood Damage Survey and Assessment: New Insights from Research and Practice,
AGU-Wiley, Hoboken, USA, 2017.
Molinari, D., de Bruijn, K. M., Castillo-Rodríguez, J. T., Aronica, G. T., and Bouwer, L. M.:
Validation of flood risk models: Current practice and possible improvements,
Int. J. Disast. Risk Re.,
33, 441–448, https://doi.org/10.1016/j.ijdrr.2018.10.022, 2019.
Natho, S. and Thieken, A. H.:
Implementation and adaptation of a macro-scale method to assess and monitor direct economic losses caused by natural hazards,
Int. J. Disast. Risk Re.,
28, 191–205, https://doi.org/10.1016/j.ijdrr.2018.03.008, 2018.
Orlandini, S., Moretti, G., and Albertson, J. D.:
Evidence of an emerging levee failure mechanism causing disastrous floods in Italy,
Water Resour. Res.,
51, 7995–8011, https://doi.org/10.1002/2015WR017426, 2015.
Penning-Rowsell, E., Johnson, C., Tunstall, S., Tapsell, S., Morris, J., Chatterton, J., and Green, C.:
The benefits of flood and coastal risk management: a handbook of assessment techniques,
Middlesex University Press, Middlesex, UK, 2005.
Ransley, E., Yan, S., Brown, S. A., Mai, T., Graham, D., Ma, Q., Musiedlak, P.-H., Engsig-Karup, A. P., Eskilsson, C., Li, Q., Wang, J., Xie, Z., Venkatachalam, S., Stoesser, T., Zhuang, Y., Li, Q., Wan, D., Chen, G., Chen, H., Qian, L., Ma, Z., Mingham, C., Causon, D., Gatin, I., Jasak, H., Vukcevic, V., Downie, S., Higuera, P., Buldakov, E., Stagonas, D., Chen, Q., Zang, J., and Greaves, D.:
A Blind Comparative Study of Focused Wave Interactions with a Fixed FPSO-like Structure (CCPWSI Blind Test Series 1),
Int. J. Offshore Polar,
29, 113–127, https://doi.org/10.17736/ijope.2019.jc748, 2019.
Richert, C. and Grelot, F.:
Comparaison des modèles de dommages nationaux avec les données de sinistralité, Tech. rep.,
IRSTEA, Montpellier, France, 2018.
Röthlisberger, V., Zischg, A. P., and Keiler, M.: A comparison of building value models for flood risk analysis, Nat. Hazards Earth Syst. Sci., 18, 2431–2453, https://doi.org/10.5194/nhess-18-2431-2018, 2018.
Rouchon, D., Christin, N., Peinturier, C., and Nicklaus, D.:
Analyse multicritère des projets de prévention des inondations. Guide méthodologique 2018. Théma – Balises,
Ministère de la Transition Écologique et Solidaire, Commissariat général au développement durable,
available at: https://www.ecologique-solidaire.gouv.fr/sites/default/files/Th%C3%A9ma%20-%20Analyse%20multicrit%C3%A8re%20des%20projets%20de%20pr%C3%A9vention%20des%20inondations%20-%20Guide.pdf (last access: 6 November 2020), 2018.
Schröter, K., Kreibich, H., Vogel, K., Riggelsen, C., Scherbaum, F., and Merz, B.:
How useful are complex flood damage models?,
Water Resour. Res.,
50, 3378–3395, https://doi.org/10.1002/2013WR014396, 2014.
Scorzini, A. R. and Frank, E.:
Flood damage curves: new insights from the 2010 flood in Veneto, Italy,
J. Flood Risk Manage.,
10, 381–392, https://doi.org/10.1111/jfr3.12163, 2017.
Scorzini, A. R., Radice, A., and Molinari, D.:
A New Tool to Estimate Inundation Depths by Spatial Interpolation (RAPIDE): Design, Application and Impact on Quantitative Assessment of Flood Damage,
Water,
10, 1805, https://doi.org/10.3390/w10121805, 2018.
Skorek, T., de Crécy, A., Kovtonyuk, A., Petruzzi, A., Mendizábal, R., de Alfonso, E., Reventós, F., Freixa, J., Sarrette, C., Kyncl, M., Pernica, R., Baccou, J., Fouet, F., Probst, P., Chung, B., Tram, T. T., Oh, D., Gusev, A., Falkov, A., Shvestov, Y., Li, D., Liu, X., Zhang, J., Alku, T., Kurki, J., Jäger, W., Sánchez, V., Wicaksono, D., Zerkak, O., and Pautz, A.:
Quantification of the uncertainty of the physical models in the system thermal-hydraulic codes – PREMIUM benchmark,
Nucl. Eng. Des.,
354, 110199, https://doi.org/10.1016/j.nucengdes.2019.110199, 2019.
Smith, M. B., Seo, D. J., Koren, V. I., Reed, S. M., Zhang, Z., Duan, Q., Moreda, F., and Cong, S.:
The distributed model intercomparison project (DMIP): motivation and experiment design,
J. Hydrol.,
298, 4–26, https://doi.org/10.1016/j.jhydrol.2004.03.040, 2004.
Soares-Frazao, S., Canelas, R., Cao, Z., Cea, L., Chaudhry, H. M., Die Moran, A., El Kadi, K., Ferreira, R., Cadórniga, I. F., Gonzalez-Ramirez, N., Greco, M., Huang, W., Imran, J., Le Coz, J., Marsooli, R., Paquier, A., Pender, G., Pontillo, M., Puertas, J., Spinewine, B., Swartenbroekx, C., Tsubaki, R., Villaret, C., Wu, W., Yue, Z., and Zech, Y.:
Dam-break flows over mobile beds: experiments and benchmark tests for numerical models,
J. Hydraul. Res.,
50, 364–375, https://doi.org/10.1080/00221686.2012.689682, 2012.
Spekkers, M. H., Kok, M., Clemens, F. H. L. R., and ten Veldhuis, J. A. E.: A statistical analysis of insurance damage claims related to rainfall extremes, Hydrol. Earth Syst. Sci., 17, 913–922, https://doi.org/10.5194/hess-17-913-2013, 2013.
Teng, J., Jakeman, A. J., Vaze, J., Croke, B. F. W., Dutta, D., and Kim, S.:
Flood inundation modelling: A review of methods, recent advances and uncertainty analysis,
Environ. Modell. Softw.,
90, 201–216, https://doi.org/10.1016/j.envsoft.2017.01.006, 2017.
Thieken, A. H., Müller, M., Kreibich, H., and Merz, B.:
Flood damage and influencing factors: New insights from the August 2002 flood in Germany,
Water Resour. Res.,
41, W12430, https://doi.org/10.1029/2005WR004177, 2005.
Thieken, A. H., Olschewski, A., Kreibich, H., Kobsch, S., and Merz, B.:
Development and evaluation of FLEMOps – a new Flood Loss Estimation MOdel for the private sector,
in: Flood Recovery, Innovation and Response I,
edited by: Proverbs, D., Brebbia, C. A., and Penning-Rowsell, E.,
WIT Press, Southampton, UK, 315–324, https://doi.org/10.2495/FRIAR080301, 2008.
Thieken, A. H., Bessel, T., Kienzler, S., Kreibich, H., Müller, M., Pisi, S., and Schröter, K.: The flood of June 2013 in Germany: how much do we know about its impacts?, Nat. Hazards Earth Syst. Sci., 16, 1519–1540, https://doi.org/10.5194/nhess-16-1519-2016, 2016.
Thieken, A. H., Kreibich, H., Müller, M., and Lamond, J.:
Data collection for a better understanding of what causes flood damage – experiences with telephone surveys,
in: Flood Damage Survey and Assessment: New Insights from Research and Practice,
edited by: Molinari, D., Menoni, S., and Ballio, F.,
AGU Wiley, Hoboken, USA, 95–106, https://doi.org/10.1002/9781119217930.ch7, 2017.
UNISDR:
Concept note on Methodology to Estimate Direct Economic Losses from Hazardous Events to Measure the Achievement of Target C of the Sendai Framework for Disaster Risk Reduction: A Technical Review, Report, p. 51,
available at: https://www.preventionweb.net/documents/framework/Concept%20Paper%20-%20Direct%20Economic%20Loss%20Indicator%20methodology%2011%20November%202015.pdf (last access: 6 November 2020), 2015.
Van Ootegem, L., van Herck, K., Creten, T., Verhofstadt, E., Foresti, L., Goudenhoofdt, E., Reyniers, M., Delobbe, L., Murla Tuyls, D., and Willems, P.:
Exploring the potential of multivariate depth-damage and rainfall-damage models,
J. Flood Risk Manage.,
11, S916–S929, https://doi.org/10.1111/jfr3.12284, 2018.
Wagenaar, D., de Jong, J., and Bouwer, L. M.: Multi-variable flood damage modelling with limited data using supervised learning approaches, Nat. Hazards Earth Syst. Sci., 17, 1683–1696, https://doi.org/10.5194/nhess-17-1683-2017, 2017.
Wagenaar, D., Lüdtke, S., Schröter, K., Bouwer, L. M., and Kreibich, H.:
Regional and Temporal Transferability of Multivariable Flood Damage Models,
Water Resour. Res.,
54, 3688–3703, https://doi.org/10.1029/2017WR022233, 2018.
Wing, O. E., Pinter, N., Bates, P. D., and Kousky, C.:
New insights into US flood vulnerability revealed from flood insurance big data,
Nat. Commun.,
11, 1–10, https://doi.org/10.1038/s41467-020-15264-2, 2020.
Zelt, C. A., Haines, S., Powers, M. H., Sheehan, J., Rohdewald, S., Link, C., Hayashi, K., Zhao, D., Zhou, H., Burton, B. L., Petersen, U. K., Bonal, N. D., and Doll, W. E.:
Blind test of methods for obtaining 2-D near-surface seismic velocity models from first-arrival traveltimes,
J. Environ. Eng. Geoph.,
18, 183–194, https://doi.org/10.2113/JEEG18.3.183, 2013.
Zhou, Q., Panduro, T. E., Thorsen, B. J., and Arnbjerg-Nielsen, K.:
Verification of flood damage modelling using insurance data,
Water Sci. Technol.,
68, 425–432, https://doi.org/10.2166/wst.2013.268, 2013.
Zischg, A. P., Mosimann, M., Bernet, D. B., and Röthlisberger, V.:
Validation of 2D flood models with insurance claims,
J. Hydrol.,
557, 350–361, https://doi.org/10.1016/j.jhydrol.2017.12.042, 2018.
Short summary
Flood risk management requires a realistic estimation of flood losses. However, the capacity of available flood damage models to depict real damages is questionable. With a joint effort of eight research groups, the objective of this study was to compare the performances of nine models for the estimation of flood damage to buildings. The comparison provided more objective insights on the transferability of the models and on the reliability of their estimations.
Flood risk management requires a realistic estimation of flood losses. However, the capacity of...
Altmetrics
Final-revised paper
Preprint