Articles | Volume 26, issue 1
https://doi.org/10.5194/nhess-26-411-2026
https://doi.org/10.5194/nhess-26-411-2026
Research article
 | 
22 Jan 2026
Research article |  | 22 Jan 2026

Autonomous and efficient large-scale snow avalanche monitoring with an Unmanned Aerial System (UAS)

Jaeyoung Lim, Elisabeth Hafner-Aeschbacher, Florian Achermann, Rik Girod, David Rohr, Nicholas Lawrance, Yves Bühler, and Roland Siegwart

Related authors

Simulation of cold-powder snow avalanches considering daily snowpack and weather situations
Julia Glaus, Katreen Wikstrom Jones, Perry Bartelt, Marc Christen, Lukas Stoffel, Johan Gaume, and Yves Bühler
Nat. Hazards Earth Syst. Sci., 25, 2399–2419, https://doi.org/10.5194/nhess-25-2399-2025,https://doi.org/10.5194/nhess-25-2399-2025, 2025
Short summary
Monitoring snow depth variations in an avalanche release area using low-cost lidar and optical sensors
Pia Ruttner, Annelies Voordendag, Thierry Hartmann, Julia Glaus, Andreas Wieser, and Yves Bühler
Nat. Hazards Earth Syst. Sci., 25, 1315–1330, https://doi.org/10.5194/nhess-25-1315-2025,https://doi.org/10.5194/nhess-25-1315-2025, 2025
Short summary
Development of operational decision support tools for mechanized ski guiding using avalanche terrain modeling, GPS tracking, and machine learning
John Sykes, Pascal Haegeli, Roger Atkins, Patrick Mair, and Yves Bühler
Nat. Hazards Earth Syst. Sci., 25, 1255–1292, https://doi.org/10.5194/nhess-25-1255-2025,https://doi.org/10.5194/nhess-25-1255-2025, 2025
Short summary
High-resolution hydrometeorological and snow data for the Dischma catchment in Switzerland
Jan Magnusson, Yves Bühler, Louis Quéno, Bertrand Cluzet, Giulia Mazzotti, Clare Webster, Rebecca Mott, and Tobias Jonas
Earth Syst. Sci. Data, 17, 703–717, https://doi.org/10.5194/essd-17-703-2025,https://doi.org/10.5194/essd-17-703-2025, 2025
Short summary
Brief communication: Monitoring impending slope failure with very high-resolution spaceborne synthetic aperture radar
Andrea Manconi, Yves Bühler, Andreas Stoffel, Johan Gaume, Qiaoping Zhang, and Valentyn Tolpekin
Nat. Hazards Earth Syst. Sci., 24, 3833–3839, https://doi.org/10.5194/nhess-24-3833-2024,https://doi.org/10.5194/nhess-24-3833-2024, 2024
Short summary

Cited articles

Agisoft: AgiSoft PhotoScan Professional (Version 1.6.4), http://www.agisoft.com, last access: 3 July 2024a. a, b
Agisoft: AgiSoft PhotoScan Professional (Version 2.1.2), http://www.agisoft.com,last access: 3 July 2024b. a, b
Astuti, G., Giudice, G., Longo, D., Melita, C. D., Muscato, G., and Orlando, A.: An overview of the “volcan project”: An UAS for exploration of volcanic environments, in: Unmanned Aircraft Systems: International Symposium On Unmanned Aerial Vehicles, UAV’08, Springer, 471–494, https://doi.org/10.1007/s10846-008-9275-9, 2009. a, b
Bähnemann, R., Lawrance, N., Chung, J. J., Pantic, M., Siegwart, R., and Nieto, J.: Revisiting Boustrophedon Coverage Path Planning as a Generalized Traveling Salesman Problem, in: Field and Service Robotics, edited by: Ishigami, G. and Yoshida, K., 277–290, https://doi.org/10.1007/978-981-15-9460-1_20, 2021. a, b
Bekris, K. E.: Avoiding inevitable collision states: Safety and computational efficiency in replanning with sampling-based algorithms, in: Workshop on Guaranteeing Safe Navigation in Dynamic Environments, in: International Conference on Robotics and Automation (ICRA-10), https://people.cs.rutgers.edu/~kb572/pubs/ics_tradeoffs.pdf (last access: 9 January 2026), 2010. a
Download
Short summary
As avalanches occur in remote and potentially dangerous locations, data relevant to avalanche monitoring is difficult to obtain. Uncrewed fixed-wing aerial vehicles are promising platforms for gathering aerial imagery to map avalanche activity over a large area. In this work, we present an unmanned aerial system (UAS) capable of autonomously navigating and mapping avalanches in steep mountainous terrain. We expect our work to enable efficient large-scale autonomous avalanche monitoring.
Share
Altmetrics
Final-revised paper
Preprint