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Abstract. Critical gaps in the amount, quality, consistency,
availability, and spatial distribution of rainfall data limit ex-
treme precipitation analysis, and the application of grid-
ded precipitation data is challenging because of their con-
siderable biases. This study corrected Asian Precipitation
Highly Resolved Observational Data Integration Towards
Evaluation of Water Resources (APHRODITE) estimates in
the Yarlung Tsangpo–Brahmaputra River basin (YBRB) us-
ing two linear and two nonlinear methods, and their influ-
ence on extreme precipitation indices was assessed by cross-
validation. Bias correction greatly improved the performance
of extreme precipitation analysis. The ability of four meth-
ods to correct wet-day frequency and coefficient of variation
were substantially different, leading to considerable differ-
ences in extreme precipitation indices. Local intensity scal-
ing (LOCI) and quantile–quantile mapping (QM) performed
better than linear scaling (LS) and power transformation
(PT). This study would provide a reference for using gridded
precipitation data in extreme precipitation analysis and se-
lecting a bias-corrected method for rainfall products in data-
sparse regions.

1 Introduction

Extreme precipitation often leads to floods, debris flows, and
other secondary disasters (Wang et al., 2017), and changes
in the frequency and intensity of extreme precipitation pro-
foundly influence both the natural environment and human
society (Easterling et al., 2000; Yucel and Onen, 2014). Rain-

fall observations provide a primary foundation for compre-
hending their long-term variability and change in extreme
precipitation (Alexander, 2016). Accurate rainfall data are
necessary for flood protection and water resource manage-
ment. However, due to scarce spatial coverage of rainfall sta-
tions, short-length rainfall records, and high proportions of
missing data, observations currently available in some re-
mote basins are clearly inadequate to capture their precipi-
tation characteristics. In addition, observed rainfall data are
usually difficult to collect in international river basins be-
cause many countries may not share or freely distribute data
(Lakshmi et al., 2018).

The Yarlung Tsangpo–Brahmaputra River is the fourth-
largest river in the world in terms of flow (Kamal-Heikman
et al., 2007) and is influenced profoundly by complex atmo-
spheric dynamics and regional climate processes (Immerzeel
et al., 2010; Pervez and Henebry, 2015). Because its agricul-
ture and economy rely heavily on monsoon precipitation, the
basin is particularly vulnerable to changing climate (Singh
et al., 2016; Liu et al., 2018; Janes et al., 2019; Xu et al.,
2019; Zhang et al., 2019). During the four summer mon-
soon months of June, July, August, and September (JJAS),
extreme precipitation with large uncertainties leads to numer-
ous floods (Kamal-Heikman et al., 2007; Dimri et al., 2016;
Malik et al., 2016). However, understanding of extreme pre-
cipitation in the Yarlung Tsangpo–Brahmaputra River basin
(YBRB) has a number of gaps because of its complex topo-
graphical interactions with atmospheric flows, lack of obser-
vations, and data-sharing issues, which hinder effective flood
management (Ray et al., 2015; Prakash et al., 2019).
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Currently, different gridded rainfall products provide ef-
fective information over regional to global scales, which
could be broadly classified into four categories: (1) gauge-
based datasets that build on observations from rainfall sta-
tions, (2) products from numerical weather predictions or at-
mospheric models, (3) satellite-only products, and (4) com-
bined satellite–gauge products. The performance of these
products varies from region to region (Duan et al., 2016).
Given the heterogeneity of orography and climate in the
YBRB, observing and modeling its precipitation are very
challenging (Khandu et al., 2017). In addition, satellite prod-
ucts are less reliable because high convective rainfall gener-
ally takes place in the southern foothills of the Himalayas
(Prakash et al., 2015). Compared with some other gauge-
based products, the Asian Precipitation Highly Resolved Ob-
servational Data Integration Towards Evaluation of Water
Resources (APHRODITE) dataset collected more rainfall
observations across South Asia (Rana et al., 2015), which
have been proven to better estimate spatial precipitation (An-
dermann et al., 2011). Nonetheless, the lack (and uneven dis-
tribution) of rainfall stations at high altitudes in the Tibetan
Plateau and Himalayas may introduce uncertainty and affect
the accuracy of APHRODITE estimates (Rana et al., 2015;
Chaudhary et al., 2017).

Numerous rainfall observations can be obtained from pub-
lic databases, although their short record and static character
limit their direct application in precipitation analysis (Donat
et al., 2013). However, these data could be useful for bias
correction of gauge-based gridded products by providing ad-
ditional observations from the denser network of rainfall sta-
tions. On the other hand, several methods have been devel-
oped to adjust global climate model (GCM) data, ranging
from simple linear scaling to more sophisticated nonlinear
approaches (Teutschbein and Seibert, 2012). Similarly, these
bias-correction methods could be applied to correct gridded
rainfall products in sparsely gauged mountainous basins (He
et al., 2017). It is important to study whether extreme pre-
cipitation analysis could be improved by bias correction of
gridded precipitation data and how different methods would
influence extreme precipitation indices.

This study evaluated different bias-correction approaches
for APHRODITE estimates in the YBRB and assessed their
effects on extreme precipitation analysis. We first corrected
APHRODITE estimates by both linear and nonlinear meth-
ods. Next, we calculated extreme precipitation indices us-
ing the original and differently corrected APHRODITE es-
timates, and the effects of bias correction on extreme precip-
itation analysis were further investigated by cross-validation.
The results provide support to the application of gridded pre-
cipitation data and bias-corrected methods in extreme precip-
itation analysis.

2 Material and methods

2.1 Study area

The YBRB can be divided into three physiographic zones:
(1) the Tibetan Plateau (TP), covering 44.4 % of the basin,
with elevations above 3500 m; (2) the Himalayan belt (HB),
accounting for 28.6 % of the basin, with elevations ranging
from 100 to 3500 m; and (3) the floodplains (FP), covering
27.0 % of the basin, with elevations up to 100 m (Immerzeel,
2008).

The moisture in the YBRB is mainly from the Indian
Ocean. The YBRB exhibits a broad range of precipitation
from the semiarid upstream areas to the HB characterized by
abundant orographic rainfall and the vast humid FP. In the
upstream areas, precipitation is concentrated during JJAS,
and rainfall intensity is mostly low due to long-distance
moisture transport (Guan et al., 1984). The irregular topo-
graphic variations in the Himalayas profoundly affect the
spatial distribution of precipitation by altering monsoonal
flow, producing intense orographic rainfall along the Hi-
malayan foothills (Khandu et al., 2017). The downstream
areas also receive high rainfall from monsoon flow during
JJAS, accounting for 60 %–70 % of the annual rainfall (Gain
et al., 2011).

2.2 Data sources

2.2.1 Observational data

In the upper YBRB, rainfall data across China recorded at
31 meteorological stations were collected from the National
Meteorological Information Center (NMIC, sourced from the
China Meteorological Data Sharing Service System). In ad-
dition, data observed at 91 rainfall stations in the down-
stream area were obtained from the Global Historical Cli-
matology Network (GHCN)-Daily dataset for bias correc-
tion. The GHCN-Daily dataset comprises observations from
four sources, which have been undergone extensive qual-
ity reviews, including the U.S. Collection, the International
Collection, the Government Exchange Data, and the Global
Summary of the Day. The locations of rainfall stations are
shown in Fig. 1.

2.2.2 APHRODITE estimates

Numerous rainfall observations were incorporated into
APHRODITE estimates, including (1) Global Telecommu-
nication System (GTS)-based data, (2) data obtained from
other projects or organizations, and (3) their own collection.
The rainfall observations that had undergone quality control
were gathered, and the ratios of rainfall observations to the
world climatology were calculated and then interpolated for
each month. The interpolated ratios were multiplied by the
world climatology, and the first six components of the fast
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Figure 1. Locations of rainfall stations in the Yarlung Tsangpo–
Brahmaputra River basin (YBRB).

Figure 2. Location of Asian Precipitation Highly Resolved Obser-
vational Data Integration Towards Evaluation of Water Resources
(APHRODITE) grids over the Tibetan Plateau (TP), Himalayan belt
(HB), and floodplains (FP).

Fourier transform of the resulting values were used to obtain
daily precipitation (Yatagai et al., 2012).

Daily rainfall data of APHRO_MA_025deg_V1101
(http://aphrodite.st.hirosaki-u.ac.jp/index.html, last
access: 13 August 2020) at 0.25◦ resolution in
the Asian monsoon area end in 2007, while re-
cently published APHRO_MA_025deg_V1101EX_R1
(http://aphrodite.st.hirosaki-u.ac.jp/index.html, last access:
13 August 2020), using the same algorithm and spatial res-
olution, extend the time series over the period 2007–2015.
Therefore, extreme precipitation could be analyzed from the
period 1951–2015 by applying both datasets. To investigate
the influence of topography on bias-corrected APHRODITE
estimates, the grids were classified into three topographic
zones (the TP, HB, and FP; Fig. 2).

2.3 Methods

2.3.1 Bias-correction methods

Two linear methods (linear scaling, LS, and local intensity
scaling, LOCI) and two nonlinear methods (power transfor-
mation, PT, and quantile–quantile mapping, QM) were used
for bias correction in this study.

(1) LS

LS corrects monthly estimates in accordance with observa-
tions (Lenderink et al., 2007). It corrects APHRODITE esti-
mates using the ratio between mean monthly observation and
corresponding estimation:

P ∗APH (d)= PAPH (d) ·

[
µm (Pobs (d))

µm (PAPH (d))

]
, (1)

where P ∗APH (d) and PAPH (d) are the daily precipitation of
the corrected and original APHRODITE estimates, respec-
tively, and Pobs (d) is the daily precipitation observed at the
rainfall station in corresponding grid of the APHRODITE
estimate. µm (Pobs (d)) and µm (PAPH (d)) are the mean
monthly precipitation of observations and corresponding
APHRODITE estimates in the mth month, respectively.

(2) LOCI

LOCI makes a flexible adjustment to the wet-day frequency
and intensity (Schmidli et al., 2006; Teutschbein and Seibert,
2012). Firstly, an adjusted precipitation threshold (Pth,APH)

is determined so that the number of days exceeding this
threshold for APHRODITE estimates matches that of ob-
served days with precipitation larger than 0 mm. Secondly,
a linear scaling factor (s) for wet days is computed:

s =
µm (Pobs (d) |Pobs (d) > 0mm )

µm
(
PAPH (d)

∣∣PAPH (d) > Pth,APH
)
−Pth,APH

, (2)

where µm (Pobs (d) |Pobs (d) > 0mm ) is the mean monthly
precipitation of observations with daily precipitation larger
than 0 mm and µm

(
PAPH (d)

∣∣PAPH (d) > Pth,APH
)

is the
mean monthly precipitation of APHRODITE estimates with
daily precipitation larger than Pth,APH. Finally, the precipita-
tion data are corrected using

P ∗APH (d)=max
(
s ·

(
PAPH (d)−Pth,APH

)
,0

)
. (3)

(3) PT

PT corrects both the mean and the coefficient of variation in
precipitation (Leander and Buishand, 2007), changing pre-
cipitation by

P ∗APH (d)= a · (PAPH (d))
b, (4)

where a and b are the parameters of the power transforma-
tion, which are obtained using a distribution-free approach
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and estimated for each month within a 90 d window. Using
a root-finding algorithm, the value of b is firstly determined
to ensure that the coefficient of variation in the corrected es-
timates matches that of the observations. The parameter a
is then calculated using the mean observation and the corre-
sponding mean of the transformed values.

(4) QM

By shifting occurrence distributions, QM corrects the dis-
tribution function of precipitation estimates to match that
of observations, which is commonly used in correcting
systematic distributional biases (Cannon et al., 2015). A
gamma distribution is usually assumed for precipitation
events (Teutschbein and Seibert, 2012):

fγ (x|α, β)= x
α−1
·

1
βα ·0(α)

· e
−
x
β ;x ≥ 0;α, β > 0, (5)

where α and β are the shape parameter and scale parameter,
respectively.

The cumulative density function (CDF) of the
APHRODITE estimates is adjusted to agree with that of the
observation, and the daily precipitation for APHRODITE
estimates is corrected depending on its quantile. It should be
noted that for APHRODITE estimates, many days had low
precipitation estimates instead of substantial dry conditions,
which may distort the distribution of daily precipitation.
Therefore, an adjusted precipitation threshold is also used
to ensure the wet-day frequency of corrected APHRODITE
estimates match the observed frequency.

P ∗APH(d)={ 0, if PAPH(d) < Pth,APH

F−1
γ (Fγ (PAPH(d)|αAPH, m, βAPH, m)|αobs,m, βobs,m),

otherwise (6)

Fγ and F−1
γ are the gamma CDF and its inverse, respec-

tively. αAPH, m and βAPH, m are the shape parameter and scale
parameter of the original APHRODITE estimates in the mth
month, respectively, and αobs,m and βobs,m are those of ob-
servations in the mth month, respectively.

This study corrected the grids of the APHRODITE es-
timates that contained time series of observations, and the
parameters of bias correction were determined using cor-
responding available rainfall observations. After that, the
APHRODITE estimates from 1951 to 2015 in these grids
were corrected by four bias-correction methods. Hereafter,
APHRODITE estimates corrected by LS, LOCI, PT, and QM
are referred as LS-APHRODITE, LOCI-APHRODITE, PT-
APHRODITE, and QM-APHRODITE estimates.

2.3.2 Indices of extreme precipitation

To characterize extreme precipitation during JJAS, six in-
dices recommended by the Expert Team on Climate Change

Detection and Indices (ETCCDI), including consecutive wet
days (CWD), number of heavy precipitation days (R10mm),
number of very heavy precipitation days (R20mm), maxi-
mum 1 d precipitation amount (Rx1d), maximum 5 d pre-
cipitation amount (Rx5d), and simple daily intensity index
(SDII), were applied in this study. Detailed descriptions of
these indices are shown in Table 1. The indices fall roughly
into three categories: (1) duration indices, which represent
the length of the wet spell; (2) threshold indices, which count
the days on which a fixed precipitation threshold is exceeded;
and (3) absolute indices, which describe the maximum 1 or
5 d precipitation amount (Sillmann et al., 2013).

Extreme precipitation indices were calculated for cor-
rected APHRODITE estimates in the grids distributed with
rainfall stations. To obtain extreme precipitation indices in
other grids, inverse distance weighted (IDW) interpolation
for extreme precipitation indices were performed. This al-
lowed us to calculate mean values for each of the three topo-
graphic zones.

2.3.3 Validation on bias correction

Cross-validation was applied to evaluate the performance of
four bias-correction methods. At each rainfall station, the ob-
servations were divided into two groups. Two-thirds of the
rainfall records were applied to calculate the parameters of
LS, LOCI, PT, and QM, respectively. Making use of these
parameters, the APHRODITE estimates were then corrected.
The mean error (ME) between the extreme precipitation in-
dices obtained from the corrected APHRODITE estimates
and those obtained from the remaining third of the rainfall
observations were calculated to evaluate the performance of
different bias-correction methods.

3 Results

3.1 Evaluation of extreme precipitation indices

The ME of extreme precipitation indices during JJAS for val-
idation are shown in Fig. 3. For the original APHRODITE
estimates, the MEs of CWD in the TP, HB, and FP were
8.3, 16.4, and 21.8 d, respectively. There were a lot of days
with low precipitation estimations instead of substantial dry
conditions, leading to the overestimation of CWD. Likewise,
this propagated to LS-APHRODITE estimates with similar
MEs of CWD, because there was no change made to the wet-
day frequency. The MEs of CWD in the TP, HB, and FP for
LOCI-APHRODITE estimates were 3.1, 1.2, and 1.4 d, re-
spectively, and those for QM-APHRODITE estimates were
2.5, 0.8, and 0.9 d, respectively. For both LOCI- and QM-
APHRODITE estimates, the days with low precipitation es-
timations instead of substantial dry conditions were redefined
as dry days using the precipitation threshold, resulting in
much lower ME and more reliable CWD. Finally, although
PT did not directly correct wet-day frequency, the CWD for
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Table 1. Detailed description of extreme precipitation indices.

Index Descriptive name Definition Unit

CWD Consecutive wet days Maximum number of consecutive days with precipita-
tion ≥ 1 mm

days

R10mm Number of heavy precipitation days Count of days when precipitation≥ 10 mm during June,
July, August, and September (JJAS)

days

R20mm Number of very heavy precipitation days Count of days when precipitation≥ 20 mm during JJAS days

Rx1d Maximum 1 d precipitation amount Maximum 1 d precipitation mm

Rx5d Maximum 5 d precipitation amount Maximum consecutive 5 d precipitation mm

SDII Simple daily intensity index Total precipitation during JJAS divided by the number
of wet days (when precipitation ≥ 1 mm)

mm d−1

PT-APHRODITE estimates were lower than those for the
original APHRODITE estimates because very low precipi-
tation was corrected.

The original APHRODITE data tended to underestimate
heavy and very heavy precipitation days. Bias correction
reduced error in R10mm and R20mm, except for LS,
and the absolute values of ME for LOCI-, PT-, and QM-
APHRODITE estimates were mostly lower than 1.0 d. LOCI,
PT, and QM are able to effectively correct heavy and very
heavy precipitation days.

For the original APHRODITE estimates, the MEs of Rx1d
were −11.3, −89.1, and −50.5 mm in the TP, HB, and FP,
respectively, and those of Rx5d reached −18.0, −167.4,
and −76.8 mm, respectively. The original APHRODITE es-
timates greatly underestimated Rx1d and Rx5d. For the cor-
rected APHRODITE estimates, QM performed best on Rx1d,
and the MEs for QM-APHRODITE estimates were −0.1,
−1.9, and −5.4 mm, respectively. LS and LOCI used a con-
sistent ratio in linear transformation, resulting in underesti-
mation of Rx1d. In addition, LOCI outperformed other meth-
ods for Rx5d, and the overestimation in the HB and FP for
PT- and QM-APHRODITE estimates was greater.

The MEs of SDII for the original APHRODITE esti-
mates in the TP, HB, and FP were −2.4, −13.9, and
−11.0 mm, respectively. Firstly, heavy and very heavy pre-
cipitation in the HB and TP were not fully captured by
the original APHRODITE estimates. Secondly, the original
APHRODITE estimates overestimated wet days, which dis-
torted the estimation of precipitation intensity. Smaller errors
were found in LOCI- and QM-APHRODITE estimates be-
cause they corrected rainfall amount and the number of rainy
days.

3.2 Extreme precipitation indices calculated from the
original and corrected APHRODITE estimates

3.2.1 Extreme precipitation indices in the three
physiographic zones

Extreme precipitation indices calculated from the original
APHRODITE estimates and four corrected APHRODITE
estimates in the three different physiographic zones are
shown in Fig. 4. The CWD estimated using the original
APHRODITE and LS-APHRODITE estimates were simi-
lar. Meanwhile, those derived from LOCI-, PT-, and QM-
APHRODITE estimates were much lower.

Mean R10mm during JJAS obtained by the original
APHRODITE estimates in the TP, HB, and FP were 6.7,
31.0, and 47.7 d, respectively. These were similar to those es-
timated by corrected APHRODITE estimates. However, the
differences in R20mm were much more pronounced. Mean
R20mm in HB and FP for bias-corrected APHRODITE
datasets was close to 19.0 and 26.5 d, respectively, which is
approximately 4–5 d higher than those derived from the orig-
inal APHRODITE estimates.

Compared with the original APHRODITE estimates, the
Rx1d and Rx5d increased greatly after bias correction. In the
HB, the mean Rx1d obtained from the original APHRODITE
estimates was 49.5 mm, while those for LS-, LOCI-, PT-,
and QM-APHRODITE estimates were 72.4, 90.1, 109.0, and
103.8 mm, respectively. In addition, the ranges of Rx1d and
Rx5d also increased considerably.

The differences in SDII between the original and cor-
rected APHRODITE estimates were also marked. For ex-
ample, mean SDII in the FP calculated from the origi-
nal APHRODITE estimates was 13.4 mm. After correction,
mean SDII for LOCI- and QM-APHRODITE estimates in-
creased to 23.4 and 25.1 mm, respectively. These values
were much greater than those derived from LS- and PT-
APHRODITE datasets (15.7 and 17.7 mm).
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Figure 3. Mean error (ME) of (a) consecutive wet days (CWD), (b) number of heavy precipitation days (R10mm), (c) number of very heavy
precipitation days (R20mm), (d) maximum 1 d precipitation amount (Rx1d), (e) maximum 5 d precipitation amount (Rx5d), and (f) simple
daily intensity index (SDII) during June, July, August, and September (JJAS) for validation in the three different physiographic zones (TP,
HB, and FP) of the YBRB.

3.2.2 Relative changes in extreme precipitation indices

The relative changes in extreme precipitation indices during
JJAS based on the original and corrected APHRODITE esti-
mates are shown in Fig. 5. The CWD for LOCI-, PT-, and
QM-APHRODITE estimates were all lower than the orig-
inal APHRODITE estimates, yielding relative change rates
from −66 % to −27 %. Bias correction decreased the num-
ber of rainy days except when using LS. The variations in
R10mm and R20mm illustrated that corrected APHRODITE
estimates identified much more extreme precipitation events
in the TP. The changes in indices varied considerably for dif-
ferent correction methods, with the change rates of R20mm
in the TP for LS-, LOCI-, PT-, and QM-APHRODITE esti-
mates being 30.4 %, 169.2 %, 297.1 %, and 317.4 %, respec-

tively. For Rx1d, Rx5d, and SDII, the increases in the HB
were much pronounced than those in the FP and TP. Except
for the LS-APHRODITE estimates, the increases in Rx1d
and Rx5d in the HB were all above 70 % for the corrected
APHRODITE estimates.

3.3 Influence of bias correction on the spatial
distribution of extreme precipitation indices

Rainstorms over the lower YBRB usually have a duration
of 2–3 d (Dhar and Nandargi, 2000), and large multiday
precipitation events are crucial to the floods in the basin.
Hence, the spatial distribution of Rx5d during JJAS based
on the original APHRODITE estimates was compared with
corrected APHRODITE estimates in Fig. 6. For the origi-
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Figure 4. Box and whisker plot for (a) CWD, (b) R10mm, (c) R20mm, (d) Rx1d, (e) Rx5d, and (f) SDII during JJAS in the three different
physiographic zones (the TP, HB, and FP) of the YBRB derived from the original and corrected APHRODITE estimates.

nal APHRODITE estimates, the area with Rx5d higher than
300 mm only accounted for 2.0 % of the basin, while the pro-
portions for LS-, LOCI-, PT-, and QM-APHRODITE esti-
mates were 10.9 %, 18.7 %, 21.7 %, and 21.3 %, respectively.
The most profound difference between the original and cor-
rected APHRODITE estimates occurred over the windward
slopes of the Himalayas before the river flows into the
Brahmaputra valley. The Rx5d calculated from the origi-
nal APHRODITE estimates was lower than 300 mm, while
much higher Rx5d was obtained after bias correction, yield-
ing maxima of 946.6, 1030.3, 1105.1, and 1396.6 mm for
LS-, LOCI-, PT-, and QM-APHRODITE estimates, respec-
tively. The eastern Himalayas, acting as orographic barri-
ers, push the southwest moist air upwards, leading to heav-
ier extreme precipitation over the windward slopes (Singh

et al., 2004; Bookhagen and Burbank, 2010; Dimri et al.,
2016). However, the original APHRODITE estimates tended
to substantially underestimate this extreme precipitation. Be-
sides the aforementioned region, higher Rx5d along the Hi-
malayan front was also found after bias correction. In this
case, extreme precipitation calculated from nonlinear ap-
proaches was heavier than that derived from linear methods.
In general, bias correction is able to consider topographic ef-
fects on the spatial distribution of extreme precipitation more
comprehensively.

4 Discussion

Using two linear and two nonlinear bias methods, we cor-
rected APHRODITE estimates during JJAS in the YBRB to
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Figure 5. Relative change rate of (a) CWD, (b) R10mm, (c) R20mm, (d) Rx1d, (e) Rx5d, and (f) SDII during JJAS for the original and
corrected APHRODITE estimates.

investigate the effects of different approaches on extreme
precipitation analysis. Extreme precipitation indices were
strongly dependent on the bias-correction approach applied.

A primary problem when using gauge-based gridded
datasets for extreme precipitation analysis is the fundamen-
tal mismatch between point-based observations and gridded
estimates (Alexander, 2016). In addition, the spatial cover-
age of rainfall stations is another major source of uncertainty,
particularly where spatial distributions of precipitation are
complex (Donat et al., 2013). There are currently several ap-
proaches for bias correction, ranging from simple linear scal-

ing to more sophisticated nonlinear methods (Teutschbein
and Seibert, 2012). Although mean precipitation corrected
by all bias-corrected approaches was similar, the standard de-
viations and consequent extreme precipitation indices varied
considerably. In the case of linear correction, both mean and
standard deviation are multiplied by same factor (Leander
and Buishand, 2007), resulting in dubious variations in pre-
cipitation. Nonlinear correction adjusts the mean and coeffi-
cient of variation (Teutschbein and Seibert, 2012), yielding
more reliable results. In addition, the typical biases of rain-
fall products are related to their identification of too many

Nat. Hazards Earth Syst. Sci., 20, 2243–2254, 2020 https://doi.org/10.5194/nhess-20-2243-2020



X. Luo et al.: Bias correction of a gauge-based gridded product to improve extreme precipitation analysis 2251

Figure 6. Spatial distribution of mean Rx5d during JJAS in the YBRB based on (a) the original APHRODITE estimates, (b) linear scal-
ing (LS)-APHRODITE estimates, (c) local intensity scaling (LOCI)-APHRODITE estimates, (d) power transformation (PT)-APHRODITE
estimates, and (e) quantile–quantile mapping (QM)-APHRODITE estimates.

wet days with low-intensity precipitation. Among the four
bias-corrected approaches applied herein, LS and PT make
no change to the number of rainy days, while LOCI and QM
use threshold exceedance to match the wet-day frequency to
the observations.

In international river basins, rainfall data are usually not
publicly available, and extreme precipitation analysis may
suffer from data restrictions (Nishat and Rahman, 2009;
Luo et al., 2019). Several great international rivers in South
Asia, including the Indus, Ganges, and Yarlung Tsangpo–
Brahmaputra, originate from or flow through the Himalayas.

Topographic variations in the Himalayas profoundly influ-
ence the spatial distribution of precipitation by altering mon-
soonal flow, resulting in considerable orographic rainfall on
the windward slopes (Khandu et al., 2017). Rainfall esti-
mates of different products varied markedly along the Hi-
malayan front and obtained similar results toward the ad-
jacent low-relief domains (Andermann et al., 2011). The
GHCN-Daily data can be applied to correct gauge-based
gridded datasets in this region, ensuring these products cap-
ture the spatial distribution and variation in extreme precipi-
tation. However, numerous GHCN-Daily records in Asia do
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not contain data from recent years, and the short or incom-
plete rainfall records limit their direct applications (Donat et
al., 2013). Hence, it would be preferable to apply nonpublic
datasets in data-sparse regions.

5 Conclusions

Despite increasing use of gridded rainfall products in
sparsely gauged river basins, their application in extreme
precipitation analysis is challenging due to considerable
biases. This study made use of four methods to correct
APHRODITE estimates in the YBRB. Their influences on
extreme precipitation indices were compared and assessed.
The following conclusions were drawn.

1. The original APHRODITE estimates tended to under-
estimate heavy and very heavy precipitation in the
YBRB, and there were a lot of days with low pre-
cipitation estimations instead of substantial dry con-
ditions. Bias correction greatly improved the perfor-
mance of extreme precipitation analysis. The extreme
precipitation indices calculated from different corrected
APHRODITE estimates varied substantially, and LOCI-
and QM-APHRODITE estimates were able to obtain
more reliable extreme precipitation indices.

2. Insufficient gauge observations in the Himalayas caused
high uncertainty in the heavy precipitation estimates
for the original APHRODITE estimates. After bias cor-
rection using observations from a denser network of
gauges, the heterogeneous orographic effects on ex-
treme precipitation were captured more accurately.
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