Articles | Volume 15, issue 2
https://doi.org/10.5194/nhess-15-349-2015
https://doi.org/10.5194/nhess-15-349-2015
Research article
 | 
27 Feb 2015
Research article |  | 27 Feb 2015

Analysing the spatial patterns of erosion scars using point process theory at the coastal chalk cliff of Mesnil-Val, Normandy, northern France

J. Rohmer and T. Dewez

Related authors

Drawing lessons for multi-model ensemble design from emulator experiments: application to future sea level contribution of the Greenland ice sheet
Jeremy Rohmer, Heiko Goelzer, Tamsin Edwards, Goneri Le Cozannet, and Gael Durand
EGUsphere, https://doi.org/10.5194/egusphere-2025-52,https://doi.org/10.5194/egusphere-2025-52, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Insights into the prediction uncertainty of machine-learning-based digital soil mapping through a local attribution approach
Jeremy Rohmer, Stephane Belbeze, and Dominique Guyonnet
SOIL, 10, 679–697, https://doi.org/10.5194/soil-10-679-2024,https://doi.org/10.5194/soil-10-679-2024, 2024
Short summary
Improving interpretation of sea-level projections through a machine-learning-based local explanation approach
Jeremy Rohmer, Remi Thieblemont, Goneri Le Cozannet, Heiko Goelzer, and Gael Durand
The Cryosphere, 16, 4637–4657, https://doi.org/10.5194/tc-16-4637-2022,https://doi.org/10.5194/tc-16-4637-2022, 2022
Short summary
Partitioning the contributions of dependent offshore forcing conditions in the probabilistic assessment of future coastal flooding
Jeremy Rohmer, Deborah Idier, Remi Thieblemont, Goneri Le Cozannet, and François Bachoc
Nat. Hazards Earth Syst. Sci., 22, 3167–3182, https://doi.org/10.5194/nhess-22-3167-2022,https://doi.org/10.5194/nhess-22-3167-2022, 2022
Short summary
Statistical estimation of spatial wave extremes for tropical cyclones from small data samples: validation of the STM-E approach using long-term synthetic cyclone data for the Caribbean Sea
Ryota Wada, Jeremy Rohmer, Yann Krien, and Philip Jonathan
Nat. Hazards Earth Syst. Sci., 22, 431–444, https://doi.org/10.5194/nhess-22-431-2022,https://doi.org/10.5194/nhess-22-431-2022, 2022
Short summary

Related subject area

Landslides and Debris Flows Hazards
Identifying unrecognised risks to life from debris flows
Mark Bloomberg, Tim Davies, Elena Moltchanova, Tom Robinson, and David Palmer
Nat. Hazards Earth Syst. Sci., 25, 647–656, https://doi.org/10.5194/nhess-25-647-2025,https://doi.org/10.5194/nhess-25-647-2025, 2025
Short summary
Predicting the thickness of shallow landslides in Switzerland using machine learning
Christoph Schaller, Luuk Dorren, Massimiliano Schwarz, Christine Moos, Arie C. Seijmonsbergen, and E. Emiel van Loon
Nat. Hazards Earth Syst. Sci., 25, 467–491, https://doi.org/10.5194/nhess-25-467-2025,https://doi.org/10.5194/nhess-25-467-2025, 2025
Short summary
Unraveling landslide failure mechanisms with seismic signal analysis for enhanced pre-survey understanding
Jui-Ming Chang, Che-Ming Yang, Wei-An Chao, Chin-Shang Ku, Ming-Wan Huang, Tung-Chou Hsieh, and Chi-Yao Hung
Nat. Hazards Earth Syst. Sci., 25, 451–466, https://doi.org/10.5194/nhess-25-451-2025,https://doi.org/10.5194/nhess-25-451-2025, 2025
Short summary
Comparison of conditioning factor classification criteria in large-scale statistically based landslide susceptibility models
Marko Sinčić, Sanja Bernat Gazibara, Mauro Rossi, and Snježana Mihalić Arbanas
Nat. Hazards Earth Syst. Sci., 25, 183–206, https://doi.org/10.5194/nhess-25-183-2025,https://doi.org/10.5194/nhess-25-183-2025, 2025
Short summary
Invited perspectives: Integrating hydrologic information into the next generation of landslide early warning systems
Benjamin B. Mirus, Thom Bogaard, Roberto Greco, and Manfred Stähli
Nat. Hazards Earth Syst. Sci., 25, 169–182, https://doi.org/10.5194/nhess-25-169-2025,https://doi.org/10.5194/nhess-25-169-2025, 2025
Short summary

Cited articles

Baddeley, A. and Turner, R.: spatstat: An R Package for Analyzing Spatial Point Patterns, J. Stat. Software, 12, 2005.
Baddeley, A., Moller, J., and Waagepetersen, R.: Non- and semiparametric estimation of interaction in inhomogeneous point patterns, Statistica Neerlandica, 54, 329–350, 2000.
Baddeley, A., Møller, J., and Pakes, A. G.: Properties of residuals for spatial point processes, Ann. I. Stat. Math., 60, 627–649, 2008.
Besag, J. E.: Contribution to the discussion of Dr. Ripley's paper, J. Roy. Stat. Soc. B, 39, 193–195, 1977.
Bird, F.: Coastal Geomorphology, an Introduction, Wiley, Chicester, UK, 322 pp., 2000.
Download
Short summary
This article uses summary statistics of spatial point process theory to study the spatio-temporal pattern of a rockfall inventory recorded with repeated terrestrial laser scanning surveys at a chalk coastal cliff site in Normandy, France. This allows testing and quantifying the significance of geomorphological observations. From a spatial distribution perspective, behaviours of small and large scars cannot be considered equivalent, suggesting that erosion processes and triggering factors differ.
Share
Altmetrics
Final-revised paper
Preprint