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Abstract. Current and accurate information about the loca-
tion and extent of released avalanches is critical for public
safety and decision-making. However, such data is difficult
and expensive to obtain in remote locations. Uncrewed fixed-
wing aerial vehicles, due to their low cost, long range, and
high travel speeds, are promising platforms to gather aerial
imagery to map avalanche activity. However, autonomous
flight in mountainous terrain remains a challenge due to the
complex topography, regulations, and harsh weather condi-
tions. In this work, we present a proof of concept system that
is capable of safely navigating and mapping avalanches using
a fixed-wing aerial system (UAS) and discuss the challenges
arising for operating such a system. We show in our field ex-
periments that we can effectively and safely navigate in steep
mountain environments while maximizing the map quality
and efficiency while meeting regulatory requirements. We
expect our work to enable more autonomous operations of
fixed-wing vehicles in alpine environments to maximize the
quality of the data gathered. By enabling the acquisition of
frequent and high quality information on avalanche activity,
such drone systems would have a large impact of safety crit-
ical applications such as avalanche warning, mitigation mea-
sure planning or hazard mapping.

1 Introduction

Spatially continuous documentation of hazardous natural
processes such as snow avalanches, rockfalls, or debris flows
provides critical information for risk management. Know-
ing the history – when, where, and under which conditions
these processes have occurred helps to continuously assess
and act upon risk levels of the hazard. For snow avalanches,
the natural hazard claiming most lives in Switzerland on av-
erage (Schweizer, 2008), informed decision-making relies on
the large-scale availability of, among others, the spatial ex-
tent and size of occurred avalanches. This data benefits appli-
cations including hazard mapping, mitigation measure plan-
ning and evaluation, risk analysis, avalanche warning, nu-
merical avalanche models, as well as avalanche research.

However, as avalanches occur in remote and poten-
tially dangerous locations, this data is difficult to ob-
tain (Schweizer et al., 2021; Bühler et al., 2019). Conse-
quently, available data sources are often limited to easy-
to-access locations and events, leaving an incomplete and
possibly biased state of information and understanding.
Historically, avalanche data acquisition has relied on hu-
man observers, more recently complemented by stationary
sensors like Doppler radars or infrasound (e.g., Schimmel
et al., 2017) or remote sensing with satellites, airplanes or
drones (e.g., Eckerstorfer et al., 2016; Hafner et al., 2023).
Doppler radars and infrasound require in-situ infrastruc-
ture and only cover limited areas. Both optical (Lato et al.,
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2012; Bühler et al., 2019; Hafner et al., 2022) and synthetic-
aperture radar (SAR) (Eckerstorfer et al., 2019; Leinss et al.,
2020; Bianchi et al., 2021) from satellites have been success-
fully used to automatically detect avalanches over large ar-
eas. However, suitable satellite data can be expensive (e.g.,
Bühler et al., 2019), may lack the temporal resolution for
monitoring (e.g., Hafner et al., 2022), may struggle with cap-
turing smaller avalanches (e.g., Hafner et al., 2021) or in case
of SAR, only capture parts of the avalanche (Eckerstorfer and
Malnes, 2015; Hafner et al., 2021). Unlike satellite imagery,
aerial imagery acquired with airplanes or drones allows for
photogrammetric reconstruction of the surface which pro-
vides information on the snow (volume) distribution and the
release height of avalanches in addition to the avalanche area
from release to deposit (e.g., Bühler et al., 2015; Meyer et al.,
2022; Bührle et al., 2023). However, crewed airplanes have
high operating costs and limited deployment availabilities
per season (Bühler et al., 2016).

Utilizing easily manageable small unmanned aerial sys-
tems (sUASs), also denoted as drones, could provide the ben-
efits of using aerial imagery at a fraction of the cost of oper-
ating manned airplanes. The high speed (order of 5–30 ms−1

), long-range, and ability to be deployed with relatively lit-
tle fixed ground infrastructure makes fixed-wing type sUASs
particularly well-suited to capturing remote imaging data
over hard-to-access areas. sUASs have already proven their
usefulness in various applications for large-scale environ-
mental monitoring (Lin and Lee, 2008; Astuti et al., 2009;
Vivaldini et al., 2019; Shah et al., 2020; Islam and Hu, 2021;
Jouvet et al., 2019; Teisberg et al., 2022).

We envisage the data-collection process for avalanches by
collecting remote imaging data with an sUAS. An sUAS ca-
pable of autonomously traveling long distances to reach mul-
tiple remote interest areas, mapping the avalanche release
area, and safely returning to the start location would pro-
vide high-quality avalanche distribution data with accurate
release volume estimates. The envisioned workflow would
be as follows. In the first stage, one or multiple target region
of interests (ROIs) would be pre-selected by a domain ex-
pert operator with an understanding of the conditions that are
most likely to cause avalanche events (Fig. 1a). Alternatively,
modeled avalanche terrain (e.g., Bühler et al., 2022) could be
used. Next, a subset of reachable ROIs would be selected for
a single sortie, and passed to the sUAS (Fig. 1b). On reach-
ing the ROI, the vehicle gathers image data autonomously
for photogrammetry and ensures that the gathered images
produce an accurate reconstruction (Fig. 1c). Once all the
image data is acquired, the vehicle should safely return to
the launch site. The photogrammetrically processed data can
then be used to determine the release and deposit height, re-
lease volume, avalanche area, and snow depth distribution.

Executing such a mission with an sUAS first requires
a route optimization method to determine which ROIs fit
within a single sortie. Then, the vehicle should be capable
of navigating safely towards the ROI, efficiently map the

avalanches, and finally move to the next ROI or return to
the launch location. Due to the finite image resolution, ve-
hicles might need to fly close to the snow surface in order to
acquire image data with the necessary ground sample dis-
tance (GSD). Moreover, current regulations applied in the
EU and Switzerland (European Commission, 2019) require
the vehicle to maintain a close distance to the terrain. How-
ever, operating fixed-wing aerial vehicles in steep alpine en-
vironments remains a major challenge as they operate at high
speeds and are severely limited in maneuverability. This in-
creases the risk of the vehicle entering an unsafe state, as
the terrain might become steeper than the vehicle can climb,
or narrower than the vehicle can turn (Lim et al., 2024a).
The presence of mountain forests at steep slopes with trees
of up to 35 m height above ground further reduces airspace
margins and increases the probability of crashing. Addition-
ally, state-of-the-art image data-gathering surveys are pre-
planned using a sequence of automatic or handcrafted way-
points. However, these methods struggle to ensure safe and
regulation-compliant operations for fixed-wind sUASs, espe-
cially in steep alpine terrain. Furthermore, pre-planned sur-
veys are unable to account for interferences such as wind
gusts, that disturb the different viewpoints away from those
planned, potentially resulting in poor or incomplete recon-
struction.

In this paper, we address these challenges using an au-
tonomous planner capable of navigating in steep mountain-
ous terrain and autonomously mapping the terrain surface
for photogrammetry reconstruction. As the vehicle is op-
erated autonomously, there is no longer a need to explic-
itly pre-plan the mission, allowing the operator to dynami-
cally change the behavior during flight. This can be useful
to adjust the vehicle’s mission depending on changing sit-
uations, such as weather conditions, which is not possible
with conventional pre-planned missions. The vehicle navi-
gates to the ROI autonomously using a safe path planner.
Then, the system collects high-quality photos by actively op-
timizing viewpoints during flight for reliably creating a pho-
togrammetric reconstruction of the terrain. This work inte-
grates recent advances in fixed-wing navigation and map-
ping (Lim et al., 2023b, 2024a, b) into an integrated sys-
tem for avalanche mapping. We demonstrate and evaluate the
approach by deploying an integrated tiltrotor vertical take-
off and landing (VTOL) system in alpine terrain in Davos,
Switzerland (Fig. 2). Ultimately, our work is a step towards
a fixed-wing sUAS that can autonomously map avalanches.

2 Prior Work

2.1 Environmental Monitoring with sUAS

Easily manageable sUAS have become a data collection
tool for environmental (Dunbabin and Marques, 2012),haz-
ard and disaster monitoring (Gomez and Purdie, 2016). Es-
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Figure 1. Overview of the autonomous avalanche monitoring using a long-range fixed-wing UAV. (a) Scientific domain expert defines
multiple ROIs which can be avalanche release areas. (b) A subset of reachable ROI would be selected for a single sortie and passed to the
small uncrewed aerial system (sUAS) (c) Once reaching the ROI, the vehicle will gather image data for use of photogrammetry where the
release volume, avalanche outline and texture of the snow can be acquired.

Figure 2. (a) Image of the tiltrotor VTOL platform taking off during the field deployment in a narrow valley in Davos, Switzerland.
(b) Overview of airframe and components of the system.

pecially, multirotor type sUAS are popular, due to their me-
chanical simplicity, agile flight characteristics, and minimal
requirements for ground infrastructure. However, multirotor
type sUAS are not energy efficient, limiting their range and
flight time, and therefore not well-suited to large-scale envi-
ronment monitoring tasks. In contrast, fixed-wing type sUAS
are more efficient, with long range and fast cruise speed,
which are well suited for large-scale environment moni-
toring tasks. Therefore, fixed-wing type sUAS have been
used for large scale environment applications such as hur-
ricanes (Lin and Lee, 2008), volcanoes (Astuti et al., 2009)
and forests (Vivaldini et al., 2019).

In alpine environments, sUAS has been used for snow
depth mapping (Vander Jagt et al., 2015; Harder et al.,
2016; Bühler et al., 2016; Bühler et al., 2017; De Michele
et al., 2016) or monitoring glaciers (Jouvet et al., 2019;
Teisberg et al., 2022). Bühler et al. (2016) showed that us-
ing photogrammetry with a camera mounted on an sUAS
can provide high-quality snow depth data. However, ho-
mogeneous snow texture remains a significant challenge
due to a lack of distinct visual features required for re-

construction (Bühler et al., 2017). Captured avalanches can
be easily mapped manually (Bühler et al., 2019) or semi-
automatically (Hafner et al., 2022) from the generated or-
thophotos. Outlines mapped from georeferenced data con-
tain an existential uncertainty as different human experts map
the avalanches slightly differently, but they lack the posi-
tional uncertainty inherent to avalanches mapped from the
ground (Hafner et al., 2023).

However, most of the previous approaches rely on pre-
planned paths that are carefully hand-designed using a se-
quence of waypoints. This requires expert planned missions
which may be hard to dynamically alter during operations,
making it difficult to ensure safe operations when some-
thing unforeseen changes. Additionally, the tight altitude
constraints (120 m above ground level (a.g.l.)) posed by the
EU regulations (European Commission, 2019) pose a signifi-
cant challenge in planning a safe mission, as the vehicle’s de-
viation from the waypoint sequences is hard to predict. In this
work, we use an autonomous planner that does not require
explicit waypoint planning but rather is directly constrained
by the digital elevation map (DEM) and can autonomously
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steer the vehicle during flight. Also, provided with the target
ROI, the planner dynamically adapts to the actual measure-
ments to ensure good quality of the photogrammetry recon-
struction.

2.2 Navigation with Fixed-wing Aerial Vehicles

Like birds, fixed-wing vehicles leverage the aerodynamic
lift generated by their wings to stay airborne. As this is an
energy-efficient way to generate the lift force required to stay
airborne, fixed-wing vehicles can for fly longer than other
types of aerial systems. However, generating sufficient aero-
dynamic forces requires the vehicle to maintain a high speed
relative to the air. High speed limits spatial maneuverability,
imposing constraints such as minimum turn radius or max-
imum flight path angle (Chitsaz and LaValle, 2007). Most
importantly, fixed-wing vehicles cannot stop, as opposed to
other types of vehicles such as multirotor or helicopter-type
vehicles that can hover in one position. This property of
fixed-wing vehicles poses a significant challenge in ensur-
ing safety when operating in complex environments (such as
mountainous regions), where the terrain can be either steeper
than the vehicle can climb or the valley narrower than the
vehicle can turn (Lim et al., 2024a). This can lead to the ve-
hicle entering an inevitable collision state (ICS) (Fraichard
and Asama, 2004), a state where there are no feasible actions
that the vehicle can take to avoid an eventual collision, in
particular with trees. Such occurrences of ICS can be chal-
lenging for the operator to correct, as the vehicle may enter
an ICS long before an actual collision occurs. Practical im-
plementations of fixed-wing path planning have been shown
in indoor (Bry et al., 2015) and alpine environments (Oet-
tershagen et al., 2017; Duan et al., 2024b), using curva-
ture constrained Dubins curves (Dubins, 1957; Owen et al.,
2015) to represent the maneuverability constraints of fixed-
wing aerial vehicles. However, these approaches only find
collision-free paths without considering safety against enter-
ing an ICS. Additionally, the vehicle needs to consider con-
straints imposed by the regulations, such as the EU altitude
restrictions (European Commission, 2019) that limit flight to
below 120 m a.g.l.

In this work, we built on previous work from Lim et al.
(2024a) which utilizes periodic circular loiter paths to sim-
plify the evaluation of safety directly on a DEM. To inte-
grate the planner into the system, we incorporate the safe
path planner into a finite state machine, so that the vehicle al-
ways remains in a safe state. While the operator can modify
the target position or path, the vehicle cannot enter an unsafe
maneuver. This provides the flexibility to dynamically adjust
the flight plan while guaranteeing safety and compliance with
the tightened regulations.

2.3 Active Mapping for Aerial Photogrammetry

The most widely used method to plan a photogrammetry mis-
sion for an aerial vehicle is by generating a coverage pattern
that covers the ROI with a specified GSD (the target size
of an image pixel projected on the ground) and amount of
image overlap (Galceran and Carreras, 2013). One common
approach to generate a coverage pattern is boustrophedon
(“the way of the ox”) decomposition (Choset, 2000). First,
the target region is divided into a set of non-overlapping con-
vex polygons (whose union is the complete target region).
Next, for each polygon, the algorithm generates a sweep pat-
tern (commonly known as boustrophedon or “lawn-mower”)
consisting of parallel alternating-direction straight line seg-
ments, separated by a fixed distance based on the desired
sensor footprint and overlap. Connecting the individual cov-
erage patterns with transit segments results in a complete
coverage path, ensuring that all parts of the target region
are observed by the sensor. Extensions of this work can be
found in decomposing nonconvex regions and planning the
visit sequence as a traveling salesman problem (Bähnemann
et al., 2021), or using Reeb graphs (Mannadiar and Rekleitis,
2010).

While this may be near-optimal for 2D planar environ-
ments (Choset, 2000), naïvely projecting the path over three-
dimensional environments can result in inconsistent overlaps
and ground sampling distances. Moreover, kinematically-
constrained vehicles, such as fixed-wing vehicles, may strug-
gle to follow the coverage patterns resulting in suboptimal
performance (Mier et al., 2023). Therefore, boustrophedon
decomposition-based coverage planning for fixed-wing ve-
hicles requires significant engineering effort to work reliably
in steep alpine environments. Further, preplanned missions
are less robust against environmental disturbances such as
wind, where aircraft motion may result in the actual image
poses deviating from the planned poses. Since the plan is
not adjusted for these disturbances during execution, the re-
sulting image set may have holes and/or overly-covered re-
gions (Coombes et al., 2017). A common strategy to address
these issues is to generate overly conservative plans that en-
force more image overlap than is required, in the hope that
the minimum requirement is met when the plan is executed.
However, there is no way to determine the quality of the im-
age data gathered from the survey, making it hard for oper-
ators to judge whether the data quality is sufficient without
running a time-consuming photogrammetric reconstruction.

Active view planning methods, on the contrary, plan fu-
ture viewpoints iteratively based on previous observations.
In a photogrammetric reconstruction context, active view
planning involves selecting viewpoints that are most likely
to improve the reconstruction given the previously collected
views. A “good” image is one that helps ensure the target
region is covered by multiple views from multiple direc-
tions. Explore-and-exploit methods (Morilla-Cabello et al.,
2022; Hepp et al., 2018b; Bircher et al., 2016) evaluate the
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quality of the photogrammetric reconstruction to plan future
viewpoints. However, these approaches use photogrammet-
ric reconstruction between surveys to evaluate the quality of
the reconstruction. As photogrammetric reconstruction is a
computationally intensive operation, the limited payload and
power available on an sUAS makes explore-and-exploit ap-
proaches challenging to use for maneuver planning during
flight. Additionally, the dynamic nature of avalanches and
short flight-weather windows make this approach impracti-
cal for avalanche monitoring. Some approaches use a lower
computational cost view utility heuristic to estimate the qual-
ity of the target surface without reconstruction (Smith et al.,
2018; Peng and Isler, 2018). Prior works have tried estimat-
ing the view utility metric through learning (Hepp et al.,
2018a; Liu et al., 2022). However, these heuristics do not
generalize well to different applications.

In our prior work (Lim et al., 2023b), the quality of recon-
struction is estimated using Fisher information, derived from
the measurement model of the camera. This makes the ap-
proach more generally applicable and less sensitive to heuris-
tic parameters. In this work, an example of view planning
was demonstrated by exhaustively searching over all pos-
sible maneuvers. However, due to the high branching fac-
tor, this is too computationally expensive to evaluate in real
time. Therefore, we use a sampling-based approximate graph
search such that the informative maneuvers can be computed
onboard the vehicle in real time. Greedily selecting the next
best single reachable view performs poorly for an aerial ve-
hicle, because such a myopic sampling strategy may not al-
low the vehicle to reach more distant but highly informative
viewpoints.

3 System Overview

We propose a system that is capable of autonomously nav-
igating alpine environments and mapping a ROI without a
handcrafted predefined plan, specifically developed for this
project. We break down the system by route optimization,
platform, autonomous planner, and operational processes.
The route optimization determines the route on which ROI
is feasible to visit within a single sortie. The platform in-
cludes the airframe hardware and avionics of the vehicle. The
autonomous planner is the software running on the onboard
computer that enables autonomous operations of the vehicle.
Lastly, the operational process is presented to provide insight
into the reduced workload of the operator during autonomous
operations.

3.1 Route Optimization

We assume a situation in which an avalanche expert specifies
a set of target regions to visit. These could be areas where
avalanches have or are expected to have occurred, and the
approximate location is known to the domain expert. With a

large number of ROIs, or large ROIs, the vehicle may not be
able to visit all the ROIs within a single sortie since the range
of the vehicle is limited. Moreover, the large uncertainty in
wind conditions introduces uncertainties on the reachability
of ROIs accessible by the vehicle. The goal of the route op-
timization is to find a sequence of paths that maximizes the
number of ROIs the vehicle can visit while ensuring that the
vehicle can return to the goal point within a single sortie. If
necessary, the route optimization is repeated sequentially, in
order to cover all ROIs over multiple flights.

In this work, we consider a realistic example of four ROIs
that are distributed in the avalanche hazard area next to
Davos, Switzerland (Fig. 3). We consider an energy bud-
get based on the platform mentioned in Sect. 3.2, which is
equipped with a 6S 23000 mAh lithium polymer battery. The
route optimization problem for a single sortie can be formu-
lated as an orienteering problem (Chao et al., 1996) and inter-
preted as a graph. For the graph, each ROI vertex is assigned
a reward (the value of mapping that ROI) and a mapping cost
(the approximate distance required to map the ROI), and each
edge is assigned a traversal cost. The goal of the orienteering
problem is to find a path from the start vertex to the goal
vertex, visiting the set of ROI vertices that maximizes the
number of ROIs visited, while keeping the total cost (or, ef-
fectively, the energy spent) within the limited energy budget.
For a realistic long-range deployment scenario considered in
this paper, we assume the start and end vertices to be at the
same location.

To construct the graph, edges are generated by finding the
shortest path between the ROI positions (Fig. 3a). Each ROI
position is considered as a loiter path, which is used as an
intermediate position to start mapping the ROI and return to
before navigating to the next ROI. If a path exists between
all nodes, we can consider the graph as a fully connected
graph (Fig. 3b). A sampling-based path planner that consid-
ers the kinematic constraints of a fixed-wing vehicle, while
staying under the constraints of distance to terrain remaining
between 50 to 120 m is used for generating the edge (Lim
et al., 2024a). Note that the edges are directional and asym-
metric, meaning that the cost of navigating between two
nodes depends on the direction of travel. We consider the ex-
pected energy required to traverse the path using the model
in Duan et al. (2024a) to be the cost of the edge (Fig. 3b).
The energy model accounts for the 3D geometry of the path
as well as wind. Therefore, the edge costs can be updated
based on wind conditions, if available. In this work, however,
we assume zero wind, noting that accurate local, low-altitude
wind-estimates are very challenging to obtain, especially in
the considered terrain. To accommodate the respective uncer-
tainty, we instead plan with a conservative energy budget for
simplicity.

To solve the orienteering problem, we use the branch-and-
bound method, a graph search algorithm that reduces the
search space by pruning the decision tree that is not promis-
ing (Land and Doig, 2010). The orienteering problem is ap-
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Figure 3. Visualization of the route optimization example with four ROIs. The start position is labeled as A, and the ROIs are labeled as
D, G, E, I. (a) Roadmap of the full graph. Each edge is a safe path navigating from one vertex to the other. The edges are colored based on
which vertex the edge is started from. (b) Graph and solution of the orienteering problem. The edge cost of the graph is the path length of
the paths shown in the roadmap. The solution route of the orienteering problem is highlighted in cyan for the first flight, and magenta for the
second flight. (c) Path of the solution path. Source of orthoimage: swisstopo (1998b).

Figure 4. Number of ROIs reachable with different ranges of the
vehicle, for the ROIs shown in Fig. 3a. Low mapping time allows
the vehicle to reach more ROIs. The range of the platform (51.6 km)
is marked as the red dotted line.

plied sequentially over multiple flights, until all ROIs are
covered with each sortie. In the example we assumed each
sortie has the same energy budget, e.g. fully charged batter-
ies. The solution path for the orienteering problem can be
found on the graph highlighted in cyan (Fig. 3b), and the
path extracted from the roadmap to create a plan (Fig. 3c).

In order to compare the impact of range for gathering suf-
ficient information, we compare the number of ROIs the ve-
hicle would be able to visit and map, to the range of the ve-
hicle (Fig. 4). The range is calculated based on level flight
with cruise airspeed (18.7 ms−1). Additionally, we compare
the number of ROIs that the vehicle can visit for the first sor-

tie, depending on the average mapping time to map an ROI.
It can be seen that multirotor vehicles, which have a typical
range of 10–15 km would not be able to visit and map a sin-
gle ROI in this example, even if we were to ignore the cost
to map the ROI (mapping time = 0 s). Therefore, fixed-wing
aerial vehicles, which typically have a much longer range,
would be better suited for visiting multiple ROIs. Addition-
ally, we can see that the time required for mapping has a sig-
nificant impact on the number of ROIs the vehicle can visit.
In our example, the range of the platform is around 51.6 km
and the vehicle would only be able to visit all four ROIs if it
does not need to spend any time for mapping. In contrast, if
the average mapping time is been raised to 1000 s, the plat-
form will only be able to visit one ROI. This underlines the
importance of an efficient mapping method. Active mapping,
as we propose in this work, helps to reduce the mapping
cost, allowing the vehicle to visit more ROIs within a sin-
gle sortie. The route plan optimized with an average map-
ping time of 500 s shows that we need to perform sequential
missions to cover all four ROIs (Fig. 3a) and the path can
be extracted from the graph optimized through solving ori-
enteering (Fig. 3b).

Note that validating the route optimization for several
ROI on a real platform would require beyond visual line
of sight (BVLOS) flight operations. Therefore, we exclude
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this from the field test evaluations presented in Sect. 4, and
demonstrate only with a single ROI.

3.2 Platform

The platform consists of the airframe and the avionics
system. The airframe is a commercially-available tiltrotor
VTOL aircraft with a mass of 5.7 kg and a wingspan of
2300 mm based on the Makeflyeasy Freeman (mfe, 2024)
(Fig. 2b). The wing-mounted motors tilt upwards to hover
during takeoff and landings, which eliminates the need for
a runway and allows the vehicle to launch and land in con-
fined locations. This is a significant advantage in mountain-
ous environments where flat regions large enough for tradi-
tional fixed-wing take-off can be hard to find. After take-off,
the front rotors tilt forward to operate as a normal fixed-wing
vehicle for the remainder of the mission until landing. The
fixed-wing flight modality uses 9.5 % of the power compared
to hovering flight, and cruise speed of 18.7 ms−1, extend-
ing the range of the system significantly. We assume that the
vehicle always maintains the air-relative cruise speed such
that the vehicle maximizes its endurance, and simplifying the
planning process.

The avionics of the system consist of a flight management
unit (FMU) and an onboard computer. Our system uses the
Holybro Pixhawk 4 FMU running the PX4 autopilot soft-
ware (Meier et al., 2015). The FMU runs low-level control
loops, such as the guidance controller used for path follow-
ing (Stastny and Siegwart, 2019), which stabilize the vehicle
and is capable of global navigation satellite system (GNSS)-
based navigation. GNSS-based navigation provides safety in
case the onboard computer fails or the communication to the
operator or safety pilot is lost. The onboard computer is an
Intel NUC, equipped with a 3.5 GHz Intel Core i7-7567U
CPU. When engaged, the computer runs the autonomous
path planner, sending commands to the FMU.

The vehicle is operated through an operator using two in-
dependent communication links. A cellular connection to the
onboard computer is used for command and visualization of
the autonomous planner, as well as telemetry data directly
from the FMU. A redundant 868 MHz telemetry connection
is used to stream data directly from the FMU. An RC uplink
enables a safety pilot to fly the vehicle manually in the case
of an emergency.

The imaging payload is a 61 MP Sony A7R mirrorless
camera mounted rigidly to the fuselage. To use the image
data for photogrammetry, the FMU provides the camera with
a capture trigger signal to acquire accurate timestamps for
geotagging. A real time kinematic (RTK) GNSS is used for
global position estimation, where the vehicle’s global posi-
tion is estimated by fusing inertial measurement unit (IMU)
data. The image data is geotagged post-flight by synchroniz-
ing the capture signal to the image sequences. On the ground,
the geotagged images are passed to the photogrammetry re-
construction using Agisoft metashape (Agisoft, 2024a, b).

3.3 Autonomous Path Planner

We present an autonomous planner that is capable of safely
guiding the fixed-wing aerial vehicle to the region of inter-
est, autonomously mapping the avalanche, and returning to
the takeoff position. Different tasks are executed through a
finite state machine, which is shown in Fig. 6. The finite state
machine allows the operator to change the behavior of the ve-
hicle during the execution of the mission, without specifying
low-level commands such as waypoints. This approach re-
duces the operator’s workload, as the operator does not need
to specify the exact waypoints and evaluate whether the mis-
sion plan is safe.

There are five discrete states, denoted Hold, Navigate,
Mapping, Abort, and Return. These states correspond to the
respective tasks, which we group into an idle state, a navi-
gation state, and a task state. An idle state includes the Hold
state, where the vehicle stays on a circular periodic path. The
vehicle can indefinitely wait for the next operator command,
and therefore it is assumed that the vehicle always start from
a Hold state. Navigation states include Navigate, Abort, Re-
turn, where the goal is to guide the vehicle safely to a target
position from the current position. The task state includes the
Mapping state, as this is the only task that the vehicle needs
to do for data gathering. During Mapping state, the vehicle
actively maneuvers to find the most informative set of view-
points for photogrammetric reconstruction.

In all states, the path planner generates a reference path,
which is a Dubins airplane path (Chitsaz and LaValle, 2007),
consisting of a sequence of arc or line segments. Each seg-
ment of the reference path is represented as a geometric
curve defined by its start position, length, and curvature.
Each of the segments can be followed by the guidance con-
troller, where the mission computer continuously sends path-
tracking reference commands by computing the closest point
p from the vehicle on the path, and the tangent t and cur-
vature κ at the closest point. The reference command r=
[p,v,κ] is sent to the FMU at 10 Hz. The reference com-
mands are passed to a nonlinear path-following guidance
controller based on Stastny and Siegwart (2019), which is ro-
bust against high wind conditions that can be found in alpine
environments.

3.3.1 Safe Navigation

The goal of the navigation states Navigate, Abort, and Re-
turn, is to safely guide the vehicle to a target position from
the current vehicle position subject to distance constraints
relative to the terrain. The flying space is constrained by
a minimum and maximum distance to a given DEM. To
comply with the EU regulations, the vehicle needs to stay
within 120 m distance from the terrain (European Commis-
sion, 2019). To ensure safety below, we additionally keep a
minimum safety distance to the terrain to account for vege-
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Figure 5. Overview of the autonomous avalanche monitoring flight system. The system consists of a mission computer and an FMU which
are controlled by an operator and a safety pilot.

Figure 6. Finite state machine of vehicle operations. Dotted tran-
sitions are triggered by the operator, and the solid transitions are
triggered upon task completion of the state.

tation and artificial objects that are not present in the DEM
(Fig. 7a).

The main challenge of the path planner is evaluating the
safety of the path. In alpine environments, the terrain can be
steeper than the vehicle’s climb and turn limits. This is com-
pounded by the narrow flyable space, between the maximum
and minimum AGL constraints. In this setup, the state can
enter an ICS (Fraichard and Asama, 2004), from where the
vehicle may no longer be able to avoid a collision with the
constraints. However, evaluating whether a state is an ICS
requires infinite horizon collision checks, which is not prac-
tical (Fraichard and Asama, 2004; Bekris, 2010). To address
this problem, we use the approach from Lim et al. (2024a),
where periodic paths are evaluated with a DEM to simplify
ICS checks. Periodic paths are useful for approximating an
ICS checks, as a collision-free path for a single period can
be considered collision-free for infinite cycles. Therefore, an

infinite horizon collision check can be approximated much
more efficiently.

In this work, we use a circular loiter pattern, which defines
a safe periodic path because a fixed-wing aircraft can (ig-
noring energy constraints) safely fly in a fixed circular pat-
tern indefinitely. Extending this, any path that does not in-
tersect with the terrain, lies fully within altitude constraints,
and ends on a safe circular trajectory also cannot contain an
ICS and is therefore safe. In order to efficiently compute the
safety of a loiter path, we define a valid loiter region, which
are 2D positions of loiter centers where a circular loiter path
exists within the AGL constraints (Fig. 7b). The valid loiter
region is computed prior to the flight using the DEM, such
that it can be evaluated quickly during the flight.

Once the target loiter circle is evaluated to be inside the
valid loiter region, a path planner is used to discover a safe
path connecting the start and target loiter circle while re-
specting the kinematic constraints of the fixed-wing vehi-
cle. We use a sampling-based path planner from Lim et al.
(2024a), which uses RRT∗ (Karaman and Frazzoli, 2010)
with a metric defined by the Dubins airplane model (Chitsaz
and LaValle, 2007) to approximate the kinematic constraints
of the vehicle, where the kinematics is constrained with min-
imum curvature and flight path angle. A corrected Dubins set
classification method (Lim et al., 2023a) is further employed
to speed up the Dubins curve computation. While each of the
navigation states (Navigate, Return, Abort) utilizes the same
path planner, they differ in how the goal and start states are
defined.

For the Navigate state, the operator specifies the target po-
sition. The target position is first checked for whether it lies
in a valid loiter region. If the target position is valid, a path
from the start loiter to the goal loiter is planned using the path
planner(Fig. 7b). The start loiter path is defined as the loiter
path the vehicle is already on. The same process applies to
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Figure 7. Visualization of the path planned by the navigation planner. (a) The terrain used for the example, where the red and blue overlay
show the minimum and maximum distance constraints of 50 to 120 m a.g.l. (b) Shows the planned path in the Navigate state, where the path
is planned from a start loiter to target loiter position. The light blue represents the Valid Loiter regions. (c) Shows the planned path in the
Abort State, where the abort path is marked as red. The candidate loiter rally points are visualized in yellow. Source of DEM: swisstopo
(1998a). Source of orthoimage: swisstopo (1998b).

the Return state, except that the target loiter path is defined
as the launch position.

Lastly, the Abort state is used for aborting a currently ex-
ecuted path. To identify a safe place to abort the current ex-
ecuted path, multiple positions within a specified radius are
sampled. If a sampled position is in the valid loiter region,
then it is considered as a rally point, where the vehicle can
abort the mission safely. In this work, we search the terrain
within a given radius until N valid rally points are discov-
ered. If a valid path is found to one of these rally points, that
path is executed. In this work, we found N = 3 to be suffi-
cient for finding a valid rally point (Fig. 7c).

3.3.2 Active Mapping

During the Mapping state, the active mapping planner guides
the vehicle to acquire viewpoints that cover the ROI and that
are expected to produce a high-quality photogrammetry re-
construction. The operator engages the Mapping state from
a Hold state, where the loiter path should be placed close to
the ROI. Once the mapping is complete, the termination of
mapping is triggered by the operator by transitioning to the
Abort state.

The proposed active mapping system does not require
explicit waypoint planning like conventional coverage ap-
proaches do. The active mapping is formulated as a sequen-
tial decision-making problem, where the objective is to find a
safe sequence of feasible maneuvers that maximizes the qual-
ity of the photogrammetric reconstruction. We use a view
utility metric based on Fisher information proposed in Lim
et al. (2023b), to estimate the usefulness of views taken in
a particular motion sequence for photogrammetry. By esti-
mating the uncertainty of a photogrammetric reconstruction
using camera network geometry, the usability of a viewpoint
can be estimated without running reconstruction in the loop.

Figure 8. Visualization of the active planner mapping an ROI
marked as a magenta overlay. The motion tree generated by monte-
carlo tree search (MCTS) is highlighted in yellow. The best ma-
neuver is highlighted as, with the expected viewpoints visualized
as view frustums. Source of DEM: swisstopo (1998a). Source of
orthoimage: swisstopo (1998b).

Note that this method relies on the expected prior geome-
try, based on the DEM. In avalanche terrain, this could in-
troduce errors due to accumulated snow or vegetation that
may not be part of the DEM. Moreover, this can result in oc-
clusions. While having a wrong prior would result in wrong
uncertainty estimates, we empirically show that using a DEM
on avalanche terrain is a sufficient proxy for view planning.
However, future research could include online reconstruction
techniques to update the uncertainty estimate of the camera
network geometry.

In order to solely consider feasible maneuvers (i.e. ac-
tions that can be achieved by the aircraft), we discretize the
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maneuvers using a motion primitive tree. This involves cre-
ating a discrete set of maneuvers and forward-propagating
each action from the vehicle’s current state with a motion
model. In this work, we consider constant curvature maneu-
vers, that can be defined as a curvature value κ ∈K and
flight path angle γ ∈ 0, where K , 0 are the set of feasi-
ble curvatures and flight path angles, respectively. We con-
sider 9 maneuvers in the maneuver set A=K ×0 where
K = {−κmax,0,κmax}, 0 = {−γmax,0,γmax}. Each maneu-
ver is forward propagated with a fixed time duration1t = 3s
using the Dubins Airplane model, where the state space is de-
fined as x= (x,y,z,θ) (shown in Eq. 1).

ẋ =
∂x

∂t
=

ẋẏż
θ̇

=
V cos(γ )cos(θ)
V cos(γ )sin(θ)
V sin(γ )
κ cos(γ )

s.t. γ ∈ 0,κ ∈K (1)

To reduce the search space, actions that violate the con-
straints are pruned (not considered). Additionally, to prevent
the vehicle from entering an ICS, a motion primitive is con-
sidered invalid if none of the children is a valid motion prim-
itive. In this work, we focus on optimizing 10 sequences of
motion primitives, amounting to planning for 30s of reced-
ing horizon planning. This results in a total of 910 possible
different maneuver sequences to evaluate every 3 s.

Due to the high number of maneuvers that need to be eval-
uated, it is not feasible to exhaustively search through all the
possible maneuver combinations. Therefore, we use MCTS,
an anytime approximate graph search algorithm (Browne
et al., 2012), to evaluate and identify promising motions from
the tree in real-time. Figure 8 shows a snapshot of the motion
tree and the resulting maneuver planned. The maneuvers are
planned in a rolling window fashion, where after each ma-
neuver is executed, the next best maneuver of a horizon of 10
maneuvers is planned. The utility metric is computed through
viewpoints along the path, where it is assumed that the cam-
era image is triggered at 1 Hz, which ensures that there is
sufficient overlap between the consecutive images.

3.4 Operations

A 3D graphical user interface (Fig. 9) is used by the oper-
ator to interact with the vehicle. The operator sends com-
mands such as target position, or vehicle states, and the au-
tonomous planner ensures that the vehicle can be operated
safely. The user interface consists of a planning panel, inter-
active marker, and 3D visualization of the vehicle informa-
tion. The planning panel contains clickable buttons, which
the operator can use to control the state of the vehicle or en-
gage and disengage the autonomous planner. Depending on
the current state, the states that cannot be set are grayed out
according to the state machine (Fig. 6).

The interactive marker serves as a cursor, where the op-
erator can dynamically choose the target position on where
the vehicle should navigate. For example, if the vehicle is
in the Hold state, the operator can define the goal position

through the interactive marker. When the operator switches
to the Navigate state, the autonomous planner finds the short-
est path from the current loiter to the target loiter path and the
vehicle follows it.

Information on the vehicle state is visualized in the 3D
visualization. The information includes vehicle information
such as speed and location and the reference path that the
vehicle is following. Additionally, the DEM and ROI are vi-
sualized to provide better situational awareness to the opera-
tor. The DEM and ROI is loaded onto the vehicle before the
flight.

4 Field Demonstration

We validate the system in a real-world field test, where the
vehicle is deployed in alpine terrain to map an avalanche de-
posit in Davos, Switzerland (Fig. 10). We demonstrate a case
where the vehicle is trying to map a single ROI when the ve-
hicle has arrived at one of the loiter points. While this experi-
ment does not include the route optimization and mapping of
multiple ROI, the crucial functionalities such as safe naviga-
tion and path following are demonstrated through the single
ROI mapping experiment.

The experiments were conducted on the 25 April 2024,
in the Flüela Valley in Davos, Switzerland. The ROI was
defined around an avalanche deposit, where the extent of
the ROI was outlined by hand where the the avalanche was
observed. The ROI, however, only contained part of the
avalanche due to operational constraints, such as visibility
of the safety pilot. The weather was sunny, and the observed
wind speeds were on average 2.8 ms−1 with a maximum of
3.6 ms−1. The snow had relatively little texture as there was
fresh snow from a snowfall event the day prior to the field
test.

4.1 Setup

The goal of the field test is to demonstrate a full mapping
mission, where the sUAS autonomously navigates through
steep alpine environments safely, is capable of autonomously
mapping an ROI, and finally returning to the start posi-
tion. We focus on two aspects of the field test: first, we
evaluate whether the vehicle stays within the altitude con-
straints throughout the mission, which is defined by 50 m to
120 m a.g.l. This would show that the vehicle can maintain a
safe distance to the terrain (at 50 m) and comply with the reg-
ulation by staying within 120 m a.g.l. despite the constrained
maneuverability of the vehicle. The DEM around the mission
area is loaded onto the vehicle, which is used for navigation.

Second, we evaluate the effectiveness of the active map-
ping approach and compare it with a baseline coverage
planning approach. An ROI is defined prior to the mission
through a polygon, which is used for creating a smaller DEM
that is used by the active mapping (Fig. 10a).

Nat. Hazards Earth Syst. Sci., 26, 411–431, 2026 https://doi.org/10.5194/nhess-26-411-2026



J. Lim et al.: Autonomous and efficient large-scale snow avalanche monitoring 421

Figure 9. Operator interface for controlling the vehicle: the Planning panel is used for commanding actions, such as mode switches, or
engagement of the autonomous planner. The interactive marker is used as a cursor to specify goal positions in the map. The planned path is
visualized, for better situational awareness to the operator. Source of DEM: swisstopo (1998a). Source of orthoimage: swisstopo (1998b).

Figure 10. Flight testing location placed in the Flüela Valley in Davos, Switzerland. (a) 3D visualization of terrain and ROI used for mapping.
(b) Field test location and ROI visualized in map. Source of DEM: swisstopo (1998a). Source of orthoimage: swisstopo (1998b).

The coverage planning method is based on a conventional
boustrophedon decomposition (Choset and Pignon, 1998),
generating sweep patterns from a specified sweep direction.
The sweep spacing was set as 67.4 m, which corresponds to
an overlap percentage of 70 %. This is compatible with the
industry standard of 60 % to 80 % overlap between sweeps.
The trigger rate was set to 1 Hz, in order to keep it compa-
rable with the active mapping approach. However, conven-
tional coverage approaches (Bähnemann et al., 2021; Mier
et al., 2023) can not satisfy the distance-to-terrain constraint
or consider the kinematic constraints of the vehicle. There-
fore, the sweep patterns are adjusted, such that the altitude of

the endpoints is 100 m above the terrain. After the sweep pat-
terns are generated, the path to traverse between the sweep
patterns is planned by formulating a path planner as done
in Lim et al. (2024a). Note that a cross-grid coverage pattern
was not considered, as the steep terrain prohibits the vehi-
cle from following sweep patterns that are orthogonal to the
main sweep patterns.

As the active mapping method does not have an explicit
termination criterion, for evaluation the operator commands
an Abort once the duration of the mapping state is longer than
the duration of the coverage survey. In the mapping state,
the vehicle takes images of the target region, which is post-
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processed for reconstruction after the flight. We compare the
reconstruction quality and the time to get equal reconstruc-
tion results. Comparison with other sensing modalities was
not included in the campaign, as the vehicle is not capable of
carrying other sensing modalities such as LiDAR or ground
penetrating radar (GPR).

4.2 Safe Navigation

The 3D visualization of the planned path during field tests
shows that the vehicle was able to safely approach the ROI,
autonomously map the environment, and safely return to the
original loiter position (Fig. 11a). During the field test, the
vehicle went through all flight states – Hold, Navigate, Map-
ping, Abort, Return – validating safe operation and transition
between different modes. We evaluate whether the planner
was able to plan a safe path that stayed within the constraints,
defined as staying between the maximum (120 m) and mini-
mum (50 m) distance from the terrain. The reference point is
calculated as the closest point on the planned path from the
vehicle and, not the vehicle position. The evolution of the ref-
erence point during the flight test is displayed with the terrain
elevation directly below the reference position (Fig. 12).

Throughout the flight, the reference stayed within 50 m
to 120 m most of the time, with two separate violations of
the minimum distance constraints (Fig. 12). It can be seen
that the terrain elevation change can be significantly steeper
than what the vehicle can achieve, highlighting the need for
a global path-planning approach to ensure safety. Especially,
the steep regions of the state space only permit a narrow cor-
ridor, where the reference can be as close as 1.73 m from the
maximum permitted elevation. The two violations in 672.69
and 701.42 s, with a duration of 0.90 and 0.87 s occur in a
similar region of the loiter circle after the abort of the active
mapping (Fig. 11b). The cause of the violation is the dis-
cretization effects of the elevation map and how the circle is
iterated over the grid cells. As the map resolution is 5 m, the
discretization of calculating the maximum and minimum dis-
tance surface causes some of the states to violate the terrain
constraints in steep regions.

While the reference, which is on the planned path, mostly
satisfies the distance constraints, the vehicle is not perfectly
tracking the reference. Therefore, we evaluate the track-
ing performance of the vehicle during the mission. Specifi-
cally, we evaluate whether the vehicle stayed within the con-
straints, by calculating the distance of the measured vehicle
positions from the terrain (Fig. 13). The maximum track-
ing error is 14.84 m and root mean square error (RMSE) is
3.99 m. While the vehicle stays within the constraints most
of the time, there were three violations where the vehicle did
not stay within the distance limits. Out of the three events, the
latter two violations happened due to the references violat-
ing the constraints, where the violation happened at 701.25 s
for 0.97 s where it violated the constraints of 0.949 m and
at 672.49 s for 1.20 s where it violated the constraints by

1.39 m. In these two violations, it can be seen that the viola-
tions happen even if the tracking errors are small, as the ref-
erence have violated the constraints. The first event violated
the maximum constraint, at 474.57 s where the altitude ex-
ceeded 1.4 m for 4.4 s. The cause of this violation can be at-
tributed to the large tracking errors from the reference point.
The large tracking errors are most significant when there are
large discontinuous curvature changes or flight path angles
in the path. These discontinuities are inherent in the Dubins
airplane path representation, which is dynamically infeasible
for the vehicle. Given that the regulation only enforces the
maximum distance constraints, there was one event of vio-
lation of the regulations throughout the whole flight, which
was caused by large tracking errors.

4.3 Active Mapping

We evaluate the active mapping approach by demonstrating
that it is capable of capturing images that create a complete
reconstruction of the ROI. Then we compare the efficiency
of the active mapping approach to a conventional coverage
planning approach, where we compare the time it took to
map the ROI and the reconstruction quality of the image
dataset acquired from the flight. Since the active mapping
planner does not have an explicit termination time, it is run
for the same duration as needed for the coverage planning
based mission. This allows for comparison by the duration
of the mapping mission from the time when the first im-
age was taken. The active mapping mission resulted in 167
images, where the camera was triggered at a fixed rate at
1 Hz (Fig. 11). The path from the coverage mapping shows
that the vehicle follows a sequence of 5 straight sweeps, re-
sulting in 47 images (Fig. 14). The difference in image count
is, for one, because the coverage plan is fixed based on the
geometry of the ROI, while the active mapping approach
will continue indefinitely to further minimize the uncertainty
of the mapping result. In order to have a fair comparison
with the methods, the coverage mapping approach also had a
fixed rate of camera triggering at 1 Hz, albeit only during the
traversal of the straight sweep lines.

We look at two metrics prior to the reconstruction to eval-
uate the active mapping approach. The first is coverage, in
which we consider as the portions of cells in the elevation
map that was observed from more than two viewpoints. This
is because two viewpoints are necessary conditions in which
a reconstruction can be created at that position. The second
metric is the fisher-information-based average expected un-
certainty (Lim et al., 2023b), which quantifies the epistemic
uncertainty expected from the photogrammetric reconstruc-
tion.

The active mapping approach achieves a significantly
higher coverage within less time, where active mapping takes
44.5 s compared to the coverage planning approach that took
131.2 s to achieve 95 % coverage (Fig. 15). This is due to the
oblique viewpoints of the active mapping approach, which
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Figure 11. (a) 3D visualization of active mapping path and viewpoints acquired during field tests visualized with the interface from the
autonomous planner. The reference throughout the mission is color-coded for each of the states. The viewpoints acquired during the mapping
state are visualized as green view fustrums. The magenta region shows the region of interest. (b) 2D visualization of active mapping path and
projected on the map. Orange circles marks a violation of the distance constraints. Source of DEM: swisstopo (1998a). Source of orthoimage:
swisstopo (1998b).

Figure 12. Altitude of the reference position, colored with the flight
mode. The terrain altitude below the reference position is plotted in
solid blue. The flyable space that satisfies distance-to-terrain con-
straints is visualized as a blue overlay. Violations of the reference is
visualized as red.

maneuvers the aircraft at high roll angles. This results in
a wider field of view in contrast to coverage planning ap-
proaches, which always assume a nadir viewpoint. Addition-
ally, coverage planning was only able to achieve coverage at
95 %, while active mapping fully covered the ROI.

The expected uncertainty decreases significantly faster for
the active mapping method than for coverage planning. The
final uncertainty which the coverage planning took 135.73 s
to achieve, took active mapping 79.42 s, which the time is re-
duced by 58 % by using the active mapping approach. Addi-
tionally, the final expected uncertainty at the end of the mis-
sion is also 57 % lower for the active mapping method (0.074
vs 0.129; Fig. 15). This is because the maneuvers selected
by the active mapping planner are optimized to reduce the
uncertainty, in contrast to coverage planning, which simply
follows a path to geometrically achieve coverage. Therefore,
coverage planning does not achieve full coverage until all the
sweep patterns are flown. Additionally, the active mapping

Figure 13. (Top) Tracking error in X, Y , Z for the vehicle to the
planned reference. The large tracking errors come from the discon-
tinuous changes in curvature and flight path angle of the reference
path. Violations of constraints are marked as red circles. (Bottom)
Vehicle Distance to Terrain. The vehicle briefly violated the altitude
constraints three times during the flight test (each < 1 s).

planner can continue to acquire viewpoints which reduce un-
certainty even after the scene has been fully covered. Another
reason for the coverage planner being slow is because of the
images are only acquired during the straight sweeps and not
during the turns between them. This results in steps, where
during turns the improvement of coverage and uncertainty is
stalled.

We analyze the difference of the image dataset by looking
at how the surface of the ROI is being mapped. We look at
each point of the surface, the number of views that are visi-
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Figure 14. (a) 3D visualization of coverage mapping path during the flight tests, where the flight path is displayed in orange and view
frustums are visualized in green. The target region of interest is shown in magenta. (b) 2D visualization of coverage mapping path projected
onto the map. The coverage path starts at the highest sweep, and then sequentially flies through the coverage sweep patterns. Source of DEM:
(swisstopo, 1998a). Source of orthoimage: (swisstopo, 1998b).

Figure 15. (Top) Coverage comparison of active mapping and cov-
erage mapping. (Bottom) Expected uncertainty comparison with ac-
tive mapping and coverage mapping. The point in time with 67 im-
ages taken is marked with a red star (»).

ble, and the expected uncertainty (Fig. 16). It can be seen that
the number of views visible on the surface is much higher for
the active mapping approach. This can be explained with the
oblique viewpoints covering large areas of the surface with
a single viewpoint. For coverage planning, parts of the ROI
have no views which was caused by a mistrigger of the cam-
era. While similar mistriggers happened during active map-
ping, the planner was able to compensate for the missed im-
age due to the receding horizon planning to repair the recon-
struction.

The expected uncertainty on the surface, is qualitatively
more evenly distributed with active mapping. Coverage map-
ping shows different levels of uncertainty along the flight
lines and image overlaps (Fig. 16b). Histogram analysis
shows that, under the active mapping approach, the uncer-
tainty distribution is shifted toward lower values (Fig. 17).
Moreover, the 95 quantile of expected uncertainty for ac-

Figure 16. Comparison of the (a) number of views, number of over-
lapping views, and (b) expected uncertainty and expected uncer-
tainty between active mapping and coverage mapping after flight
test (Left: Active Mapping, Right: Coverage Mapping). The ROI
outline is marked as a red line. Regions with no color inside the
ROI are regions on the surface that have zero views visible.

tive mapping is 0.042, in contrast to the value of coverage
mapping of 0.078. This shows that the 95 quantile is reduced
by 47 %, demonstrating that the active mapping approach re-
sults in a significantly lower expected uncertainty value over
the surface. Comparing the visibility count and the expected
uncertainty in coverage planning, it can be seen that the high-
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Figure 17. Distribution of uncertainty across the mapped surface
inside the ROI. 95 quantile of expected uncertainty with active map-
ping is 0.042, significantly lower compared to coverage mapping of
0.078.

uncertainty regions do not necessarily correlate with regions
of low visibility count. This is due to the steep slope of the
target terrain, where the high uncertainty regions are downs-
lope regions where the GSD gets worse during the sweep of
the survey.

We compare the reconstruction quality of the image
dataset that is acquired during the mission. Figure 18 shows
a qualitative comparison of the orthomosaic and elevation
reconstruction using the commercial photogrammetry soft-
ware Agisoft Metashape (Agisoft, 2024a, b). We refer the
readers to the Supplement for the processing report of the
reconstruction. The reconstruction from the active mapping
method shows that it successfully covers the ROI (Fig. 18b).
The orthomosaic covers a significantly larger area than the
ROI, which comes from images that were taken while the
vehicle was outside of the ROI as the camera is triggered at a
fixed rate. For comparison, we show a reconstruction of the
active mapping method in the middle of the survey after 67
images (Fig. 18a). This corresponds to t = 45.63s (Marked
in Fig. 15). It can be seen that a significant part of the ROI is
already covered while a fraction of the time has been spent in
mapping. This is an expected result, as we have seen in the
steep increase in coverage and expected uncertainty. Also,
from the elevation, it can be seen that the reconstruction from
the partial dataset lacks some details around the vegetation.
This shows that active mapping improves the reconstruction
quality, as it continues to gather data.

Similarly, the reconstruction of orthomosaic and elevation
from image acquired from coverage mapping is compared.
The reconstruction shows a much more conservative recon-
struction around the ROI. Part of the reconstruction is miss-
ing, due to both a mis-triggering of the camera in the begin-
ning, and a failed registration at the end of the survey. This
shows that while image data of coverage methods can result
in a good reconstruction, it is much more sensitive to issues
such as camera triggering or image registration working. Ad-
ditionally, the orthomosaic results show much less coverage
compared to what was predicted with expected uncertainty.
Since the surface is always viewed from the same direction,
the failed reconstruction on the northern corner of the ROI is

due to the viewpoints being more susceptible to bad feature
matches due to the low texture of the snow Fig. 18.

By comparing the difference between two elevation maps,
we can see how consistent the reconstruction is (Fig. 20. The
root mean squared error of the two maps is 2.71 m. Note that
qualitatively the error does not match how the expected un-
certainty is distributed in Fig. 16b. This is because the pro-
posed approach does not consider appearance or texture of
the surface, which can have a large impact on the quality of
reconstruction. More discussion regarding this problem can
be found in Sect. 5.1.

5 Discussions

The integration of a finite state machine provides a simple
abstraction to the complexity of operating a VTOL vehicle.
For navigation-related tasks such as Navigate, Abort, Return
the operator only needs to specify a target objective such as
a 2D goal position for the planner to dynamically discover a
a safe path. This greatly simplifies the operational complex-
ity, in which every mission needs to be carefully designed to
operate a fixed-wing vehicle. Most conventional fixed-wing
vehicle missions are described as a sequence of straight lines,
which makes missions close to the terrain almost impossi-
ble in mountainous terrain. Such capability is essential espe-
cially for long-endurance vehicles operating beyond visual
line of sight, as missions can include multiple objectives and
events, which may be impractical to pre-plan every scenario.

In this work, state transitions were commanded by the op-
erator. This was to explicitly demonstrate the dynamic na-
ture of the capabilities of the vehicle, and ensure to make it
easier to monitor the system during the field tests. However,
the state transitions can be automated for more autonomous
operations. For example, a mission with a sequence of tar-
get positions and state transitions can be defined prior to the
mission, where the vehicle can autonomously navigate to the
target position close to the ROI, and map the environment.
One needs to simply define how to determine when a task is
done, such that the state can be transitioned to the next state.

5.1 Benefits and Limitations on Active Aerial
Photogrammetry

To the author’s knowledge, this is the first demonstration of
an active mapping method deployed on a fixed-wing vehicle.
The reason active mapping is efficient is due to the use of
dynamic maneuvers and oblique viewpoints to take more in-
formative viewpoints, without compromising the quality of
the reconstruction.

While the field tests demonstrated that the active mapping
approach can be more efficient than coverage planning ap-
proaches, field tests have shown that the reconstructability
metric does not always ensure good reconstructions. This is
due to the fact that the expected uncertainty is computed only
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Figure 18. Reconstruction of orthomosaic and elevation reconstruction using active mapping using partial dataset (67 images) and full dataset
(167 images). The red polygon represents the ROI. (a) Orthomosaic reconstruction using partial dataset of 67 images. (b) Orthomosaic
reconstruction of final result with 167 images. (c) Elevation reconstruction using partial dataset of 67 images. (d) Elevation reconstruction of
final result with 167 images. The orthomosaic generated from active mapping covers a significantly larger area than the ROI, which comes
from images that were taken while the vehicle was outside of the ROI as the camera is triggered at a fixed rate.

Figure 19. Qualitative comparison of (a) orthomosaic and (b) elevation reconstruction with data acquired by coverage mapping (47 images).
The red polygon represents the ROI.
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Figure 20. Absolute difference of reconstructed elevation between
active mapping (Fig. 18d) and coverage mapping (Fig. 19b).

using the camera network geometry, assuming that a feature
would exist to reconstruct the surface. While this may be
a limitation of this approach, practical challenges can arise
for processing image data in real time, especially for high-
resolution cameras used for photogrammetry. For example,
a single image taken by the photogrammetry camera was
9504× 6336, and 18.5 MB in size. Therefore, the proposed
approach enables view planning with information that can be
easily accessible on the system during data acquisition. How-
ever, not considering appearance may be limiting in challeng-
ing scenes such as mapping homogeneous snow surfaces. For
future works, methods considering appearance in addition to
the camera network geometry (Liu et al., 2022; Kim and Eu-
stice, 2013) could be useful for solving this problem.

Lastly, the active view planning approach plans maneu-
vers in a receding horizon manner. This is in contrast to the
approach used for the safe navigation planner, as the terminal
maneuver is evaluated for safety. As the horizon of the active
mapping is relatively large (30 s), the probability of the vehi-
cle heading into a dead end is low. Therefore, the maneuver
generated by in the Mapping state is not guaranteed to be
safe. Additionally, if the terminal state of the receding hori-
zon path is constrained to stay within the terminal safe set
(such as the valid loiter region), then the plan becomes too
conservative and will not be able to enter steep terrain. Future
work should address the problem of ensuring safety without
the active mapping planner become too conservative.

5.2 Regulations

In this work, we have focused on complying with the EU
regulations that have been effective in Switzerland since
2023 (European Commission, 2019). Under these regula-

tions, operations of an aerial vehicle can be classified as vi-
sual line of sight (VLOS), extended visual line of sight (EV-
LOS) or beyond visual line of sight (BVLOS) depending on
the distance the vehicle is operated from the operator. Under
VLOS, the proposed system is classified in the open cate-
gory, where no authorization is needed, as long as the ve-
hicle is not flying over crowds and maintains altitude lower
the 120 m a.g.l. Therefore, we have bounded the focus of our
field experiments for mapping a single ROI to stay within
VLOS. As the platform we have used in the experiments has
a minimum turn radius of 80 m, maintaining such low AGL
is challenging as the vehicle would not be able to make a full
loiter in steep terrain. The brief violations of the constraints
highlights how challenging compliance to the regulations can
be, even with using an autonomous planner.

One of the major benefits of using fixed-wing vehicles
comes from the long-range capability, and therefore BVLOS
operations would allow access to remote regions. However,
utilizing autonomous capabilities of the system would re-
quire improvements on the regulations. Current BVLOS op-
erations require approval or a specific operation risk assess-
ment (SORA), where a request for a single flight can be filed.
This includes a predetermined flight route that needs to be
filed. Therefore, these regulations make it hard to deploy the
autonomous planner proposed in this work. We claim that au-
tonomy makes the vehicle much safer to operate and enable
the system to be more safe to intervene in case of an event
such as avoiding air traffic. Additionally, while the BVLOS
operations would potentially remove the tight constraints on
AGL, staying at low altitudes could be considered as a lower
risk for air-risk assessment procedures such as PDRA.

6 Conclusions and Outlook

In this paper, we have demonstrated a long-range au-
tonomous fixed-wing sUAS capable of safely navigating and
actively mapping a target region of interest in steep mountain
terrain, also in winter. We have demonstrated how a route
planning problem can be formulated as an orienteering prob-
lem, and how significant the efficiency of a mapping method
can have an impact on the number of ROIs that can be visited
within a single flight. Then we demonstrated on a real plat-
form by integrating a safe path planner that safely navigates
mountainous environments, considering the terrain and reg-
ulation constraints as well as the limited maneuverability of
the fixed-wing vehicle. We also demonstrated an active map-
ping planner that iteratively plans the next maneuvers to op-
timize its viewpoints to maximize the information gathered.

The field demonstration has shown that the safe naviga-
tion planner is capable of guiding the vehicle to maintain a
distance between the maximum and minimum distance con-
straints, which successfully operate the vehicle in a dynamic
manner. The demonstration has also shown some shortcom-
ings of the approach, including brief violations of the con-
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straints due to the discretization of the elevation map and the
large tracking errors of the vehicle. The field tests have also
shown that the active mapping planner is capable of mapping
an ROI with good coverage, while staying under the distance
constraints.

Some of the shortcomings identified in this work can be
addressed by direct improvement of the implementation. Dis-
cretization effects can be addressed in future work by taking
a more conservative approach to inferring altitude bounds.
However, it also points to a fundamental problem of using
a discretized map representation for a continuous motion
model of the system. Additionally, the tracking errors can
be addressed by utilizing more advanced path-following con-
trollers, such as predictive controllers.

The general approach is built on the access to prior knowl-
edge of the terrain, described as the DEM. However, assum-
ing the geometry of the surface as the DEM will not be accu-
rate, due to snow cover, vegetation, or artificial structures.
Additionally, the planner does not consider environmental
effects, such as wind or very low temperatures, which may
influence the performance of the vehicle significantly.

We envision that autonomous long-endurance fixed-wing
aerial vehicles will become a powerful tool for gather-
ing high-quality data for large-scale environment monitor-
ing applications, not just for avalanche monitoring. This
would allow for creating more robust, complete and reli-
able databases, which are essential for hazard mapping and
mitigation measure planning. However, to efficiently apply
UAS for these tasks, the regulations have to be met, which
is currently a very difficult task, especially for autonomous
systems. Future work would include improving robustness
against environmental uncertainties such that the vehicle can
operate in more adverse conditions that can occur in alpine
environments and better predictions of reconstructability for
photogrammetry.
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