Articles | Volume 18, issue 11
https://doi.org/10.5194/nhess-18-3037-2018
https://doi.org/10.5194/nhess-18-3037-2018
Brief communication
 | 
19 Nov 2018
Brief communication |  | 19 Nov 2018

Brief communication: Meteorological and climatological conditions associated with the 9 January 2018 post-fire debris flows in Montecito and Carpinteria, California, USA

Nina S. Oakley, Forest Cannon, Robert Munroe, Jeremy T. Lancaster, David Gomberg, and F. Martin Ralph

Related authors

Western disturbances and climate variability: a review of recent developments
Kieran M. R. Hunt, Jean-Philippe Baudouin, Andrew G. Turner, A. P. Dimri, Ghulam Jeelani, Pooja, Rajib Chattopadhyay, Forest Cannon, T. Arulalan, M. S. Shekhar, T. P. Sabin, and Eliza Palazzi
EGUsphere, https://doi.org/10.5194/egusphere-2024-820,https://doi.org/10.5194/egusphere-2024-820, 2024
Short summary
Extending the CW3E Atmospheric River Scale to the Polar Regions
Zhenhai Zhang, F. Martin Ralph, Xun Zou, Brian Kawzenuk, Minghua Zheng, Irina V. Gorodetskaya, Penny M. Rowe, and David H. Bromwich
EGUsphere, https://doi.org/10.5194/egusphere-2024-254,https://doi.org/10.5194/egusphere-2024-254, 2024
Short summary
Impact of atmospheric rivers on Arctic sea ice variations
Linghan Li, Forest Cannon, Matthew R. Mazloff, Aneesh C. Subramanian, Anna M. Wilson, and Fred Martin Ralph
The Cryosphere, 18, 121–137, https://doi.org/10.5194/tc-18-121-2024,https://doi.org/10.5194/tc-18-121-2024, 2024
Short summary
Temporal changes in rainfall intensity–duration thresholds for post-wildfire flash floods in southern California
Tao Liu, Luke A. McGuire, Nina Oakley, and Forest Cannon
Nat. Hazards Earth Syst. Sci., 22, 361–376, https://doi.org/10.5194/nhess-22-361-2022,https://doi.org/10.5194/nhess-22-361-2022, 2022
Short summary
Contrasting local and long-range-transported warm ice-nucleating particles during an atmospheric river in coastal California, USA
Andrew C. Martin, Gavin Cornwell, Charlotte M. Beall, Forest Cannon, Sean Reilly, Bas Schaap, Dolan Lucero, Jessie Creamean, F. Martin Ralph, Hari T. Mix, and Kimberly Prather
Atmos. Chem. Phys., 19, 4193–4210, https://doi.org/10.5194/acp-19-4193-2019,https://doi.org/10.5194/acp-19-4193-2019, 2019
Short summary

Related subject area

Landslides and Debris Flows Hazards
A coupled hydrological and hydrodynamic modeling approach for estimating rainfall thresholds of debris-flow occurrence
Zhen Lei Wei, Yue Quan Shang, Qiu Hua Liang, and Xi Lin Xia
Nat. Hazards Earth Syst. Sci., 24, 3357–3379, https://doi.org/10.5194/nhess-24-3357-2024,https://doi.org/10.5194/nhess-24-3357-2024, 2024
Short summary
More than one landslide per road kilometer – surveying and modeling mass movements along the Rishikesh–Joshimath (NH-7) highway, Uttarakhand, India
Jürgen Mey, Ravi Kumar Guntu, Alexander Plakias, Igo Silva de Almeida, and Wolfgang Schwanghart
Nat. Hazards Earth Syst. Sci., 24, 3207–3223, https://doi.org/10.5194/nhess-24-3207-2024,https://doi.org/10.5194/nhess-24-3207-2024, 2024
Short summary
Temporal clustering of precipitation for detection of potential landslides
Fabiola Banfi, Emanuele Bevacqua, Pauline Rivoire, Sérgio C. Oliveira, Joaquim G. Pinto, Alexandre M. Ramos, and Carlo De Michele
Nat. Hazards Earth Syst. Sci., 24, 2689–2704, https://doi.org/10.5194/nhess-24-2689-2024,https://doi.org/10.5194/nhess-24-2689-2024, 2024
Short summary
Shallow-landslide stability evaluation in loess areas according to the Revised Infinite Slope Model: a case study of the 7.25 Tianshui sliding-flow landslide events of 2013 in the southwest of the Loess Plateau, China
Jianqi Zhuang, Jianbing Peng, Chenhui Du, Yi Zhu, and Jiaxu Kong
Nat. Hazards Earth Syst. Sci., 24, 2615–2631, https://doi.org/10.5194/nhess-24-2615-2024,https://doi.org/10.5194/nhess-24-2615-2024, 2024
Short summary
Optimizing Rainfall-Triggered Landslide Thresholds to Warning Daily Landslide Hazard in Three Gorges Reservoir Area
Bo Peng and Xueling Wu
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-109,https://doi.org/10.5194/nhess-2024-109, 2024
Revised manuscript accepted for NHESS
Short summary

Cited articles

American Meteorological Society (AMS): Glossary of Meteorology: Atmospheric River, available at: http://glossary.ametsoc.org/wiki/Atmospheric_river, last access: 1 April 2018. 
Bonnin, G. M., Martin, D., Lin, B., Parzybok, T., Yekta, M., and Riley, D.: Precipitation-frequency atlas of the United States, NOAA Atlas, 14, 1–65, 2006. 
CAL FIRE: Thomas Fire Watershed Emergency Response Team Final Report, available at: http://cdfdata.fire.ca.gov/admin8327985/cdf/images/incidentfile1922_3383.pdf, last access: 12 April 2018. 
California Department of Insurance: Montecito mudslide claims top $421 million, available at: http://www.insurance.ca.gov/0400-news/0100-press-releases/2018/release033-18.cfm, last access: 4 April 2018. 
County of Santa Barbara: Thomas Fire and 1/9 debris flow recovery strategic plan, available at: https://www.scribd.com/document/381185041/Santa-Barbara-County-Recovery-Strategic-Plan, last access: 8 June 2018. 
Download
Short summary
The 9 January 2018 post-fire debris flows in Montecito and Carpinteria, California, killed 23 people and destroyed over 100 homes. We examine the meteorological conditions of the event and find that a narrow band of high-intensity rainfall along a cold front triggered the debris flow. Observed rainfall rates were extreme, but not unprecedented for the region. This work increases awareness of these rainbands as a post-fire hazard in California and other midlatitude regions impacted by wildfire.
Altmetrics
Final-revised paper
Preprint