Articles | Volume 20, issue 8
https://doi.org/10.5194/nhess-20-2243-2020
https://doi.org/10.5194/nhess-20-2243-2020
Research article
 | 
17 Aug 2020
Research article |  | 17 Aug 2020

Bias correction of a gauge-based gridded product to improve extreme precipitation analysis in the Yarlung Tsangpo–Brahmaputra River basin

Xian Luo, Xuemei Fan, Yungang Li, and Xuan Ji

Related subject area

Atmospheric, Meteorological and Climatological Hazards
Investigation of an extreme rainfall event during 8–12 December 2018 over central Vietnam – Part 1: Analysis and cloud-resolving simulation
Chung-Chieh Wang and Duc Van Nguyen
Nat. Hazards Earth Syst. Sci., 23, 771–788, https://doi.org/10.5194/nhess-23-771-2023,https://doi.org/10.5194/nhess-23-771-2023, 2023
Short summary
Increased spatial extent and likelihood of compound long-duration dry and hot events in China, 1961–2014
Yi Yang, Douglas Maraun, Albert Ossó, and Jianping Tang
Nat. Hazards Earth Syst. Sci., 23, 693–709, https://doi.org/10.5194/nhess-23-693-2023,https://doi.org/10.5194/nhess-23-693-2023, 2023
Short summary
Validating a tailored drought risk assessment methodology: drought risk assessment in local Papua New Guinea regions
Isabella Aitkenhead, Yuriy Kuleshov, Jessica Bhardwaj, Zhi-Weng Chua, Chayn Sun, and Suelynn Choy
Nat. Hazards Earth Syst. Sci., 23, 553–586, https://doi.org/10.5194/nhess-23-553-2023,https://doi.org/10.5194/nhess-23-553-2023, 2023
Short summary
Seasonal fire danger forecasts for supporting fire prevention management in an eastern Mediterranean environment: the case of Attica, Greece
Anna Karali, Konstantinos V. Varotsos, Christos Giannakopoulos, Panagiotis P. Nastos, and Maria Hatzaki
Nat. Hazards Earth Syst. Sci., 23, 429–445, https://doi.org/10.5194/nhess-23-429-2023,https://doi.org/10.5194/nhess-23-429-2023, 2023
Short summary
Uncovering the veil of night light changes in times of catastrophe
Vincent Schippers and Wouter Botzen
Nat. Hazards Earth Syst. Sci., 23, 179–204, https://doi.org/10.5194/nhess-23-179-2023,https://doi.org/10.5194/nhess-23-179-2023, 2023
Short summary

Cited articles

Alexander, L. V.: Global observed long-term changes in temperature and precipitation extremes: A review of progress and limitations in IPCC assessments and beyond, Weather. Clim. Extremes, 11, 4–16, https://doi.org/10.1016/j.wace.2015.10.007, 2016. 
Andermann, C., Bonnet, S., and Gloaguen, R.: Evaluation of precipitation data sets along the Himalayan front, Geochem. Geophys. Geosys., 12, Q07023, https://doi.org/10.1029/2011gc003513, 2011. 
Bookhagen, B. and Burbank, D. W.: Toward a complete Himalayan hydrological budget: Spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge, J. Geophys. Res., 115, F03019, https://doi.org/10.1029/2009JF001426, 2010. 
Cannon A. J., Sobie S. R., and Murdock T. Q.: Bias correction of GCM precipitation by quantile mapping: How well do methods preserve changes in quantiles and extremes?, J. Climate, 28, 6938–6959, https://doi.org/10.1175/JCLI-D-14-00754.1, 2015. 
Chaudhary S., Dhanya C. T., and Vinnarasi R.: Dry and wet spell variability during monsoon in gauge-based gridded daily precipitation datasets over India, J. Hydrol., 546, 204–218, https://doi.org/10.1016/j.jhydrol.2017.01.023, 2017. 
Download
Short summary
In this study, we corrected Asian Precipitation Highly Resolved Observational Data Integration Towards Evaluation of Water Resources (APHRODITE) in the Yarlung Tsangpo–Brahmaputra River Basin using both linear and nonlinear methods, and their influences on resulting extreme precipitation indices were assessed. Results showed that all methods were able to correct mean precipitation, but their ability to correct wet-day frequency and coefficient of variation were markedly different.
Altmetrics
Final-revised paper
Preprint