Articles | Volume 25, issue 1
https://doi.org/10.5194/nhess-25-77-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/nhess-25-77-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Impacts on and damage to European forests from the 2018–2022 heat and drought events
Florian Knutzen
CORRESPONDING AUTHOR
Climate Service Center Germany (GERICS), Helmholtz-Zentrum Hereon, Fischertwiete 1, 20095 Hamburg, Germany
Paul Averbeck
iES Landau, Institute for Environmental Sciences, University of Kaiserslautern-Landau (RPTU), Forststraße 7, 76829 Landau, Germany
Caterina Barrasso
Chair of Computational Landscape Ecology, Technische Universität Dresden, Helmholtzstraße 10, 01069 Dresden, Germany
Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI) Dresden/Leipzig, Germany
Laurens M. Bouwer
Climate Service Center Germany (GERICS), Helmholtz-Zentrum Hereon, Fischertwiete 1, 20095 Hamburg, Germany
Institute of Geography, University of Hamburg, Bundesstraße 55, 20146 Hamburg, Germany
Barry Gardiner
Chair of Forestry Economics and Forest Planning, University of Freiburg, Tennenbacherstr. 4, 79106 Freiburg, Germany
José M. Grünzweig
Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
Sabine Hänel
Faculty of Agriculture/Environment/Chemistry, University of Applied Sciences Dresden, Pillnitzer Platz 2, 01326 Dresden, Germany
Karsten Haustein
Climate Service Center Germany (GERICS), Helmholtz-Zentrum Hereon, Fischertwiete 1, 20095 Hamburg, Germany
Institute for Meteorology, Leipzig University, Stephanstr. 3, 04103 Leipzig, Germany
Marius Rohde Johannessen
School of Business, University of South-Eastern Norway, PO Box 4, 3199 Borre, Norway
Stefan Kollet
Forschungszentrum Jülich GmbH, Institut für Bio- und Geowissenschaften, Agrosphäre (IBG-3), Wilhelm-Johnen-Straße, 52428 Jülich, Germany
Mortimer M. Müller
Institute of Silviculture, University of Natural Resources and Life Sciences, Vienna (BOKU), Austria
Joni-Pekka Pietikäinen
Climate Service Center Germany (GERICS), Helmholtz-Zentrum Hereon, Fischertwiete 1, 20095 Hamburg, Germany
Karolina Pietras-Couffignal
Eberswalde Forest Competence Centre (LFE), Landeskompetenzzentrum Forst Eberswalde (LFE), Landesbetrieb Forst Brandenburg, Alfred-Möller-Straße 1, 16225 Eberswalde, Germany
Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, ul. Wojska Polskiego 28, 60-637 Poznan, Poland
Joaquim G. Pinto
Institute of Meteorology and Climate Research Troposphere Research (IMKTRO), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
Diana Rechid
Climate Service Center Germany (GERICS), Helmholtz-Zentrum Hereon, Fischertwiete 1, 20095 Hamburg, Germany
Efi Rousi
Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, PO Box 60 12 03, 14412 Potsdam, Germany
Ana Russo
Faculdade de Ciências, Instituto Dom Luiz (IDL), Universidade de Lisboa, 1749-016, Lisbon, Portugal
CEF – Forest Research Centre, Associate Laboratory TERRA, School of Agriculture, University of Lisbon, Lisbon, Portugal
Laura Suarez-Gutierrez
Institut Pierre-Simon Laplace, CNRS, 75005 Paris, France
Institute for Atmospheric and Climate Science, ETH Zurich, 8092 Zurich, Switzerland
Sarah Veit
Climate Service Center Germany (GERICS), Helmholtz-Zentrum Hereon, Fischertwiete 1, 20095 Hamburg, Germany
Institute of Geography and Geoecology (IFGG), Karlsruher Institute of Technology (KIT), Karlsruhe, Germany
Julian Wendler
Chair of Computational Landscape Ecology, Technische Universität Dresden, Helmholtzstraße 10, 01069 Dresden, Germany
Elena Xoplaki
Department of Geography and Center for International Development and Environmental Research, Justus Liebig University Giessen, Senckenbergstr. 1, 35390 Giessen, Germany
Daniel Gliksman
Chair of Computational Landscape Ecology, Technische Universität Dresden, Helmholtzstraße 10, 01069 Dresden, Germany
Faculty of Environmental Sciences, Institute for Hydrology and Meteorology, Chair of Meteorology, Technische Universität Dresden, Pienner Str. 23, 01737 Tharandt, Germany
Related authors
Elena Xoplaki, Florian Ellsäßer, Jens Grieger, Katrin M. Nissen, Joaquim Pinto, Markus Augenstein, Ting-Chen Chen, Hendrik Feldmann, Petra Friederichs, Daniel Gliksman, Laura Goulier, Karsten Haustein, Jens Heinke, Lisa Jach, Florian Knutzen, Stefan Kollet, Jürg Luterbacher, Niklas Luther, Susanna Mohr, Christoph Mudersbach, Christoph Müller, Efi Rousi, Felix Simon, Laura Suarez-Gutierrez, Svenja Szemkus, Sara M. Vallejo-Bernal, Odysseas Vlachopoulos, and Frederik Wolf
EGUsphere, https://doi.org/10.5194/egusphere-2023-1460, https://doi.org/10.5194/egusphere-2023-1460, 2023
Short summary
Short summary
Europe is regularly affected by compound events and natural hazards that occur simultaneously or with a temporal lag and are connected with disproportional impacts. Within the interdisciplinary project climXtreme (https://climxtreme.net/) we investigate the interplay of these events, their characteristics and changes, intensity, frequency and uncertainties in the past, present and future, as well as the associated impacts on different socio-economic sectors in Germany and Central Europe.
Daniel Gliksman, Paul Averbeck, Nico Becker, Barry Gardiner, Valeri Goldberg, Jens Grieger, Dörthe Handorf, Karsten Haustein, Alexia Karwat, Florian Knutzen, Hilke S. Lentink, Rike Lorenz, Deborah Niermann, Joaquim G. Pinto, Ronald Queck, Astrid Ziemann, and Christian L. E. Franzke
Nat. Hazards Earth Syst. Sci., 23, 2171–2201, https://doi.org/10.5194/nhess-23-2171-2023, https://doi.org/10.5194/nhess-23-2171-2023, 2023
Short summary
Short summary
Wind and storms are a major natural hazard and can cause severe economic damage and cost human lives. Hence, it is important to gauge the potential impact of using indices, which potentially enable us to estimate likely impacts of storms or other wind events. Here, we review basic aspects of wind and storm generation and provide an extensive overview of wind impacts and available indices. This is also important to better prepare for future climate change and corresponding changes to winds.
João António Martins Careto, Rita Margarida Cardoso, Ana Russo, Daniela Catarina André Lima, and Pedro Miguel Matos Soares
Geosci. Model Dev., 17, 8115–8139, https://doi.org/10.5194/gmd-17-8115-2024, https://doi.org/10.5194/gmd-17-8115-2024, 2024
Short summary
Short summary
This study proposes a new daily drought index, the generalised drought index (GDI). The GDI not only identifies the same events as established indices but is also capable of improving their results. The index is empirically based and easy to compute, not requiring fitting the data to a probability distribution. The GDI can detect flash droughts and longer-term events, making it a versatile tool for drought monitoring.
Jan Wohland, Peter Hoffmann, Daniela C. A. Lima, Marcus Breil, Olivier Asselin, and Diana Rechid
Earth Syst. Dynam., 15, 1385–1400, https://doi.org/10.5194/esd-15-1385-2024, https://doi.org/10.5194/esd-15-1385-2024, 2024
Short summary
Short summary
We evaluate how winds change when humans grow or cut down forests. Our analysis draws from climate model simulations with extreme scenarios where Europe is either fully forested or covered with grass. We find that the effect of land use change on wind energy is very important: wind energy potentials are twice as high above grass as compared to forest in some locations. Our results imply that wind profile changes should be better incorporated in climate change assessments for wind energy.
Julia Moemken, Inovasita Alifdini, Alexandre M. Ramos, Alexandros Georgiadis, Aidan Brocklehurst, Lukas Braun, and Joaquim G. Pinto
Nat. Hazards Earth Syst. Sci., 24, 3445–3460, https://doi.org/10.5194/nhess-24-3445-2024, https://doi.org/10.5194/nhess-24-3445-2024, 2024
Short summary
Short summary
European windstorms regularly cause damage to natural and human-made environments, leading to high socio-economic losses. For the first time, we compare estimates of these losses using a meteorological loss index (LI) and the insurance loss (catastrophe) model of Aon Impact Forecasting. We find that LI underestimates high-impact windstorms compared to the insurance model. Nonetheless, due to its simplicity, LI is an effective index, suitable for estimating impacts and ranking storm events.
Clare Marie Flynn, Julia Moemken, Joaquim G. Pinto, and Gabriele Messori
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-298, https://doi.org/10.5194/essd-2024-298, 2024
Preprint under review for ESSD
Short summary
Short summary
We created a new, publicly available database of the Top 50 most extreme European winter windstorms from each of four different meteorological input data sets covering the years 1995–2015. We found variability in all aspects of our database, from which storms were included in the Top 50 storms for each input to their spatial variability. We urge users of our database to consider the storms as identified from two or more input sources within our database, where possible.
Selina M. Kiefer, Patrick Ludwig, Sebastian Lerch, Peter Knippertz, and Joaquim G. Pinto
EGUsphere, https://doi.org/10.5194/egusphere-2024-2955, https://doi.org/10.5194/egusphere-2024-2955, 2024
Preprint withdrawn
Short summary
Short summary
Weather forecasts 14 days in advance generally have a low skill but not always. We identify reasons thereof depending on the atmospheric flow, shown by Weather Regimes (WRs). If the WRs during the forecasts follow climatological patterns, forecast skill is increased. The forecast of a cold-wave day is better when the European Blocking WR (high pressure around the British Isles) is present a few days before a cold-wave day. These results can be used to assess the reliability of predictions.
Andrea L. Campoverde, Uwe Ehret, Patrick Ludwig, and Joaquim G. Pinto
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-134, https://doi.org/10.5194/gmd-2024-134, 2024
Revised manuscript not accepted
Short summary
Short summary
We looked at how well the model WRF-Hydro performed during the 2018 drought event in the River Rhine basin, even though it is typically used for floods. We used the meteorological ERA5 reanalysis dataset to simulate River Rhine’s streamflow and adjusted the model using parameters and actual discharge measurements. We focused on Lake Constance, a key part of the basin, but found issues with the model’s lake outflow simulation. By removing the lake module, we obtained more accurate results.
Fabiola Banfi, Emanuele Bevacqua, Pauline Rivoire, Sérgio C. Oliveira, Joaquim G. Pinto, Alexandre M. Ramos, and Carlo De Michele
Nat. Hazards Earth Syst. Sci., 24, 2689–2704, https://doi.org/10.5194/nhess-24-2689-2024, https://doi.org/10.5194/nhess-24-2689-2024, 2024
Short summary
Short summary
Landslides are complex phenomena causing important impacts in vulnerable areas, and they are often triggered by rainfall. Here, we develop a new approach that uses information on the temporal clustering of rainfall, i.e. multiple events close in time, to detect landslide events and compare it with the use of classical empirical rainfall thresholds, considering as a case study the region of Lisbon, Portugal. The results could help to improve the prediction of rainfall-triggered landslides.
Bastien François, Khalil Teber, Lou Brett, Richard Leeding, Luis Gimeno-Sotelo, Daniela I. V. Domeisen, Laura Suarez-Gutierrez, and Emanuele Bevacqua
EGUsphere, https://doi.org/10.5194/egusphere-2024-2079, https://doi.org/10.5194/egusphere-2024-2079, 2024
Short summary
Short summary
Spatially compounding wind and precipitation (CWP) extremes can lead to severe impacts on society. We find that concurrent climate variability modes favor the occurrence of such wintertime spatially compounding events in the Northern Hemisphere, and can even amplify the number of regions and population exposed. Our analysis highlights the importance of considering the interplay between variability modes to improve risk management of such spatially compounding events.
Johannes Meuer, Laurens M. Bouwer, Frank Kaspar, Roman Lehmann, Wolfgang Karl, Thomas Ludwig, and Christopher Kadow
EGUsphere, https://doi.org/10.5194/egusphere-2024-1392, https://doi.org/10.5194/egusphere-2024-1392, 2024
Short summary
Short summary
Our study focuses on filling in missing precipitation data using an advanced neural network model. Traditional methods for estimating missing climate information often struggle in large regions where data is scarce. Our solution, which incorporates recent advances in machine learning, captures the intricate patterns of precipitation over time, especially during extreme weather events. Our model shows good performance in reconstructing large regions of missing rainfall radar data.
Tiago M. Ferreira, Ricardo M. Trigo, Tomás H. Gaspar, Joaquim G. Pinto, and Alexandre M. Ramos
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-130, https://doi.org/10.5194/nhess-2024-130, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
Here we investigate the synoptic evolution associated with the occurrence of an atmospheric river leading to a 24 h record-breaking extreme precipitation event (120.3 mm) in Lisbon, Portugal, on 13 December 2022. The synoptic background allowed the formation, on 10 December, of an atmospheric river associated with a deep extratropical cyclone and with a high moisture content and an inflow of moisture, due to the warm conveyor belt, throughout its life cycle. The system made landfall on day 12.
Tatiana Klimiuk, Patrick Ludwig, Antonio Sanchez-Benitez, Helge F. Goessling, Peter Braesicke, and Joaquim G. Pinto
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2024-16, https://doi.org/10.5194/esd-2024-16, 2024
Revised manuscript accepted for ESD
Short summary
Short summary
Our study examines potential changes in heatwaves in Central Europe due to global warming, using the 2019 summer heatwave as an example. By producing high-resolution storylines, we offer insights into how future heatwaves might spread, persist longer, and where stronger or weaker temperature increases may occur. This research helps understand regional thermodynamic responses and highlights the importance of local strategies to protect communities from future heat events.
Aleksa Stanković, Gabriele Messori, Joaquim G. Pinto, and Rodrigo Caballero
Weather Clim. Dynam., 5, 821–837, https://doi.org/10.5194/wcd-5-821-2024, https://doi.org/10.5194/wcd-5-821-2024, 2024
Short summary
Short summary
The article studies extreme winds near the surface over the North Atlantic Ocean. These winds are caused by storms that pass through this region. The strongest storms that have occurred in the winters from 1950–2020 are studied in detail and compared to weaker but still strong storms. The analysis shows that the storms associated with the strongest winds are preceded by another older storm that travelled through the same region and made the conditions suitable for development of extreme winds.
Bjorn Stevens, Stefan Adami, Tariq Ali, Hartwig Anzt, Zafer Aslan, Sabine Attinger, Jaana Bäck, Johanna Baehr, Peter Bauer, Natacha Bernier, Bob Bishop, Hendryk Bockelmann, Sandrine Bony, Guy Brasseur, David N. Bresch, Sean Breyer, Gilbert Brunet, Pier Luigi Buttigieg, Junji Cao, Christelle Castet, Yafang Cheng, Ayantika Dey Choudhury, Deborah Coen, Susanne Crewell, Atish Dabholkar, Qing Dai, Francisco Doblas-Reyes, Dale Durran, Ayoub El Gaidi, Charlie Ewen, Eleftheria Exarchou, Veronika Eyring, Florencia Falkinhoff, David Farrell, Piers M. Forster, Ariane Frassoni, Claudia Frauen, Oliver Fuhrer, Shahzad Gani, Edwin Gerber, Debra Goldfarb, Jens Grieger, Nicolas Gruber, Wilco Hazeleger, Rolf Herken, Chris Hewitt, Torsten Hoefler, Huang-Hsiung Hsu, Daniela Jacob, Alexandra Jahn, Christian Jakob, Thomas Jung, Christopher Kadow, In-Sik Kang, Sarah Kang, Karthik Kashinath, Katharina Kleinen-von Königslöw, Daniel Klocke, Uta Kloenne, Milan Klöwer, Chihiro Kodama, Stefan Kollet, Tobias Kölling, Jenni Kontkanen, Steve Kopp, Michal Koran, Markku Kulmala, Hanna Lappalainen, Fakhria Latifi, Bryan Lawrence, June Yi Lee, Quentin Lejeun, Christian Lessig, Chao Li, Thomas Lippert, Jürg Luterbacher, Pekka Manninen, Jochem Marotzke, Satoshi Matsouoka, Charlotte Merchant, Peter Messmer, Gero Michel, Kristel Michielsen, Tomoki Miyakawa, Jens Müller, Ramsha Munir, Sandeep Narayanasetti, Ousmane Ndiaye, Carlos Nobre, Achim Oberg, Riko Oki, Tuba Özkan-Haller, Tim Palmer, Stan Posey, Andreas Prein, Odessa Primus, Mike Pritchard, Julie Pullen, Dian Putrasahan, Johannes Quaas, Krishnan Raghavan, Venkatachalam Ramaswamy, Markus Rapp, Florian Rauser, Markus Reichstein, Aromar Revi, Sonakshi Saluja, Masaki Satoh, Vera Schemann, Sebastian Schemm, Christina Schnadt Poberaj, Thomas Schulthess, Cath Senior, Jagadish Shukla, Manmeet Singh, Julia Slingo, Adam Sobel, Silvina Solman, Jenna Spitzer, Philip Stier, Thomas Stocker, Sarah Strock, Hang Su, Petteri Taalas, John Taylor, Susann Tegtmeier, Georg Teutsch, Adrian Tompkins, Uwe Ulbrich, Pier-Luigi Vidale, Chien-Ming Wu, Hao Xu, Najibullah Zaki, Laure Zanna, Tianjun Zhou, and Florian Ziemen
Earth Syst. Sci. Data, 16, 2113–2122, https://doi.org/10.5194/essd-16-2113-2024, https://doi.org/10.5194/essd-16-2113-2024, 2024
Short summary
Short summary
To manage Earth in the Anthropocene, new tools, new institutions, and new forms of international cooperation will be required. Earth Virtualization Engines is proposed as an international federation of centers of excellence to empower all people to respond to the immense and urgent challenges posed by climate change.
Liubov Poshyvailo-Strube, Niklas Wagner, Klaus Goergen, Carina Furusho-Percot, Carl Hartick, and Stefan Kollet
Earth Syst. Dynam., 15, 167–189, https://doi.org/10.5194/esd-15-167-2024, https://doi.org/10.5194/esd-15-167-2024, 2024
Short summary
Short summary
Groundwater (GW) representation is simplified in most regional climate models. Here, we introduce a unique Terrestrial Systems Modeling Platform (TSMP) dataset with an explicit representation of GW, in the context of dynamical downscaling of GCMs for climate change studies. We compare the heat events statistics of TSMP and the CORDEX ensemble. Our results show that TSMP systematically simulates fewer heat waves, and they are shorter and less intense.
Rike Lorenz, Nico Becker, Barry Gardiner, Uwe Ulbrich, Marc Hanewinkel, and Schmitz Benjamin
EGUsphere, https://doi.org/10.5194/egusphere-2024-120, https://doi.org/10.5194/egusphere-2024-120, 2024
Short summary
Short summary
Tree fall events have an impact on forests and transport systems. Our study explored tree fall in relation to wind and weather conditions. We used tree fall data along railway lines and meteorological data from ERA5 and radar to build a logistic regression model. We found that high and prolonged wind speeds, wet conditions and high air density increase tree fall risk. These factors might change in the changing climate which in return will change risks for trees, forests and transport.
Marcus Breil, Vanessa K. M. Schneider, and Joaquim G. Pinto
Biogeosciences, 21, 811–824, https://doi.org/10.5194/bg-21-811-2024, https://doi.org/10.5194/bg-21-811-2024, 2024
Short summary
Short summary
The general impact of afforestation on the regional climate conditions in Europe during the period 1986–2015 is investigated. For this purpose, a regional climate model simulation is performed, in which afforestation during this period is considered, and results are compared to a simulation in which this is not the case. Results show that afforestation had discernible impacts on the climate change signal in Europe, which may have mitigated the local warming trend, especially in summer in Europe.
Bamidele Joseph Oloruntoba, Stefan Kollet, Carsten Montzka, Harry Vereecken, and Harrie-Jan Hendricks Franssen
EGUsphere, https://doi.org/10.5194/egusphere-2023-3132, https://doi.org/10.5194/egusphere-2023-3132, 2024
Short summary
Short summary
This study uses simulations to understand how the soil information across Africa affects the water balance, using 4 soil databases and 3 different rainfall datasets. Results show that the soil information impacts water balance estimates, especially with a higher rate of rainfall.
Lara Wallberg, Laura Suarez-Gutierrez, Daniela Matei, and Wolfgang A. Müller
Earth Syst. Dynam., 15, 1–14, https://doi.org/10.5194/esd-15-1-2024, https://doi.org/10.5194/esd-15-1-2024, 2024
Short summary
Short summary
European summer temperatures are influenced by mechanisms on different timescales. We find that timescales of 5 to 10 years dominate the changes in summer temperature over large parts of the continent. Further, we find that specific processes within the North Atlantic, affecting the storage and transport of heat, cause changes in the atmosphere and extremely warm European summers. Our findings could be used for better forecasts of extremely warm European summers several years ahead.
Christina Asmus, Peter Hoffmann, Joni-Pekka Pietikäinen, Jürgen Böhner, and Diana Rechid
Geosci. Model Dev., 16, 7311–7337, https://doi.org/10.5194/gmd-16-7311-2023, https://doi.org/10.5194/gmd-16-7311-2023, 2023
Short summary
Short summary
Irrigation modifies the land surface and soil conditions. The effects can be quantified using numerical climate models. Our study introduces a new irrigation parameterization, which simulates the effects of irrigation on land, atmosphere, and vegetation. We applied the parameterization and evaluated the results in terms of their physical consistency. We found an improvement in the model results in the 2 m temperature representation in comparison with observational data for our study.
Lea Eisenstein, Benedikt Schulz, Joaquim G. Pinto, and Peter Knippertz
Weather Clim. Dynam., 4, 981–999, https://doi.org/10.5194/wcd-4-981-2023, https://doi.org/10.5194/wcd-4-981-2023, 2023
Short summary
Short summary
Mesoscale high-wind features within extratropical cyclones can cause immense damage. In Part 1 of this work, we introduced RAMEFI (RAndom-forest-based MEsoscale wind Feature Identification), an objective, flexible identification tool for these wind features based on a probabilistic random forest. Here, we use RAMEFI to compile a climatology of the features over 19 extended winter seasons over western and central Europe, focusing on relative occurrence, affected areas and further characteristics.
Mingyue Zhang, Eva Hartmann, Sebastian Wagner, Muralidhar Adakudlu, Niklas Luther, Christos Zerefos, and Elena Xoplaki
Clim. Past Discuss., https://doi.org/10.5194/cp-2023-77, https://doi.org/10.5194/cp-2023-77, 2023
Manuscript not accepted for further review
Short summary
Short summary
A transient regional paleoclimate simulation with all external forcings (solar, orbital, volcanic, GHG, and land use), at 0.44° resolution is presented. The mean climate between Early Roman Period and pre-industrial over Eastern Mediterranean & Nile River basin is compared. The availability of this modelling data enables us to compare the simulated output with proxy records, further link the climate events with societal change and provide insights into their impact on societal and human history.
Amélie Simon, Coline Poppeschi, Sandra Plecha, Guillaume Charria, and Ana Russo
Ocean Sci., 19, 1339–1355, https://doi.org/10.5194/os-19-1339-2023, https://doi.org/10.5194/os-19-1339-2023, 2023
Short summary
Short summary
In the coastal northeastern Atlantic and for three subregions (the English Channel, Bay of Brest and Bay of Biscay) over the period 1982–2022, marine heatwaves are more frequent and longer and extend over larger areas, while the opposite is seen for marine cold spells. This result is obtained with both in situ and satellite datasets, although the satellite dataset underestimates the amplitude of these extremes.
Marie Hundhausen, Hendrik Feldmann, Natalie Laube, and Joaquim G. Pinto
Nat. Hazards Earth Syst. Sci., 23, 2873–2893, https://doi.org/10.5194/nhess-23-2873-2023, https://doi.org/10.5194/nhess-23-2873-2023, 2023
Short summary
Short summary
Using a convection-permitting regional climate ensemble, the magnitude of heat waves (HWs) over Germany is projected to increase by 26 % (100 %) in a 2 °C (3 °C) warmer world. The increase is strongest in late summer, relatively homogeneous in space, and accompanied by increasing variance in HW length. Tailored parameters to climate adaptation to heat revealed dependency on major landscapes, and a nonlinear, exponential increase for parameters characterizing strong heat stress is expected.
Peter Hoffmann, Vanessa Reinhart, Diana Rechid, Nathalie de Noblet-Ducoudré, Edouard L. Davin, Christina Asmus, Benjamin Bechtel, Jürgen Böhner, Eleni Katragkou, and Sebastiaan Luyssaert
Earth Syst. Sci. Data, 15, 3819–3852, https://doi.org/10.5194/essd-15-3819-2023, https://doi.org/10.5194/essd-15-3819-2023, 2023
Short summary
Short summary
This paper introduces the new high-resolution land use and land cover change dataset LUCAS LUC for Europe (version 1.1), tailored for use in regional climate models. Historical and projected future land use change information from the Land-Use Harmonization 2 (LUH2) dataset is translated into annual plant functional type changes from 1950 to 2015 and 2016 to 2100, respectively, by employing a newly developed land use translator.
Elena Xoplaki, Florian Ellsäßer, Jens Grieger, Katrin M. Nissen, Joaquim Pinto, Markus Augenstein, Ting-Chen Chen, Hendrik Feldmann, Petra Friederichs, Daniel Gliksman, Laura Goulier, Karsten Haustein, Jens Heinke, Lisa Jach, Florian Knutzen, Stefan Kollet, Jürg Luterbacher, Niklas Luther, Susanna Mohr, Christoph Mudersbach, Christoph Müller, Efi Rousi, Felix Simon, Laura Suarez-Gutierrez, Svenja Szemkus, Sara M. Vallejo-Bernal, Odysseas Vlachopoulos, and Frederik Wolf
EGUsphere, https://doi.org/10.5194/egusphere-2023-1460, https://doi.org/10.5194/egusphere-2023-1460, 2023
Short summary
Short summary
Europe is regularly affected by compound events and natural hazards that occur simultaneously or with a temporal lag and are connected with disproportional impacts. Within the interdisciplinary project climXtreme (https://climxtreme.net/) we investigate the interplay of these events, their characteristics and changes, intensity, frequency and uncertainties in the past, present and future, as well as the associated impacts on different socio-economic sectors in Germany and Central Europe.
Zbigniew P. Piotrowski, Jaro Hokkanen, Daniel Caviedes-Voullieme, Olaf Stein, and Stefan Kollet
EGUsphere, https://doi.org/10.5194/egusphere-2023-1079, https://doi.org/10.5194/egusphere-2023-1079, 2023
Preprint withdrawn
Short summary
Short summary
The computer programs capable of simulation of Earth system components evolve, adapting new fundamental science concepts and more observational data on more and more powerful computer hardware. Adaptation of a large scientific program to a new type of hardware is costly. In this work we propose cheap and simple but effective strategy that enable computation using graphic processing units, based on automated program code modification. This results in better resolution and/or longer predictions.
Alberto Caldas-Alvarez, Hendrik Feldmann, Etor Lucio-Eceiza, and Joaquim G. Pinto
Weather Clim. Dynam., 4, 543–565, https://doi.org/10.5194/wcd-4-543-2023, https://doi.org/10.5194/wcd-4-543-2023, 2023
Short summary
Short summary
We evaluate convection-permitting modelling (CPM) simulations for the greater Alpine area to assess its added value compared to a 25 km resolution. A new method for severe precipitation detection is used, and the associated synoptic weather types are considered. Our results document the added value of CPM for precipitation representation with higher intensities, better rank correlation, better hit rates, and an improved amount and structure, but with an overestimation of the rates.
Marcus Breil, Annabell Weber, and Joaquim G. Pinto
Biogeosciences, 20, 2237–2250, https://doi.org/10.5194/bg-20-2237-2023, https://doi.org/10.5194/bg-20-2237-2023, 2023
Short summary
Short summary
A promising strategy for mitigating burdens of heat extremes in Europe is to replace dark coniferous forests with brighter deciduous forests. The consequence of this would be reduced absorption of solar radiation, which should reduce the intensities of heat periods. In this study, we show that deciduous forests have a certain cooling effect on heat period intensities in Europe. However, the magnitude of the temperature reduction is quite small.
Daniel Gliksman, Paul Averbeck, Nico Becker, Barry Gardiner, Valeri Goldberg, Jens Grieger, Dörthe Handorf, Karsten Haustein, Alexia Karwat, Florian Knutzen, Hilke S. Lentink, Rike Lorenz, Deborah Niermann, Joaquim G. Pinto, Ronald Queck, Astrid Ziemann, and Christian L. E. Franzke
Nat. Hazards Earth Syst. Sci., 23, 2171–2201, https://doi.org/10.5194/nhess-23-2171-2023, https://doi.org/10.5194/nhess-23-2171-2023, 2023
Short summary
Short summary
Wind and storms are a major natural hazard and can cause severe economic damage and cost human lives. Hence, it is important to gauge the potential impact of using indices, which potentially enable us to estimate likely impacts of storms or other wind events. Here, we review basic aspects of wind and storm generation and provide an extensive overview of wind impacts and available indices. This is also important to better prepare for future climate change and corresponding changes to winds.
Efi Rousi, Andreas H. Fink, Lauren S. Andersen, Florian N. Becker, Goratz Beobide-Arsuaga, Marcus Breil, Giacomo Cozzi, Jens Heinke, Lisa Jach, Deborah Niermann, Dragan Petrovic, Andy Richling, Johannes Riebold, Stella Steidl, Laura Suarez-Gutierrez, Jordis S. Tradowsky, Dim Coumou, André Düsterhus, Florian Ellsäßer, Georgios Fragkoulidis, Daniel Gliksman, Dörthe Handorf, Karsten Haustein, Kai Kornhuber, Harald Kunstmann, Joaquim G. Pinto, Kirsten Warrach-Sagi, and Elena Xoplaki
Nat. Hazards Earth Syst. Sci., 23, 1699–1718, https://doi.org/10.5194/nhess-23-1699-2023, https://doi.org/10.5194/nhess-23-1699-2023, 2023
Short summary
Short summary
The objective of this study was to perform a comprehensive, multi-faceted analysis of the 2018 extreme summer in terms of heat and drought in central and northern Europe, with a particular focus on Germany. A combination of favorable large-scale conditions and locally dry soils were related with the intensity and persistence of the events. We also showed that such extremes have become more likely due to anthropogenic climate change and might occur almost every year under +2 °C of global warming.
Tobias Tesch, Stefan Kollet, and Jochen Garcke
Geosci. Model Dev., 16, 2149–2166, https://doi.org/10.5194/gmd-16-2149-2023, https://doi.org/10.5194/gmd-16-2149-2023, 2023
Short summary
Short summary
A recent statistical approach for studying relations in the Earth system is to train deep learning (DL) models to predict Earth system variables given one or several others and use interpretable DL to analyze the relations learned by the models. Here, we propose to combine the approach with a theorem from causality research to ensure that the deep learning model learns causal rather than spurious relations. As an example, we apply the method to study soil-moisture–precipitation coupling.
Patrick Ludwig, Florian Ehmele, Mário J. Franca, Susanna Mohr, Alberto Caldas-Alvarez, James E. Daniell, Uwe Ehret, Hendrik Feldmann, Marie Hundhausen, Peter Knippertz, Katharina Küpfer, Michael Kunz, Bernhard Mühr, Joaquim G. Pinto, Julian Quinting, Andreas M. Schäfer, Frank Seidel, and Christina Wisotzky
Nat. Hazards Earth Syst. Sci., 23, 1287–1311, https://doi.org/10.5194/nhess-23-1287-2023, https://doi.org/10.5194/nhess-23-1287-2023, 2023
Short summary
Short summary
Heavy precipitation in July 2021 led to widespread floods in western Germany and neighboring countries. The event was among the five heaviest precipitation events of the past 70 years in Germany, and the river discharges exceeded by far the statistical 100-year return values. Simulations of the event under future climate conditions revealed a strong and non-linear effect on flood peaks: for +2 K global warming, an 18 % increase in rainfall led to a 39 % increase of the flood peak in the Ahr river.
Bibi S. Naz, Wendy Sharples, Yueling Ma, Klaus Goergen, and Stefan Kollet
Geosci. Model Dev., 16, 1617–1639, https://doi.org/10.5194/gmd-16-1617-2023, https://doi.org/10.5194/gmd-16-1617-2023, 2023
Short summary
Short summary
It is challenging to apply a high-resolution integrated land surface and groundwater model over large spatial scales. In this paper, we demonstrate the application of such a model over a pan-European domain at 3 km resolution and perform an extensive evaluation of simulated water states and fluxes by comparing with in situ and satellite data. This study can serve as a benchmark and baseline for future studies of climate change impact projections and for hydrological forecasting.
Jose V. Moris, Pedro Álvarez-Álvarez, Marco Conedera, Annalie Dorph, Thomas D. Hessilt, Hugh G. P. Hunt, Renata Libonati, Lucas S. Menezes, Mortimer M. Müller, Francisco J. Pérez-Invernón, Gianni B. Pezzatti, Nicolau Pineda, Rebecca C. Scholten, Sander Veraverbeke, B. Mike Wotton, and Davide Ascoli
Earth Syst. Sci. Data, 15, 1151–1163, https://doi.org/10.5194/essd-15-1151-2023, https://doi.org/10.5194/essd-15-1151-2023, 2023
Short summary
Short summary
This work describes a database on holdover times of lightning-ignited wildfires (LIWs). Holdover time is defined as the time between lightning-induced fire ignition and fire detection. The database contains 42 datasets built with data on more than 152 375 LIWs from 13 countries in five continents from 1921 to 2020. This database is the first freely-available, harmonized and ready-to-use global source of holdover time data, which may be used to investigate LIWs and model the holdover phenomenon.
Marcus Breil, Felix Krawczyk, and Joaquim G. Pinto
Earth Syst. Dynam., 14, 243–253, https://doi.org/10.5194/esd-14-243-2023, https://doi.org/10.5194/esd-14-243-2023, 2023
Short summary
Short summary
We provide evidence that biogeophysical effects of afforestation can counteract the favorable biogeochemical climate effect of reduced CO2 concentrations. By changing the land surface characteristics, afforestation reduces vegetation surface temperatures, resulting in a reduced outgoing longwave radiation in summer, although CO2 concentrations are reduced. Since forests additionally absorb a lot of solar radiation due to their dark surfaces, afforestation has a total warming effect.
Susanna Mohr, Uwe Ehret, Michael Kunz, Patrick Ludwig, Alberto Caldas-Alvarez, James E. Daniell, Florian Ehmele, Hendrik Feldmann, Mário J. Franca, Christian Gattke, Marie Hundhausen, Peter Knippertz, Katharina Küpfer, Bernhard Mühr, Joaquim G. Pinto, Julian Quinting, Andreas M. Schäfer, Marc Scheibel, Frank Seidel, and Christina Wisotzky
Nat. Hazards Earth Syst. Sci., 23, 525–551, https://doi.org/10.5194/nhess-23-525-2023, https://doi.org/10.5194/nhess-23-525-2023, 2023
Short summary
Short summary
The flood event in July 2021 was one of the most severe disasters in Europe in the last half century. The objective of this two-part study is a multi-disciplinary assessment that examines the complex process interactions in different compartments, from meteorology to hydrological conditions to hydro-morphological processes to impacts on assets and environment. In addition, we address the question of what measures are possible to generate added value to early response management.
Mohamed Saadi, Carina Furusho-Percot, Alexandre Belleflamme, Ju-Yu Chen, Silke Trömel, and Stefan Kollet
Nat. Hazards Earth Syst. Sci., 23, 159–177, https://doi.org/10.5194/nhess-23-159-2023, https://doi.org/10.5194/nhess-23-159-2023, 2023
Short summary
Short summary
On 14 July 2021, heavy rainfall fell over central Europe, causing considerable damage and human fatalities. We analyzed how accurate our estimates of rainfall and peak flow were for these flooding events in western Germany. We found that the rainfall estimates from radar measurements were improved by including polarimetric variables and their vertical gradients. Peak flow estimates were highly uncertain due to uncertainties in hydrological model parameters and rainfall measurements.
Ruksana H. Rimi, Karsten Haustein, Emily J. Barbour, Sarah N. Sparrow, Sihan Li, David C. H. Wallom, and Myles R. Allen
Hydrol. Earth Syst. Sci., 26, 5737–5756, https://doi.org/10.5194/hess-26-5737-2022, https://doi.org/10.5194/hess-26-5737-2022, 2022
Short summary
Short summary
Extreme rainfall events are major concerns in Bangladesh. Heavy downpours can cause flash floods and damage nearly harvestable crops in pre-monsoon season. While in monsoon season, the impacts can range from widespread agricultural loss, huge property damage, to loss of lives and livelihoods. This paper assesses the role of anthropogenic climate change drivers in changing risks of extreme rainfall events during pre-monsoon and monsoon seasons at local sub-regional-scale within Bangladesh.
Lea Eisenstein, Benedikt Schulz, Ghulam A. Qadir, Joaquim G. Pinto, and Peter Knippertz
Weather Clim. Dynam., 3, 1157–1182, https://doi.org/10.5194/wcd-3-1157-2022, https://doi.org/10.5194/wcd-3-1157-2022, 2022
Short summary
Short summary
Mesoscale high-wind features within extratropical cyclones can cause immense damage. Here, we present RAMEFI, a novel approach to objectively identify the wind features based on a probabilistic random forest. RAMEFI enables a wide range of applications such as probabilistic predictions for the occurrence or a multi-decadal climatology of these features, which will be the focus of Part 2 of the study, with the goal of improving wind and, specifically, wind gust forecasts in the long run.
Lennart Marien, Mahyar Valizadeh, Wolfgang zu Castell, Christine Nam, Diana Rechid, Alexandra Schneider, Christine Meisinger, Jakob Linseisen, Kathrin Wolf, and Laurens M. Bouwer
Nat. Hazards Earth Syst. Sci., 22, 3015–3039, https://doi.org/10.5194/nhess-22-3015-2022, https://doi.org/10.5194/nhess-22-3015-2022, 2022
Short summary
Short summary
Myocardial infarctions (MIs; heart attacks) are influenced by temperature extremes, air pollution, lack of green spaces and ageing population. Here, we apply machine learning (ML) models in order to estimate the influence of various environmental and demographic risk factors. The resulting ML models can accurately reproduce observed annual variability in MI and inter-annual trends. The models allow quantification of the importance of individual factors and can be used to project future risk.
Swantje Preuschmann, Tanja Blome, Knut Görl, Fiona Köhnke, Bettina Steuri, Juliane El Zohbi, Diana Rechid, Martin Schultz, Jianing Sun, and Daniela Jacob
Adv. Sci. Res., 19, 51–71, https://doi.org/10.5194/asr-19-51-2022, https://doi.org/10.5194/asr-19-51-2022, 2022
Short summary
Short summary
The main aspect of the paper is to obtain transferable principles for the development of digital knowledge transfer products. As such products are still unstandardised, the authors explored challenges and approaches for product developments. The authors report what they see as useful principles for developing digital knowledge transfer products, by describing the experience of developing the Net-Zero-2050 Web-Atlas and the "Bodenkohlenstoff-App".
Priscilla A. Mooney, Diana Rechid, Edouard L. Davin, Eleni Katragkou, Natalie de Noblet-Ducoudré, Marcus Breil, Rita M. Cardoso, Anne Sophie Daloz, Peter Hoffmann, Daniela C. A. Lima, Ronny Meier, Pedro M. M. Soares, Giannis Sofiadis, Susanna Strada, Gustav Strandberg, Merja H. Toelle, and Marianne T. Lund
The Cryosphere, 16, 1383–1397, https://doi.org/10.5194/tc-16-1383-2022, https://doi.org/10.5194/tc-16-1383-2022, 2022
Short summary
Short summary
We use multiple regional climate models to show that afforestation in sub-polar and alpine regions reduces the radiative impact of snow albedo on the atmosphere, reduces snow cover, and delays the start of the snowmelt season. This is important for local communities that are highly reliant on snowpack for water resources and winter tourism. However, models disagree on the amount of change particularly when snow is melting. This shows that more research is needed on snow–vegetation interactions.
Vanessa Reinhart, Peter Hoffmann, Diana Rechid, Jürgen Böhner, and Benjamin Bechtel
Earth Syst. Sci. Data, 14, 1735–1794, https://doi.org/10.5194/essd-14-1735-2022, https://doi.org/10.5194/essd-14-1735-2022, 2022
Short summary
Short summary
The LANDMATE plant functional type (PFT) land cover dataset for Europe 2015 (Version 1.0) is a gridded, high-resolution dataset for use in regional climate models. LANDMATE PFT is prepared using the expertise of regional climate modellers all over Europe and is easily adjustable to fit into different climate model families. We provide comprehensive spatial quality information for LANDMATE PFT, which can be used to reduce uncertainty in regional climate model simulations.
Assaf Hochman, Francesco Marra, Gabriele Messori, Joaquim G. Pinto, Shira Raveh-Rubin, Yizhak Yosef, and Georgios Zittis
Earth Syst. Dynam., 13, 749–777, https://doi.org/10.5194/esd-13-749-2022, https://doi.org/10.5194/esd-13-749-2022, 2022
Short summary
Short summary
Gaining a complete understanding of extreme weather, from its physical drivers to its impacts on society, is important in supporting future risk reduction and adaptation measures. Here, we provide a review of the available scientific literature, knowledge gaps and key open questions in the study of extreme weather events over the vulnerable eastern Mediterranean region.
Jacopo Riboldi, Efi Rousi, Fabio D'Andrea, Gwendal Rivière, and François Lott
Weather Clim. Dynam., 3, 449–469, https://doi.org/10.5194/wcd-3-449-2022, https://doi.org/10.5194/wcd-3-449-2022, 2022
Short summary
Short summary
A revisited space and time spectral decomposition allows us to determine which harmonics dominate the upper-tropospheric flow evolution over a given time period as well as their propagation. This approach is used to identify Rossby wave patterns with a circumglobal extent, affecting weather evolution over different Northern Hemisphere regions. The results cast light on the processes originating and supporting these wave patterns, advocating at the same time for the usefulness of the technique.
Lisa-Ann Kautz, Olivia Martius, Stephan Pfahl, Joaquim G. Pinto, Alexandre M. Ramos, Pedro M. Sousa, and Tim Woollings
Weather Clim. Dynam., 3, 305–336, https://doi.org/10.5194/wcd-3-305-2022, https://doi.org/10.5194/wcd-3-305-2022, 2022
Short summary
Short summary
Atmospheric blocking is associated with stationary, self-sustaining and long-lasting high-pressure systems. They can cause or at least influence surface weather extremes, such as heat waves, cold spells, heavy precipitation events, droughts or wind extremes. The location of the blocking determines where and what type of extreme event will occur. These relationships are also important for weather prediction and may change due to global warming.
Animesh K. Gain, Yves Bühler, Pascal Haegeli, Daniela Molinari, Mario Parise, David J. Peres, Joaquim G. Pinto, Kai Schröter, Ricardo M. Trigo, María Carmen Llasat, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 22, 985–993, https://doi.org/10.5194/nhess-22-985-2022, https://doi.org/10.5194/nhess-22-985-2022, 2022
Short summary
Short summary
To mark the 20th anniversary of Natural Hazards and Earth System Sciences (NHESS), an interdisciplinary and international journal dedicated to the public discussion and open-access publication of high-quality studies and original research on natural hazards and their consequences, we highlight 11 key publications covering major subject areas of NHESS that stood out within the past 20 years.
Florian Ehmele, Lisa-Ann Kautz, Hendrik Feldmann, Yi He, Martin Kadlec, Fanni D. Kelemen, Hilke S. Lentink, Patrick Ludwig, Desmond Manful, and Joaquim G. Pinto
Nat. Hazards Earth Syst. Sci., 22, 677–692, https://doi.org/10.5194/nhess-22-677-2022, https://doi.org/10.5194/nhess-22-677-2022, 2022
Short summary
Short summary
For various applications, it is crucial to have profound knowledge of the frequency, severity, and risk of extreme flood events. Such events are characterized by very long return periods which observations can not cover. We use a large ensemble of regional climate model simulations as input for a hydrological model. Precipitation data were post-processed to reduce systematic errors. The representation of precipitation and discharge is improved, and estimates of long return periods become robust.
Giannis Sofiadis, Eleni Katragkou, Edouard L. Davin, Diana Rechid, Nathalie de Noblet-Ducoudre, Marcus Breil, Rita M. Cardoso, Peter Hoffmann, Lisa Jach, Ronny Meier, Priscilla A. Mooney, Pedro M. M. Soares, Susanna Strada, Merja H. Tölle, and Kirsten Warrach Sagi
Geosci. Model Dev., 15, 595–616, https://doi.org/10.5194/gmd-15-595-2022, https://doi.org/10.5194/gmd-15-595-2022, 2022
Short summary
Short summary
Afforestation is currently promoted as a greenhouse gas mitigation strategy. In our study, we examine the differences in soil temperature and moisture between grounds covered either by forests or grass. The main conclusion emerged is that forest-covered grounds are cooler but drier than open lands in summer. Therefore, afforestation disrupts the seasonal cycle of soil temperature, which in turn could trigger changes in crucial chemical processes such as soil carbon sequestration.
Kim H. Stadelmaier, Patrick Ludwig, Pascal Bertran, Pierre Antoine, Xiaoxu Shi, Gerrit Lohmann, and Joaquim G. Pinto
Clim. Past, 17, 2559–2576, https://doi.org/10.5194/cp-17-2559-2021, https://doi.org/10.5194/cp-17-2559-2021, 2021
Short summary
Short summary
We use regional climate simulations for the Last Glacial Maximum to reconstruct permafrost and to identify areas of thermal contraction cracking of the ground in western Europe. We find ground cracking, a precondition for the development of permafrost proxies, south of the probable permafrost border, implying that permafrost was not the limiting factor for proxy development. A good agreement with permafrost and climate proxy data is achieved when easterly winds are modelled more frequently.
Bernd Schalge, Gabriele Baroni, Barbara Haese, Daniel Erdal, Gernot Geppert, Pablo Saavedra, Vincent Haefliger, Harry Vereecken, Sabine Attinger, Harald Kunstmann, Olaf A. Cirpka, Felix Ament, Stefan Kollet, Insa Neuweiler, Harrie-Jan Hendricks Franssen, and Clemens Simmer
Earth Syst. Sci. Data, 13, 4437–4464, https://doi.org/10.5194/essd-13-4437-2021, https://doi.org/10.5194/essd-13-4437-2021, 2021
Short summary
Short summary
In this study, a 9-year simulation of complete model output of a coupled atmosphere–land-surface–subsurface model on the catchment scale is discussed. We used the Neckar catchment in SW Germany as the basis of this simulation. Since the dataset includes the full model output, it is not only possible to investigate model behavior and interactions between the component models but also use it as a virtual truth for comparison of, for example, data assimilation experiments.
Peter Hoffmann, Vanessa Reinhart, Diana Rechid, Nathalie de Noblet-Ducoudré, Edouard L. Davin, Christina Asmus, Benjamin Bechtel, Jürgen Böhner, Eleni Katragkou, and Sebastiaan Luyssaert
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-252, https://doi.org/10.5194/essd-2021-252, 2021
Manuscript not accepted for further review
Short summary
Short summary
This paper introduces the new high-resolution land-use land-cover change dataset LUCAS LUC historical and future land use and land cover change dataset (Version 1.0), tailored for use in regional climate models. Historical and projected future land use change information from the Land-Use Harmonization 2 (LUH2) dataset is translated into annual plant functional type changes from 1950 to 2015 and 2016 to 2100, respectively, by employing a newly developed land use translator.
Folmer Krikken, Flavio Lehner, Karsten Haustein, Igor Drobyshev, and Geert Jan van Oldenborgh
Nat. Hazards Earth Syst. Sci., 21, 2169–2179, https://doi.org/10.5194/nhess-21-2169-2021, https://doi.org/10.5194/nhess-21-2169-2021, 2021
Short summary
Short summary
In this study, we analyse the role of climate change in the forest fires that raged through large parts of Sweden in the summer of 2018 from a meteorological perspective. This is done by studying observationally constrained data and multiple climate models. We find a small reduced probability of such events, based on reanalyses, but a small increased probability due to global warming up to now and a more robust increase in the risk for such events in the future, based on climate models.
Yueling Ma, Carsten Montzka, Bagher Bayat, and Stefan Kollet
Hydrol. Earth Syst. Sci., 25, 3555–3575, https://doi.org/10.5194/hess-25-3555-2021, https://doi.org/10.5194/hess-25-3555-2021, 2021
Short summary
Short summary
This study utilized spatiotemporally continuous precipitation anomaly (pra) and water table depth anomaly (wtda) data from integrated hydrologic simulation results over Europe in combination with Long Short-Term Memory (LSTM) networks to capture the time-varying and time-lagged relationship between pra and wtda in order to obtain reliable models to estimate wtda at the individual pixel level.
Kevin Sieck, Christine Nam, Laurens M. Bouwer, Diana Rechid, and Daniela Jacob
Earth Syst. Dynam., 12, 457–468, https://doi.org/10.5194/esd-12-457-2021, https://doi.org/10.5194/esd-12-457-2021, 2021
Short summary
Short summary
This paper presents new estimates of future extreme weather in Europe, including extreme heat, extreme rainfall and meteorological drought. These new estimates were achieved by repeating model calculations many times, thereby reducing uncertainties of these rare events at low levels of global warming at 1.5 and 2 °C above
pre-industrial temperature levels. These results are important, as they help to assess which weather extremes could increase at moderate warming levels and where.
Geert Jan van Oldenborgh, Folmer Krikken, Sophie Lewis, Nicholas J. Leach, Flavio Lehner, Kate R. Saunders, Michiel van Weele, Karsten Haustein, Sihan Li, David Wallom, Sarah Sparrow, Julie Arrighi, Roop K. Singh, Maarten K. van Aalst, Sjoukje Y. Philip, Robert Vautard, and Friederike E. L. Otto
Nat. Hazards Earth Syst. Sci., 21, 941–960, https://doi.org/10.5194/nhess-21-941-2021, https://doi.org/10.5194/nhess-21-941-2021, 2021
Short summary
Short summary
Southeastern Australia suffered from disastrous bushfires during the 2019/20 fire season, raising the question whether these have become more likely due to climate change. We found no attributable trend in extreme annual or monthly low precipitation but a clear shift towards more extreme heat. However, this shift is underestimated by the models. Analysing fire weather directly, we found that the chance has increased by at least 30 %, but due to the underestimation it could well be higher.
Marcus Breil, Edouard L. Davin, and Diana Rechid
Biogeosciences, 18, 1499–1510, https://doi.org/10.5194/bg-18-1499-2021, https://doi.org/10.5194/bg-18-1499-2021, 2021
Short summary
Short summary
The physical processes behind varying evapotranspiration rates in forests and grasslands in Europe are investigated in a regional model study with idealized afforestation scenarios. The results show that the evapotranspiration response to afforestation depends on the interplay of two counteracting factors: the transpiration facilitating characteristics of a forest and the reduced saturation deficits of forests caused by an increased surface roughness and associated lower surface temperatures.
Margarida L. R. Liberato, Irene Montero, Célia Gouveia, Ana Russo, Alexandre M. Ramos, and Ricardo M. Trigo
Earth Syst. Dynam., 12, 197–210, https://doi.org/10.5194/esd-12-197-2021, https://doi.org/10.5194/esd-12-197-2021, 2021
Short summary
Short summary
Extensive, long-standing dry and wet episodes are frequent climatic extreme events (EEs) in the Iberian Peninsula (IP). A method for ranking regional extremes of persistent, widespread drought and wet events is presented, using different SPEI timescales. Results show that there is no region more prone to EE occurrences in the IP, the most extreme extensive agricultural droughts evolve into hydrological and more persistent extreme droughts, and widespread wet and dry EEs are anti-correlated.
Assaf Hochman, Sebastian Scher, Julian Quinting, Joaquim G. Pinto, and Gabriele Messori
Earth Syst. Dynam., 12, 133–149, https://doi.org/10.5194/esd-12-133-2021, https://doi.org/10.5194/esd-12-133-2021, 2021
Short summary
Short summary
Skillful forecasts of extreme weather events have a major socioeconomic relevance. Here, we compare two approaches to diagnose the predictability of eastern Mediterranean heat waves: one based on recent developments in dynamical systems theory and one leveraging numerical ensemble weather forecasts. We conclude that the former can be a useful and cost-efficient complement to conventional numerical forecasts for understanding the dynamics of eastern Mediterranean heat waves.
Andreia Filipa Silva Ribeiro, Ana Russo, Célia Marina Gouveia, Patrícia Páscoa, and Jakob Zscheischler
Biogeosciences, 17, 4815–4830, https://doi.org/10.5194/bg-17-4815-2020, https://doi.org/10.5194/bg-17-4815-2020, 2020
Short summary
Short summary
This study investigates the impacts of compound dry and hot extremes on crop yields, namely wheat and barley, over two regions in Spain dominated by rainfed agriculture. We provide estimates of the conditional probability of crop loss under compound dry and hot conditions, which could be an important tool for responsible authorities to mitigate the impacts magnified by the interactions between the different hazards.
Florian Ehmele, Lisa-Ann Kautz, Hendrik Feldmann, and Joaquim G. Pinto
Earth Syst. Dynam., 11, 469–490, https://doi.org/10.5194/esd-11-469-2020, https://doi.org/10.5194/esd-11-469-2020, 2020
Short summary
Short summary
This study presents a large novel data set of climate model simulations for central Europe covering the years 1900–2028 at a 25 km resolution. The focus is on intensive areal precipitation values. The data set is validated against observations using different statistical approaches. The results reveal an adequate quality in a statistical sense as well as some long-term variability with phases of increased and decreased heavy precipitation. The predictions of the near future show continuity.
Christoph P. Gatzen, Andreas H. Fink, David M. Schultz, and Joaquim G. Pinto
Nat. Hazards Earth Syst. Sci., 20, 1335–1351, https://doi.org/10.5194/nhess-20-1335-2020, https://doi.org/10.5194/nhess-20-1335-2020, 2020
Short summary
Short summary
Derechos are widespread, convectively induced severe wind events. A climatology of derechos in Germany is presented. It shows that derechos are not uncommon across the country. Two seasonal peaks indicate a comparable derecho risk in summer and winter. At the same time, we found two different derecho types, a warm- and a cold-season type. We present characteristics of both derecho types that can help forecasters to estimate the potential derecho threat in a given weather situation.
Bettina Steuri, Tanja Blome, Katharina Bülow, Juliane El Zohbi, Peter Hoffmann, Juliane Petersen, Susanne Pfeifer, Diana Rechid, and Daniela Jacob
Adv. Sci. Res., 17, 9–17, https://doi.org/10.5194/asr-17-9-2020, https://doi.org/10.5194/asr-17-9-2020, 2020
Short summary
Short summary
The goal of an interdisciplinary team of scientists at the Climate Service Center Germany (GERICS) was to make the findings of the special report IPCC SR1.5 more accessible to the citizens of Hamburg. Therefore, a flyer was created that is understandable to non-climate scientists, visually attractive and generates interest.
In this article, the authors provide insights into their teamwork, the underlying guiding principles as well as lessons learned that are of great value for future projects.
Joaquim G. Pinto and Patrick Ludwig
Clim. Past, 16, 611–626, https://doi.org/10.5194/cp-16-611-2020, https://doi.org/10.5194/cp-16-611-2020, 2020
Short summary
Short summary
The statistics and characteristics of cyclones over the North Atlantic and Europe are analysed for Last Glacial Maximum (LGM) climate conditions. LGM extreme cyclones were more frequent and characterised by less precipitation and stronger wind speeds than pre-industrial analogues. These results agree with the view of a colder and drier Europe during LGM, with little vegetation and affected by frequent dust storms, leading to the buildup of thick loess deposits in Europe.
Benjamin N. O. Kuffour, Nicholas B. Engdahl, Carol S. Woodward, Laura E. Condon, Stefan Kollet, and Reed M. Maxwell
Geosci. Model Dev., 13, 1373–1397, https://doi.org/10.5194/gmd-13-1373-2020, https://doi.org/10.5194/gmd-13-1373-2020, 2020
Short summary
Short summary
Integrated hydrologic models (IHMs) were developed in order to allow for more accurate simulations of real-world ecohydrologic conditions. Many IHMs exist, and the literature can be dense, so it is often difficult to understand what a specific model can and cannot do. We provide a review of the current core capabilities, solution techniques, communication structure with other models, some limitations, and potential future improvements of one such open-source integrated model called ParFlow.
Danijel Belušić, Hylke de Vries, Andreas Dobler, Oskar Landgren, Petter Lind, David Lindstedt, Rasmus A. Pedersen, Juan Carlos Sánchez-Perrino, Erika Toivonen, Bert van Ulft, Fuxing Wang, Ulf Andrae, Yurii Batrak, Erik Kjellström, Geert Lenderink, Grigory Nikulin, Joni-Pekka Pietikäinen, Ernesto Rodríguez-Camino, Patrick Samuelsson, Erik van Meijgaard, and Minchao Wu
Geosci. Model Dev., 13, 1311–1333, https://doi.org/10.5194/gmd-13-1311-2020, https://doi.org/10.5194/gmd-13-1311-2020, 2020
Short summary
Short summary
A new regional climate modelling system, HCLIM38, is presented and shown to be applicable in different regions ranging from the tropics to the Arctic. The main focus is on climate simulations at horizontal resolutions between 1 and 4 km, the so-called convection-permitting scales, even though the model can also be used at coarser resolutions. The benefits of simulating climate at convection-permitting scales are shown and are particularly evident for climate extremes.
Edouard L. Davin, Diana Rechid, Marcus Breil, Rita M. Cardoso, Erika Coppola, Peter Hoffmann, Lisa L. Jach, Eleni Katragkou, Nathalie de Noblet-Ducoudré, Kai Radtke, Mario Raffa, Pedro M. M. Soares, Giannis Sofiadis, Susanna Strada, Gustav Strandberg, Merja H. Tölle, Kirsten Warrach-Sagi, and Volker Wulfmeyer
Earth Syst. Dynam., 11, 183–200, https://doi.org/10.5194/esd-11-183-2020, https://doi.org/10.5194/esd-11-183-2020, 2020
Andreia F. S. Ribeiro, Ana Russo, Célia M. Gouveia, Patrícia Páscoa, and Carlos A. L. Pires
Nat. Hazards Earth Syst. Sci., 19, 2795–2809, https://doi.org/10.5194/nhess-19-2795-2019, https://doi.org/10.5194/nhess-19-2795-2019, 2019
Short summary
Short summary
This work investigates the dependence between drought hazard and yield anomalies of rainfed cropping systems in the Iberian Peninsula using the copula theory. The applied methodology allows us to estimate the likelihood of wheat and barley loss under drought conditions, and a dependence among extreme values is suggested. From the decision-making point of view this study aims to contribute to the mitigation of drought-related crop failure.
Catarina Alonso, Celia M. Gouveia, Ana Russo, and Patrícia Páscoa
Nat. Hazards Earth Syst. Sci., 19, 2727–2743, https://doi.org/10.5194/nhess-19-2727-2019, https://doi.org/10.5194/nhess-19-2727-2019, 2019
Short summary
Short summary
A vulnerability assessment method is proposed to identify the most vulnerable regions over Portugal. Two methods were compared, namely a subjective categorical method and an automatic method, based on drought indicators, vegetation indices and soil variables. Both methods present similar results, and both identify Minho (Alentejo) as having low (extreme) vulnerability. The automatic method has advantages, as it is fully statistical and presents results without prior knowledge of the region.
Erika Toivonen, Marjo Hippi, Hannele Korhonen, Ari Laaksonen, Markku Kangas, and Joni-Pekka Pietikäinen
Geosci. Model Dev., 12, 3481–3501, https://doi.org/10.5194/gmd-12-3481-2019, https://doi.org/10.5194/gmd-12-3481-2019, 2019
Short summary
Short summary
We evaluated the skill of the road weather model RoadSurf to reproduce present-day road weather conditions in Finland when driven by a high-resolution regional climate model. Simulated road surface temperatures and conditions were compared to observations between 2002 and 2014 at 25 Finnish road weather stations. RoadSurf accurately captured the main characteristics of road weather conditions. Thus, this model can be used to study the future scenarios of road weather in the study area.
Laura Rontu, Joni-Pekka Pietikäinen, and Daniel Martin Perez
Adv. Sci. Res., 16, 129–136, https://doi.org/10.5194/asr-16-129-2019, https://doi.org/10.5194/asr-16-129-2019, 2019
Short summary
Short summary
Radiative transfer calculations in numerical weather prediction (NWP)
and climate models require reliable information about aerosol
concentration in the atmosphere, combined with data on aerosol optical
properties. Data from the Copernicus atmosphere monitoring service
(CAMS) and European Centre for Medium-Range Weather Forecasts (ECMWF)
were implemented to the limited area, short-range HARMONIE-AROME NWP
model.
Luca Mathias, Patrick Ludwig, and Joaquim G. Pinto
Nat. Hazards Earth Syst. Sci., 19, 1023–1040, https://doi.org/10.5194/nhess-19-1023-2019, https://doi.org/10.5194/nhess-19-1023-2019, 2019
Short summary
Short summary
Convective systems producing severe winds occasionally affect Europe during wintertime and the majority of these storms develop along well-defined cold fronts of extratropical cyclones. However, on 3 January 2014, a storm formed in a postfrontal air mass over western Europe. This study analyses the prevailing environmental conditions and the predictability of this storm. Our results reveal the difficulty of forecasting cold-season convective storms when they are not associated with a cold front.
Mark Reyers, Hendrik Feldmann, Sebastian Mieruch, Joaquim G. Pinto, Marianne Uhlig, Bodo Ahrens, Barbara Früh, Kameswarrao Modali, Natalie Laube, Julia Moemken, Wolfgang Müller, Gerd Schädler, and Christoph Kottmeier
Earth Syst. Dynam., 10, 171–187, https://doi.org/10.5194/esd-10-171-2019, https://doi.org/10.5194/esd-10-171-2019, 2019
Short summary
Short summary
In this study, the regional MiKlip decadal prediction system is evaluated. This system has been established to deliver highly resolved forecasts for the timescale of 1 to 10 years for Europe. Evidence of the general potential for regional decadal predictability for the variables temperature, precipitation, and wind speed is provided, but the performance of the prediction system depends on region, variable, and system generation.
Sjoukje Philip, Sarah Sparrow, Sarah F. Kew, Karin van der Wiel, Niko Wanders, Roop Singh, Ahmadul Hassan, Khaled Mohammed, Hammad Javid, Karsten Haustein, Friederike E. L. Otto, Feyera Hirpa, Ruksana H. Rimi, A. K. M. Saiful Islam, David C. H. Wallom, and Geert Jan van Oldenborgh
Hydrol. Earth Syst. Sci., 23, 1409–1429, https://doi.org/10.5194/hess-23-1409-2019, https://doi.org/10.5194/hess-23-1409-2019, 2019
Short summary
Short summary
In August 2017 Bangladesh faced one of its worst river flooding events in recent history. For the large Brahmaputra basin, using precipitation alone as a proxy for flooding might not be appropriate. In this paper we explicitly test this assumption by performing an attribution of both precipitation and discharge as a flooding-related measure to climate change. We find the change in risk to be of similar order of magnitude (between 1 and 2) for both the meteorological and hydrological approach.
Lisa-Ann Kautz, Florian Ehmele, Patrick Ludwig, Hilke S. Lentink, Fanni D. Kelemen, Martin Kadlec, and Joaquim G. Pinto
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-77, https://doi.org/10.5194/hess-2019-77, 2019
Manuscript not accepted for further review
Short summary
Short summary
To quantify the flooding risk for Europe it is necessary to run hydrological models. As input for these models, a consistent stochastic precipitation dataset is needed. In the present study, a combined approach is presented on how to generate such a dataset based on dynamical downscaling and subsequent bias correction. Empirical quantile mapping was identified as suitable bias correction method as it led to improvements for specific severe river floods as well as in a climatological perspective.
Bibi S. Naz, Wolfgang Kurtz, Carsten Montzka, Wendy Sharples, Klaus Goergen, Jessica Keune, Huilin Gao, Anne Springer, Harrie-Jan Hendricks Franssen, and Stefan Kollet
Hydrol. Earth Syst. Sci., 23, 277–301, https://doi.org/10.5194/hess-23-277-2019, https://doi.org/10.5194/hess-23-277-2019, 2019
Short summary
Short summary
This study investigates the value of assimilating coarse-resolution remotely sensed soil moisture data into high-resolution land surface models for improving soil moisture and runoff modeling. The soil moisture estimates in this study, with complete spatio-temporal coverage and improved spatial resolution from the assimilation, offer a new reanalysis product for the monitoring of surface soil water content and other hydrological fluxes at 3 km resolution over Europe.
Boaz Hilman, Jan Muhr, Susan E. Trumbore, Norbert Kunert, Mariah S. Carbone, Päivi Yuval, S. Joseph Wright, Gerardo Moreno, Oscar Pérez-Priego, Mirco Migliavacca, Arnaud Carrara, José M. Grünzweig, Yagil Osem, Tal Weiner, and Alon Angert
Biogeosciences, 16, 177–191, https://doi.org/10.5194/bg-16-177-2019, https://doi.org/10.5194/bg-16-177-2019, 2019
Short summary
Short summary
Combined measurement of CO2 / O2 fluxes in tree stems suggested that on average 41 % of the respired CO2 was not emitted locally to the atmosphere. This finding strengthens the recognition that CO2 efflux from tree stems is not an accurate measure of respiration. The CO2 / O2 fluxes did not vary as expected if CO2 dissolution in the xylem sap was the main driver for the CO2 retention. We suggest the examination of refixation of respired CO2 as a possible mechanism for CO2 retention.
Matthew D. K. Priestley, Helen F. Dacre, Len C. Shaffrey, Kevin I. Hodges, and Joaquim G. Pinto
Nat. Hazards Earth Syst. Sci., 18, 2991–3006, https://doi.org/10.5194/nhess-18-2991-2018, https://doi.org/10.5194/nhess-18-2991-2018, 2018
Short summary
Short summary
This study investigates the role of the clustering of extratropical cyclones in driving wintertime wind losses across a large European region. To do this over 900 years of climate model data have been used and analysed. The main conclusion of this work is that cyclone clustering acts to increase wind-driven losses in the winter by 10 %–20 % when compared to the losses from a random series of cyclones, with this specifically being for the higher loss years.
Wendy Sharples, Ilya Zhukov, Markus Geimer, Klaus Goergen, Sebastian Luehrs, Thomas Breuer, Bibi Naz, Ketan Kulkarni, Slavko Brdar, and Stefan Kollet
Geosci. Model Dev., 11, 2875–2895, https://doi.org/10.5194/gmd-11-2875-2018, https://doi.org/10.5194/gmd-11-2875-2018, 2018
Short summary
Short summary
Next-generation geoscientific models are based on complex model implementations and workflows. Next-generation HPC systems require new programming paradigms and code optimization. In order to meet the challenge of running complex simulations on new massively parallel HPC systems, we developed a run control framework that facilitates code portability, code profiling, and provenance tracking to reduce both the duration and the cost of code migration and development, while ensuring reproducibility.
Patrícia Páscoa, Célia M. Gouveia, Ana C. Russo, Roxana Bojariu, Sergio M. Vicente-Serrano, and Ricardo M. Trigo
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-264, https://doi.org/10.5194/hess-2018-264, 2018
Revised manuscript not accepted
Joni-Pekka Pietikäinen, Tiina Markkanen, Kevin Sieck, Daniela Jacob, Johanna Korhonen, Petri Räisänen, Yao Gao, Jaakko Ahola, Hannele Korhonen, Ari Laaksonen, and Jussi Kaurola
Geosci. Model Dev., 11, 1321–1342, https://doi.org/10.5194/gmd-11-1321-2018, https://doi.org/10.5194/gmd-11-1321-2018, 2018
Short summary
Short summary
The regional climate model REMO was coupled with the FLake lake model to include an interactive treatment of lakes. Using this new version, the Fenno-Scandinavian climate and lake characteristics were studied. Our results show that overall the new model version improves the representation of the Fenno-Scandinavian climate in terms of 2 m temperature and precipitation and that the model can reproduce surface water temperature, ice depth and ice season length with reasonably high accuracy.
Jorge Eiras-Barca, Alexandre M. Ramos, Joaquim G. Pinto, Ricardo M. Trigo, Margarida L. R. Liberato, and Gonzalo Miguez-Macho
Earth Syst. Dynam., 9, 91–102, https://doi.org/10.5194/esd-9-91-2018, https://doi.org/10.5194/esd-9-91-2018, 2018
Short summary
Short summary
This paper analyses the potential role of atmospheric rivers in the explosive cyclone deepening. Using ERA-Interim reanalysis data for 1979–2011, we analyse the concurrence of atmospheric rivers and explosive cyclogenesis over the North Atlantic and North Pacific basins for the extended winter months (ONDJFM).
Felix N. Matt, John F. Burkhart, and Joni-Pekka Pietikäinen
Hydrol. Earth Syst. Sci., 22, 179–201, https://doi.org/10.5194/hess-22-179-2018, https://doi.org/10.5194/hess-22-179-2018, 2018
Short summary
Short summary
Certain particles that have the ability to absorb sunlight deposit onto mountain snow via atmospheric transport mechanisms and then lower the snow's ability to reflect sunlight, which increases snowmelt. Herein we present a model aiming to simulate this effect and model the impacts on the streamflow of a southern Norwegian river. We find a significant difference in streamflow between simulations with and without the effect of light absorbing particles applied, in particular during spring melt.
PAGES Hydro2k Consortium
Clim. Past, 13, 1851–1900, https://doi.org/10.5194/cp-13-1851-2017, https://doi.org/10.5194/cp-13-1851-2017, 2017
Short summary
Short summary
Water availability is fundamental to societies and ecosystems, but our understanding of variations in hydroclimate (including extreme events, flooding, and decadal periods of drought) is limited due to a paucity of modern instrumental observations. We review how proxy records of past climate and climate model simulations can be used in tandem to understand hydroclimate variability over the last 2000 years and how these tools can also inform risk assessments of future hydroclimatic extremes.
Benoit P. Guillod, Richard G. Jones, Andy Bowery, Karsten Haustein, Neil R. Massey, Daniel M. Mitchell, Friederike E. L. Otto, Sarah N. Sparrow, Peter Uhe, David C. H. Wallom, Simon Wilson, and Myles R. Allen
Geosci. Model Dev., 10, 1849–1872, https://doi.org/10.5194/gmd-10-1849-2017, https://doi.org/10.5194/gmd-10-1849-2017, 2017
Short summary
Short summary
The weather@home climate modelling system uses the computing power of volunteers around the world to generate a very large number of climate model simulations. This is particularly useful when investigating extreme weather events, notably for the attribution of these events to anthropogenic climate change. A new version of weather@home is presented and evaluated, which includes an improved representation of the land surface and increased horizontal resolution over Europe.
Daniel Mitchell, Krishna AchutaRao, Myles Allen, Ingo Bethke, Urs Beyerle, Andrew Ciavarella, Piers M. Forster, Jan Fuglestvedt, Nathan Gillett, Karsten Haustein, William Ingram, Trond Iversen, Viatcheslav Kharin, Nicholas Klingaman, Neil Massey, Erich Fischer, Carl-Friedrich Schleussner, John Scinocca, Øyvind Seland, Hideo Shiogama, Emily Shuckburgh, Sarah Sparrow, Dáithí Stone, Peter Uhe, David Wallom, Michael Wehner, and Rashyd Zaaboul
Geosci. Model Dev., 10, 571–583, https://doi.org/10.5194/gmd-10-571-2017, https://doi.org/10.5194/gmd-10-571-2017, 2017
Short summary
Short summary
This paper provides an experimental design to assess impacts of a world that is 1.5 °C warmer than at pre-industrial levels. The design is a new way to approach impacts from the climate community, and aims to answer questions related to the recent Paris Agreement. In particular the paper provides a method for studying extreme events under relatively high mitigation scenarios.
Bernd Schalge, Jehan Rihani, Gabriele Baroni, Daniel Erdal, Gernot Geppert, Vincent Haefliger, Barbara Haese, Pablo Saavedra, Insa Neuweiler, Harrie-Jan Hendricks Franssen, Felix Ament, Sabine Attinger, Olaf A. Cirpka, Stefan Kollet, Harald Kunstmann, Harry Vereecken, and Clemens Simmer
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-557, https://doi.org/10.5194/hess-2016-557, 2016
Manuscript not accepted for further review
Short summary
Short summary
In this work we show how we used a coupled atmosphere-land surface-subsurface model at highest possible resolution to create a testbed for data assimilation. The model was able to capture all important processes and interactions between the compartments as well as showing realistic statistical behavior. This proves that using a model as a virtual truth is possible and it will enable us to develop data assimilation methods where states and parameters are updated across compartment.
Stefan J. Kollet
Hydrol. Earth Syst. Sci., 20, 2801–2809, https://doi.org/10.5194/hess-20-2801-2016, https://doi.org/10.5194/hess-20-2801-2016, 2016
Geert Jan van Oldenborgh, Sjoukje Philip, Emma Aalbers, Robert Vautard, Friederike Otto, Karsten Haustein, Florence Habets, Roop Singh, and Heidi Cullen
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-308, https://doi.org/10.5194/hess-2016-308, 2016
Manuscript not accepted for further review
Short summary
Short summary
Extreme rain caused flooding in France and Germany at the end of May 2016. After such an event the question is always posed to what extent it can be attributed to anthropogenic climate change. Using observations and five model ensembles we give a first answer. For the 3-day precipitation extremes over the Seine and Loire basins that caused the flooding all methods agree that the probability has increased by a factor of about two. For 1-day precipitation extremes in Germany the methods disagree.
Wolfgang Kurtz, Guowei He, Stefan J. Kollet, Reed M. Maxwell, Harry Vereecken, and Harrie-Jan Hendricks Franssen
Geosci. Model Dev., 9, 1341–1360, https://doi.org/10.5194/gmd-9-1341-2016, https://doi.org/10.5194/gmd-9-1341-2016, 2016
Short summary
Short summary
This paper describes the development of a modular data assimilation (DA) system for the integrated Earth system model TerrSysMP with the help of the PDAF data assimilation library.
Currently, pressure and soil moisture data can be used to update model states and parameters in the subsurface compartment of TerrSysMP.
Results from an idealized twin experiment show that the developed DA system provides a good parallel performance and is also applicable for high-resolution modelling problems.
G. J. van Oldenborgh, F. E. L. Otto, K. Haustein, and H. Cullen
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-12-13197-2015, https://doi.org/10.5194/hessd-12-13197-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
On 4–6 December 2015, the storm 'Desmond' caused very heavy rainfall in northern England and Scotland, which led to widespread flooding. We provide an initial assessment of the influence of anthropogenic climate change on the likelihood of precipitation events like this. We use three independent methods of extreme event attribution based on observations and two climate models. All methods agree that the effect of climate change is positive, making events like this about 40% (5–80%) more likely.
P. Shrestha, M. Sulis, C. Simmer, and S. Kollet
Hydrol. Earth Syst. Sci., 19, 4317–4326, https://doi.org/10.5194/hess-19-4317-2015, https://doi.org/10.5194/hess-19-4317-2015, 2015
Short summary
Short summary
This study highlights the grid resolution dependence of energy and water balance of the 3-D physically based integrated surface-groundwater model. The non-local controls of soil moisture were found to be highly grid resolution dependent, but the local vegetation control strongly modulates the scaling behavior of surface energy fluxes. For coupled runs, variability in patterns of surface fluxes due to this scale dependence can affect the simulated atmospheric boundary layer and local circulation.
X. Han, X. Li, G. He, P. Kumbhar, C. Montzka, S. Kollet, T. Miyoshi, R. Rosolem, Y. Zhang, H. Vereecken, and H.-J. H. Franssen
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmdd-8-7395-2015, https://doi.org/10.5194/gmdd-8-7395-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
DasPy is a ready to use open source parallel multivariate land data assimilation framework with joint state and parameter estimation using Local Ensemble Transform Kalman Filter. The Community Land Model (4.5) was integrated as model operator. The Community Microwave Emission Modelling platform, COsmic-ray Soil Moisture Interaction Code and the Two-Source Formulation were integrated as observation operators for the multivariate assimilation of soil moisture and soil temperature, respectively.
J.-P. Pietikäinen, K. Kupiainen, Z. Klimont, R. Makkonen, H. Korhonen, R. Karinkanta, A.-P. Hyvärinen, N. Karvosenoja, A. Laaksonen, H. Lihavainen, and V.-M. Kerminen
Atmos. Chem. Phys., 15, 5501–5519, https://doi.org/10.5194/acp-15-5501-2015, https://doi.org/10.5194/acp-15-5501-2015, 2015
Short summary
Short summary
The global aerosol--climate model ECHAM-HAMMOZ is used to study the aerosol burden and forcing changes in the coming decades. We show that aerosol burdens overall can have a decreasing trend leading to reductions in the direct aerosol effect being globally 0.06--0.4W/m2 by 2030, whereas the aerosol indirect radiative effect could decline 0.25--0.82W/m2. We also show that the targeted emission reduction measures can be a much better choice for the climate than overall high reductions globally.
R. M. Maxwell, L. E. Condon, and S. J. Kollet
Geosci. Model Dev., 8, 923–937, https://doi.org/10.5194/gmd-8-923-2015, https://doi.org/10.5194/gmd-8-923-2015, 2015
Short summary
Short summary
A model that simulates groundwater and surface water flow has been developed for the major river basins of the continental United States. Fundamental data sets provide input to the model resulting in a natural organization of stream networks and groundwater flow that is compared to observations of surface water and groundwater. Model results show relationships between flow and area that are moderated by aridity and represent an important step toward integrated hydrological prediction.
K. Haustein, R. Washington, J. King, G. Wiggs, D. S. G. Thomas, F. D. Eckardt, R. G. Bryant, and L. Menut
Geosci. Model Dev., 8, 341–362, https://doi.org/10.5194/gmd-8-341-2015, https://doi.org/10.5194/gmd-8-341-2015, 2015
Short summary
Short summary
In this paper, the performance of three commonly used dust emissions schemes is investigated using a box model environment and observational data obtained in Botswana (Sua Pan). The results suggest that all schemes fail to reproduce the observed horizontal dust flux properly. They overestimate its magnitude by several orders of magnitude. The key parameter for this mismatch is the surface crusting which limits the availability of erosive material, even at higher wind speeds.
Y. Gao, T. Markkanen, L. Backman, H. M. Henttonen, J.-P. Pietikäinen, H. M. Mäkelä, and A. Laaksonen
Biogeosciences, 11, 7251–7267, https://doi.org/10.5194/bg-11-7251-2014, https://doi.org/10.5194/bg-11-7251-2014, 2014
Short summary
Short summary
This work studies the biogeophysical impacts of peatland forestation on regional climate conditions in Finland by a regional climate model with two land cover maps produced from Finnish national forest inventories. A warming in spring and a slight cooling in the growing season are found in peatland forestation area, which are mainly induced by the decreased surface albedo and increased ET, respectively. The snow clearance days are advanced. The results are also compared with observational data.
J.-P. Pietikäinen, S. Mikkonen, A. Hamed, A. I. Hienola, W. Birmili, M. Kulmala, and A. Laaksonen
Atmos. Chem. Phys., 14, 11711–11729, https://doi.org/10.5194/acp-14-11711-2014, https://doi.org/10.5194/acp-14-11711-2014, 2014
F. Gasper, K. Goergen, P. Shrestha, M. Sulis, J. Rihani, M. Geimer, and S. Kollet
Geosci. Model Dev., 7, 2531–2543, https://doi.org/10.5194/gmd-7-2531-2014, https://doi.org/10.5194/gmd-7-2531-2014, 2014
S. V. Henriksson, J.-P. Pietikäinen, A.-P. Hyvärinen, P. Räisänen, K. Kupiainen, J. Tonttila, R. Hooda, H. Lihavainen, D. O'Donnell, L. Backman, Z. Klimont, and A. Laaksonen
Atmos. Chem. Phys., 14, 10177–10192, https://doi.org/10.5194/acp-14-10177-2014, https://doi.org/10.5194/acp-14-10177-2014, 2014
M. K. Karremann, J. G. Pinto, P. J. von Bomhard, and M. Klawa
Nat. Hazards Earth Syst. Sci., 14, 2041–2052, https://doi.org/10.5194/nhess-14-2041-2014, https://doi.org/10.5194/nhess-14-2041-2014, 2014
A. I. Partanen, A. Laakso, A. Schmidt, H. Kokkola, T. Kuokkanen, J.-P. Pietikäinen, V.-M. Kerminen, K. E. J. Lehtinen, L. Laakso, and H. Korhonen
Atmos. Chem. Phys., 13, 12059–12071, https://doi.org/10.5194/acp-13-12059-2013, https://doi.org/10.5194/acp-13-12059-2013, 2013
M. L. R. Liberato, J. G. Pinto, R. M. Trigo, P. Ludwig, P. Ordóñez, D. Yuen, and I. F. Trigo
Nat. Hazards Earth Syst. Sci., 13, 2239–2251, https://doi.org/10.5194/nhess-13-2239-2013, https://doi.org/10.5194/nhess-13-2239-2013, 2013
A. I. Hienola, J.-P. Pietikäinen, D. Jacob, R. Pozdun, T. Petäjä, A.-P. Hyvärinen, L. Sogacheva, V.-M. Kerminen, M. Kulmala, and A. Laaksonen
Atmos. Chem. Phys., 13, 4033–4055, https://doi.org/10.5194/acp-13-4033-2013, https://doi.org/10.5194/acp-13-4033-2013, 2013
Related subject area
Atmospheric, Meteorological and Climatological Hazards
Brief communication: Training of AI-based nowcasting models for rainfall early warning should take into account user requirements
Examining the Eastern European extreme summer temperatures of 2023 from a long-term perspective: the role of natural variability vs. anthropogenic factors
How well are hazards associated with derechos reproduced in regional climate simulations?
Reconstructing hail days in Switzerland with statistical models (1959–2022)
GTDI: a game-theory-based integrated drought index implying hazard-causing and hazard-bearing impact change
Insurance loss model vs. meteorological loss index – how comparable are their loss estimates for European windstorms?
Intense rains in Israel associated with the train effect
Convection-permitting climate model representation of severe convective wind gusts and future changes in southeastern Australia
On the potential of using smartphone sensors for wildfire hazard estimation through citizen science
Global estimates of 100-year return values of daily precipitation from ensemble weather prediction data
Exploring the sensitivity of extreme event attribution of two recent extreme weather events in Sweden using long-running meteorological observations
Probabilistic short-range forecasts of high-precipitation events: optimal decision thresholds and predictability limits
Surprise floods: the role of our imagination in preparing for disasters
Modelling crop hail damage footprints with single-polarization radar: the roles of spatial resolution, hail intensity, and cropland density
Insights into ground strike point properties in Europe through the EUCLID lightning location system
The role of citizen science in assessing the spatiotemporal pattern of rainfall events in urban areas: a case study in the city of Genoa, Italy
The Record-Breaking Precipitation Event of December 2022 in Portugal
Precipitation extremes in Ukraine from 1979 to 2019: climatology, large-scale flow conditions, and moisture sources
Characterizing hail-prone environments using convection-permitting reanalysis and overshooting top detections over south-central Europe
Aircraft engine dust ingestion at global airports
Assimilation of temperature and relative humidity observations from personal weather stations in AROME-France
Catchment-scale assessment of drought impact on environmental flow in the Indus Basin, Pakistan
The risk of synoptic-scale Arctic cyclones to shipping
Classification of North Atlantic and European extratropical cyclones using multiple measures of intensity
Brief communication: Forecasting extreme precipitation from atmospheric rivers in New Zealand
Estimation of future rainfall extreme values by temperature-dependent disaggregation of climate model data
Climatic characteristics of the Jianghuai cyclone and its linkage with precipitation during the Meiyu period from 1961 to 2020
Application of the teaching–learning-based optimization algorithm to an analytical model of thunderstorm outflows to analyze the variability of the downburst kinematic and geometric parameters
Projections and uncertainties of winter windstorm damage in Europe in a changing climate
Improving seasonal predictions of German Bight storm activity
A satellite view of the exceptionally warm summer of 2022 over Europe
Demographic yearbooks as a source of weather-related fatalities: the Czech Republic, 1919–2022
FOREWARNS: development and multifaceted verification of enhanced regional-scale surface water flood forecasts
Assessment of wind–damage relations for Norway using 36 years of daily insurance data
Compound winter low wind and cold events impacting the French electricity system: observed evolution and role of large-scale circulation
Interannual variations in the seasonal cycle of extreme precipitation in Germany and the response to climate change
Climatology of large hail in Europe: characteristics of the European Severe Weather Database
Amplified potential for vegetation stress under climate-change-induced intensifying compound extreme events in the Greater Mediterranean Region
Assimilation of surface pressure observations from personal weather stations in AROME-France
An open-source radar-based hail damage model for buildings and cars
Linkages between atmospheric rivers and humid heat across the United States
A data-driven framework for assessing climatic impact-drivers in the context of food security
Evaluating pySTEPS optical flow algorithms for convection nowcasting over the Maritime Continent using satellite data
Climate change impacts on regional fire weather in heterogeneous landscapes of central Europe
High-resolution projections of ambient heat for major European cities using different heat metrics
Heat wave characteristics: evaluation of regional climate model performances for Germany
Rain-on-snow responses to warmer Pyrenees: a sensitivity analysis using a physically based snow hydrological model
Spatial identification of regions at risk to multi-hazards at pan European level: an implemented methodological approach
Are heavy rainfall events a major trigger of associated natural hazards along the German rail network?
Return levels of extreme European windstorms, their dependency on the North Atlantic Oscillation, and potential future risks
Georgy Ayzel and Maik Heistermann
Nat. Hazards Earth Syst. Sci., 25, 41–47, https://doi.org/10.5194/nhess-25-41-2025, https://doi.org/10.5194/nhess-25-41-2025, 2025
Short summary
Short summary
Forecasting rainfall over the next hour is an essential feature of early warning systems. Deep learning (DL) has emerged as a powerful alternative to conventional nowcasting technologies, but it still struggles to adequately predict impact-relevant heavy rainfall. We think that DL could do much better if the training tasks were defined more specifically and that such specification presents an opportunity to better align the output of nowcasting models with actual user requirements.
Monica Ionita, Petru Vaideanu, Bogdan Antonescu, Catalin Roibu, Qiyun Ma, and Viorica Nagavciuc
Nat. Hazards Earth Syst. Sci., 24, 4683–4706, https://doi.org/10.5194/nhess-24-4683-2024, https://doi.org/10.5194/nhess-24-4683-2024, 2024
Short summary
Short summary
Eastern Europe's heat wave history is explored from 1885 to 2023, with a focus on pre-1960 events. The study reveals two periods with more frequent and intense heat waves (HWs): 1920s–1960s and 1980s–present. The research highlights the importance of a long-term perspective, revealing that extreme heat events have occurred throughout the entire study period, and it emphasizes the combined influence of climate change and natural variations on increasing HW severity.
Tristan Shepherd, Frederick Letson, Rebecca J. Barthelmie, and Sara C. Pryor
Nat. Hazards Earth Syst. Sci., 24, 4473–4505, https://doi.org/10.5194/nhess-24-4473-2024, https://doi.org/10.5194/nhess-24-4473-2024, 2024
Short summary
Short summary
A historic derecho in the USA is presented. The 29 June 2012 derecho caused more than 20 deaths and millions of US dollars of damage. We use a regional climate model to understand how model fidelity changes under different initial conditions. We find changes drive different convective conditions, resulting in large variation in the simulated hazards. The variation using different reanalysis data shows that framing these results in the context of contemporary and future climate is a challenge.
Lena Wilhelm, Cornelia Schwierz, Katharina Schröer, Mateusz Taszarek, and Olivia Martius
Nat. Hazards Earth Syst. Sci., 24, 3869–3894, https://doi.org/10.5194/nhess-24-3869-2024, https://doi.org/10.5194/nhess-24-3869-2024, 2024
Short summary
Short summary
In our study we used statistical models to reconstruct past hail days in Switzerland from 1959–2022. This new time series reveals a significant increase in hail day occurrences over the last 7 decades. We link this trend to increases in moisture and instability variables in the models. This time series can now be used to unravel the complexities of Swiss hail occurrence and to understand what drives its year-to-year variability.
Xiaowei Zhao, Tianzeng Yang, Hongbo Zhang, Tian Lan, Chaowei Xue, Tongfang Li, Zhaoxia Ye, Zhifang Yang, and Yurou Zhang
Nat. Hazards Earth Syst. Sci., 24, 3479–3495, https://doi.org/10.5194/nhess-24-3479-2024, https://doi.org/10.5194/nhess-24-3479-2024, 2024
Short summary
Short summary
To effectively track and identify droughts, we developed a novel integrated drought index that combines the effects of precipitation, temperature, and soil moisture on drought. After comparison and verification, the integrated drought index shows superior performance compared to a single meteorological drought index or agricultural drought index in terms of drought identification.
Julia Moemken, Inovasita Alifdini, Alexandre M. Ramos, Alexandros Georgiadis, Aidan Brocklehurst, Lukas Braun, and Joaquim G. Pinto
Nat. Hazards Earth Syst. Sci., 24, 3445–3460, https://doi.org/10.5194/nhess-24-3445-2024, https://doi.org/10.5194/nhess-24-3445-2024, 2024
Short summary
Short summary
European windstorms regularly cause damage to natural and human-made environments, leading to high socio-economic losses. For the first time, we compare estimates of these losses using a meteorological loss index (LI) and the insurance loss (catastrophe) model of Aon Impact Forecasting. We find that LI underestimates high-impact windstorms compared to the insurance model. Nonetheless, due to its simplicity, LI is an effective index, suitable for estimating impacts and ranking storm events.
Baruch Ziv, Uri Dayan, Lidiya Shendrik, and Elyakom Vadislavsky
Nat. Hazards Earth Syst. Sci., 24, 3267–3277, https://doi.org/10.5194/nhess-24-3267-2024, https://doi.org/10.5194/nhess-24-3267-2024, 2024
Short summary
Short summary
The train effect is related to convective cells that pass over the same place. Trains produce heavy rainfall and sometimes floods and are reported in North America during spring and summer. In Israel, 17 trains associated with Cyprus lows were identified by radar images and were found within the cold sector south of the low center and in the left flank of a maximum wind belt; they cross the Israeli coast, with a mean length of 45 km; last 1–3 h; and yield 35 mm of rainfall up to 60 mm.
Andrew Brown, Andrew Dowdy, and Todd P. Lane
Nat. Hazards Earth Syst. Sci., 24, 3225–3243, https://doi.org/10.5194/nhess-24-3225-2024, https://doi.org/10.5194/nhess-24-3225-2024, 2024
Short summary
Short summary
A computer model that simulates the climate of southeastern Australia is shown here to represent extreme wind events associated with convective storms. This is useful as it allows us to investigate possible future changes in the occurrences of these events, and we find in the year 2050 that our model simulates a decrease in the number of occurrences. However, the model also simulates too many events in the historical climate compared with observations, so these future changes are uncertain.
Hofit Shachaf, Colin Price, Dorita Rostkier-Edelstein, and Cliff Mass
Nat. Hazards Earth Syst. Sci., 24, 3035–3047, https://doi.org/10.5194/nhess-24-3035-2024, https://doi.org/10.5194/nhess-24-3035-2024, 2024
Short summary
Short summary
We have used the temperature and relative humidity sensors in smartphones to estimate the vapor pressure deficit (VPD), an important atmospheric parameter closely linked to fuel moisture and wildfire risk. Our analysis for two severe wildfire case studies in Israel and Portugal shows the potential for using smartphone data to compliment the regular weather station network while also providing high spatial resolution of the VPD index.
Florian Ruff and Stephan Pfahl
Nat. Hazards Earth Syst. Sci., 24, 2939–2952, https://doi.org/10.5194/nhess-24-2939-2024, https://doi.org/10.5194/nhess-24-2939-2024, 2024
Short summary
Short summary
High-impact river floods are often caused by extreme precipitation. Flood protection relies on reliable estimates of the return values. Observational time series are too short for a precise calculation. Here, 100-year return values of daily precipitation are estimated on a global grid based on a large set of model-generated precipitation events from ensemble weather prediction. The statistical uncertainties in the return values can be substantially reduced compared to observational estimates.
Erik Holmgren and Erik Kjellström
Nat. Hazards Earth Syst. Sci., 24, 2875–2893, https://doi.org/10.5194/nhess-24-2875-2024, https://doi.org/10.5194/nhess-24-2875-2024, 2024
Short summary
Short summary
Associating extreme weather events with changes in the climate remains difficult. We have explored two ways these relationships can be investigated: one using a more common method and one relying solely on long-running records of meteorological observations.
Our results show that while both methods lead to similar conclusions for two recent weather events in Sweden, the commonly used method risks underestimating the strength of the connection between the event and changes to the climate.
François Bouttier and Hugo Marchal
Nat. Hazards Earth Syst. Sci., 24, 2793–2816, https://doi.org/10.5194/nhess-24-2793-2024, https://doi.org/10.5194/nhess-24-2793-2024, 2024
Short summary
Short summary
Weather prediction uncertainties can be described as sets of possible scenarios – a technique called ensemble prediction. Our machine learning technique translates them into more easily interpretable scenarios for various users, balancing the detection of high precipitation with false alarms. Key parameters are precipitation intensity and space and time scales of interest. We show that the approach can be used to facilitate warnings of extreme precipitation.
Joy Ommer, Jessica Neumann, Milan Kalas, Sophie Blackburn, and Hannah L. Cloke
Nat. Hazards Earth Syst. Sci., 24, 2633–2646, https://doi.org/10.5194/nhess-24-2633-2024, https://doi.org/10.5194/nhess-24-2633-2024, 2024
Short summary
Short summary
What’s the worst that could happen? Recent floods are often claimed to be beyond our imagination. Imagination is the picturing of a situation in our mind and the emotions that we connect with this situation. But why is this important for disasters? This survey found that when we cannot imagine a devastating flood, we are not preparing in advance. Severe-weather forecasts and warnings need to advance in order to trigger our imagination of what might happen and enable us to start preparing.
Raphael Portmann, Timo Schmid, Leonie Villiger, David N. Bresch, and Pierluigi Calanca
Nat. Hazards Earth Syst. Sci., 24, 2541–2558, https://doi.org/10.5194/nhess-24-2541-2024, https://doi.org/10.5194/nhess-24-2541-2024, 2024
Short summary
Short summary
The study presents an open-source model to determine the occurrence of hail damage to field crops and grapevines after hailstorms in Switzerland based on radar, agricultural land use data, and insurance damage reports. The model performs best at 8 km resolution for field crops and 1 km for grapevine and in the main production areas. Highlighting performance trade-offs and the relevance of user needs, the study is a first step towards the assessment of risk and damage for crops in Switzerland.
Dieter Roel Poelman, Hannes Kohlmann, and Wolfgang Schulz
Nat. Hazards Earth Syst. Sci., 24, 2511–2522, https://doi.org/10.5194/nhess-24-2511-2024, https://doi.org/10.5194/nhess-24-2511-2024, 2024
Short summary
Short summary
EUCLID's lightning data unveil distinctive ground strike point (GSP) patterns in Europe. Over seas, GSPs per flash surpass inland, reaching a minimum in the Alps. Mountainous areas like the Alps and Pyrenees have the closest GSP separation, highlighting terrain elevation's impact. The daily peak current correlates with average GSPs per flash. These findings could significantly influence lightning protection measures, urging a focus on GSP density rather than flash density for risk assessment.
Nicola Loglisci, Giorgio Boni, Arianna Cauteruccio, Francesco Faccini, Massimo Milelli, Guido Paliaga, and Antonio Parodi
Nat. Hazards Earth Syst. Sci., 24, 2495–2510, https://doi.org/10.5194/nhess-24-2495-2024, https://doi.org/10.5194/nhess-24-2495-2024, 2024
Short summary
Short summary
We analyse the meteo-hydrological features of the 27 and 28 August 2023 event that occurred in Genoa. Rainfall observations were made using rain gauge networks based on either official networks or citizen science networks. The merged analysis stresses the spatial variability in the precipitation, which cannot be captured by the current spatial density of authoritative stations. Results show that at minimal distances the variations in cumulated rainfall over a sub-hourly duration are significant.
Tiago M. Ferreira, Ricardo M. Trigo, Tomás H. Gaspar, Joaquim G. Pinto, and Alexandre M. Ramos
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-130, https://doi.org/10.5194/nhess-2024-130, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
Here we investigate the synoptic evolution associated with the occurrence of an atmospheric river leading to a 24 h record-breaking extreme precipitation event (120.3 mm) in Lisbon, Portugal, on 13 December 2022. The synoptic background allowed the formation, on 10 December, of an atmospheric river associated with a deep extratropical cyclone and with a high moisture content and an inflow of moisture, due to the warm conveyor belt, throughout its life cycle. The system made landfall on day 12.
Ellina Agayar, Franziska Aemisegger, Moshe Armon, Alexander Scherrmann, and Heini Wernli
Nat. Hazards Earth Syst. Sci., 24, 2441–2459, https://doi.org/10.5194/nhess-24-2441-2024, https://doi.org/10.5194/nhess-24-2441-2024, 2024
Short summary
Short summary
This study presents the results of a climatological investigation of extreme precipitation events (EPEs) in Ukraine for the period 1979–2019. During all seasons EPEs are associated with pronounced upper-level potential vorticity (PV) anomalies. In addition, we find distinct seasonal and regional differences in moisture sources. Several extreme precipitation cases demonstrate the importance of these processes, complemented by a detailed synoptic analysis.
Antonio Giordani, Michael Kunz, Kristopher M. Bedka, Heinz Jürgen Punge, Tiziana Paccagnella, Valentina Pavan, Ines M. L. Cerenzia, and Silvana Di Sabatino
Nat. Hazards Earth Syst. Sci., 24, 2331–2357, https://doi.org/10.5194/nhess-24-2331-2024, https://doi.org/10.5194/nhess-24-2331-2024, 2024
Short summary
Short summary
To improve the challenging representation of hazardous hailstorms, a proxy for hail frequency based on satellite detections, convective parameters from high-resolution reanalysis, and crowd-sourced reports is tested and presented. Hail likelihood peaks in mid-summer at 15:00 UTC over northern Italy and shows improved agreement with observations compared to previous estimates. By separating ambient signatures based on hail severity, enhanced appropriateness for large-hail occurrence is found.
Claire L. Ryder, Clément Bézier, Helen F. Dacre, Rory Clarkson, Vassilis Amiridis, Eleni Marinou, Emmanouil Proestakis, Zak Kipling, Angela Benedetti, Mark Parrington, Samuel Rémy, and Mark Vaughan
Nat. Hazards Earth Syst. Sci., 24, 2263–2284, https://doi.org/10.5194/nhess-24-2263-2024, https://doi.org/10.5194/nhess-24-2263-2024, 2024
Short summary
Short summary
Desert dust poses a hazard to aircraft via degradation of engine components. This has financial implications for the aviation industry and results in increased fuel burn with climate impacts. Here we quantify dust ingestion by aircraft engines at airports worldwide. We find Dubai and Delhi in summer are among the dustiest airports, where substantial engine degradation would occur after 1000 flights. Dust ingestion can be reduced by changing take-off times and the altitude of holding patterns.
Alan Demortier, Marc Mandement, Vivien Pourret, and Olivier Caumont
EGUsphere, https://doi.org/10.5194/egusphere-2024-1673, https://doi.org/10.5194/egusphere-2024-1673, 2024
Short summary
Short summary
The use of numerical weather prediction models enables the forecasting of hazardous weather situations. The incorporation of new temperature and relative humidity observations from personal weather stations into the French limited-area model is evaluated in this study. This leads to the improvement of the associated near-surface variables of the model during the first hours of the forecast. Examples are provided for a sea breeze case during a heatwave and a fog episode.
Khalil Ur Rahman, Songhao Shang, Khaled Saeed Balkhair, Hamza Farooq Gabriel, Khan Zaib Jadoon, and Kifayat Zaman
Nat. Hazards Earth Syst. Sci., 24, 2191–2214, https://doi.org/10.5194/nhess-24-2191-2024, https://doi.org/10.5194/nhess-24-2191-2024, 2024
Short summary
Short summary
This paper assesses the impact of drought (meteorological drought) on the hydrological alterations in major rivers of the Indus Basin. Threshold regression and range of variability analysis are used to determine the drought severity and times where drought has caused low flows and extreme low flows (identified using indicators of hydrological alterations). Moreover, this study also examines the degree of alterations in river flows due to drought using the hydrological alteration factor.
Alexander Frank Vessey, Kevin I. Hodges, Len C. Shaffrey, and Jonathan J. Day
Nat. Hazards Earth Syst. Sci., 24, 2115–2132, https://doi.org/10.5194/nhess-24-2115-2024, https://doi.org/10.5194/nhess-24-2115-2024, 2024
Short summary
Short summary
The risk posed to ships by Arctic cyclones has seldom been quantified due to the lack of publicly available historical Arctic ship track data. This study investigates historical Arctic ship tracks, cyclone tracks, and shipping incident reports to determine the number of shipping incidents caused by the passage of Arctic cyclones. Results suggest that Arctic cyclones have not been hazardous to ships and that ships are resilient to the rough sea conditions caused by Arctic cyclones.
Joona Samuel Cornér, Clément Gael Francis Bouvier, Benjamin Doiteau, Florian Pantillon, and Victoria Anne Sinclair
EGUsphere, https://doi.org/10.5194/egusphere-2024-1749, https://doi.org/10.5194/egusphere-2024-1749, 2024
Short summary
Short summary
Classification reduces the considerable variability between extratropical cyclones (ETC) and thus simplifies studying their representation in climate models and changes in the future climate. In this paper we present an objective classification of ETCs using measures of ETC intensity. This is motivated by the aim of finding a set of ETC intensity measures which together comprehensively describe both the dynamical and impact-relevant nature of ETC intensity.
Daniel G. Kingston, Liam Cooper, David A. Lavers, and David M. Hannah
EGUsphere, https://doi.org/10.5194/egusphere-2024-1742, https://doi.org/10.5194/egusphere-2024-1742, 2024
Short summary
Short summary
Extreme rainfall comprises a major hydro-hazard for New Zealand, and is commonly associated with atmospheric rivers – narrow plumes of very high atmospheric moisture transport. Here, we focus on improved forecasting of these events by testing a forecasting tool previously applied to similar situations in western Europe. However, our results for New Zealand suggest the performance of this forecasting tool may vary depending on geographic setting.
Niklas Ebers, Kai Schröter, and Hannes Müller-Thomy
Nat. Hazards Earth Syst. Sci., 24, 2025–2043, https://doi.org/10.5194/nhess-24-2025-2024, https://doi.org/10.5194/nhess-24-2025-2024, 2024
Short summary
Short summary
Future changes in sub-daily rainfall extreme values are essential in various hydrological fields, but climate scenarios typically offer only daily resolution. One solution is rainfall generation. With a temperature-dependent rainfall generator climate scenario data were disaggregated to 5 min rainfall time series for 45 locations across Germany. The analysis of the future 5 min rainfall time series showed an increase in the rainfall extremes values for rainfall durations of 5 min and 1 h.
Ran Zhu and Lei Chen
Nat. Hazards Earth Syst. Sci., 24, 1937–1950, https://doi.org/10.5194/nhess-24-1937-2024, https://doi.org/10.5194/nhess-24-1937-2024, 2024
Short summary
Short summary
There is a positive correlation between the frequency of Jianghuai cyclone activity and precipitation during the Meiyu period. Its occurrence frequency has an obvious decadal variation, which corresponds well with the quasi-periodic and decadal variation in precipitation during the Meiyu period. This study provides a reference for the long-term and short-term forecasting of precipitation during the Meiyu period.
Andi Xhelaj and Massimiliano Burlando
Nat. Hazards Earth Syst. Sci., 24, 1657–1679, https://doi.org/10.5194/nhess-24-1657-2024, https://doi.org/10.5194/nhess-24-1657-2024, 2024
Short summary
Short summary
The study provides an in-depth analysis of a severe downburst event in Sânnicolau Mare, Romania, utilizing an analytical model and optimization algorithm. The goal is to explore a multitude of generating solutions and to identify potential alternatives to the optimal solution. Advanced data analysis techniques help to discern three main distinct storm scenarios. For this particular event, the best overall solution from the optimization algorithm shows promise in reconstructing the downburst.
Luca G. Severino, Chahan M. Kropf, Hilla Afargan-Gerstman, Christopher Fairless, Andries Jan de Vries, Daniela I. V. Domeisen, and David N. Bresch
Nat. Hazards Earth Syst. Sci., 24, 1555–1578, https://doi.org/10.5194/nhess-24-1555-2024, https://doi.org/10.5194/nhess-24-1555-2024, 2024
Short summary
Short summary
We combine climate projections from 30 climate models with a climate risk model to project winter windstorm damages in Europe under climate change. We study the uncertainty and sensitivity factors related to the modelling of hazard, exposure and vulnerability. We emphasize high uncertainties in the damage projections, with climate models primarily driving the uncertainty. We find climate change reshapes future European windstorm risk by altering damage locations and intensity.
Daniel Krieger, Sebastian Brune, Johanna Baehr, and Ralf Weisse
Nat. Hazards Earth Syst. Sci., 24, 1539–1554, https://doi.org/10.5194/nhess-24-1539-2024, https://doi.org/10.5194/nhess-24-1539-2024, 2024
Short summary
Short summary
Previous studies found that climate models can predict storm activity in the German Bight well for averages of 5–10 years but struggle in predicting the next winter season. Here, we improve winter storm activity predictions by linking them to physical phenomena that occur before the winter. We guess the winter storm activity from these phenomena and discard model solutions that stray too far from the guess. The remaining solutions then show much higher prediction skill for storm activity.
João P. A. Martins, Sara Caetano, Carlos Pereira, Emanuel Dutra, and Rita M. Cardoso
Nat. Hazards Earth Syst. Sci., 24, 1501–1520, https://doi.org/10.5194/nhess-24-1501-2024, https://doi.org/10.5194/nhess-24-1501-2024, 2024
Short summary
Short summary
Over Europe, 2022 was truly exceptional in terms of extreme heat conditions, both in terms of temperature anomalies and their temporal and spatial extent. The satellite all-sky land surface temperature (LST) is used to provide a climatological context to extreme heat events. Where drought conditions prevail, LST anomalies are higher than 2 m air temperature anomalies. ERA5-Land does not represent this effect correctly due to a misrepresentation of vegetation anomalies.
Rudolf Brázdil, Kateřina Chromá, and Pavel Zahradníček
Nat. Hazards Earth Syst. Sci., 24, 1437–1457, https://doi.org/10.5194/nhess-24-1437-2024, https://doi.org/10.5194/nhess-24-1437-2024, 2024
Short summary
Short summary
The official mortality data in the Czech Republic in 1919–2022 are used to show long-term fluctuations in the number of fatalities caused by excessive natural cold and heat, lightning, natural disasters, and falls on ice/snow, as well as the sex and age of the deceased, based on certain meteorological, historical, and socioeconomic factors that strongly influence changes in the number and structure of such fatalities. Knowledge obtained is usable in risk management for the preservation of lives.
Ben Maybee, Cathryn E. Birch, Steven J. Böing, Thomas Willis, Linda Speight, Aurore N. Porson, Charlie Pilling, Kay L. Shelton, and Mark A. Trigg
Nat. Hazards Earth Syst. Sci., 24, 1415–1436, https://doi.org/10.5194/nhess-24-1415-2024, https://doi.org/10.5194/nhess-24-1415-2024, 2024
Short summary
Short summary
This paper presents the development and verification of FOREWARNS, a novel method for regional-scale forecasting of surface water flooding. We detail outcomes from a workshop held with UK forecast users, who indicated they valued the forecasts and would use them to complement national guidance. We use results of objective forecast tests against flood observations over northern England to show that this confidence is justified and that FOREWARNS meets the needs of UK flood responders.
Ashbin Jaison, Asgeir Sorteberg, Clio Michel, and Øyvind Breivik
Nat. Hazards Earth Syst. Sci., 24, 1341–1355, https://doi.org/10.5194/nhess-24-1341-2024, https://doi.org/10.5194/nhess-24-1341-2024, 2024
Short summary
Short summary
The present study uses daily insurance losses and wind speeds to fit storm damage functions at the municipality level of Norway. The results show that the damage functions accurately estimate losses associated with extreme damaging events and can reconstruct their spatial patterns. However, there is no single damage function that performs better than another. A newly devised damage–no-damage classifier shows some skill in predicting extreme damaging events.
François Collet, Margot Bador, Julien Boé, Laurent Dubus, and Bénédicte Jourdier
EGUsphere, https://doi.org/10.5194/egusphere-2024-903, https://doi.org/10.5194/egusphere-2024-903, 2024
Short summary
Short summary
The objective of this study is to characterize the observed evolution of compound winter low wind and cold events impacting the French electricity system. The frequency of compound events exhibits a high interannual variability and a decrease over the 1950–2022 period. We further show that the regional atmospheric circulation is an important driver of compound events occurence, but do not strongly contributes to the observed decrease.
Madlen Peter, Henning W. Rust, and Uwe Ulbrich
Nat. Hazards Earth Syst. Sci., 24, 1261–1285, https://doi.org/10.5194/nhess-24-1261-2024, https://doi.org/10.5194/nhess-24-1261-2024, 2024
Short summary
Short summary
The paper introduces a statistical modeling approach describing daily extreme precipitation in Germany more accurately by including changes within the year and between the years simultaneously. The changing seasonality over years is regionally divergent and mainly weak. However, some regions stand out with a more pronounced linear rise of summer intensities, indicating a possible climate change signal. Improved modeling of extreme precipitation is beneficial for risk assessment and adaptation.
Faye Hulton and David M. Schultz
Nat. Hazards Earth Syst. Sci., 24, 1079–1098, https://doi.org/10.5194/nhess-24-1079-2024, https://doi.org/10.5194/nhess-24-1079-2024, 2024
Short summary
Short summary
Large hail devastates crops and property and can injure and kill people and livestock. Hail reports are collected by individual countries, so understanding where and when large hail occurs across Europe is an incomplete undertaking. We use the European Severe Weather Database to evaluate the quality of reports by year and by country since 2000. Despite its short record, the dataset appears to represent aspects of European large-hail climatology reliably.
Patrick Olschewski, Mame Diarra Bousso Dieng, Hassane Moutahir, Brian Böker, Edwin Haas, Harald Kunstmann, and Patrick Laux
Nat. Hazards Earth Syst. Sci., 24, 1099–1134, https://doi.org/10.5194/nhess-24-1099-2024, https://doi.org/10.5194/nhess-24-1099-2024, 2024
Short summary
Short summary
We applied a multivariate and dependency-preserving bias correction method to climate model output for the Greater Mediterranean Region and investigated potential changes in false-spring events (FSEs) and heat–drought compound events (HDCEs). Results project an increase in the frequency of FSEs in middle and late spring as well as increases in frequency, intensity, and duration for HDCEs. This will potentially aggravate the risk of crop loss and failure and negatively impact food security.
Alan Demortier, Marc Mandement, Vivien Pourret, and Olivier Caumont
Nat. Hazards Earth Syst. Sci., 24, 907–927, https://doi.org/10.5194/nhess-24-907-2024, https://doi.org/10.5194/nhess-24-907-2024, 2024
Short summary
Short summary
Improvements in numerical weather prediction models make it possible to warn of hazardous weather situations. The incorporation of new observations from personal weather stations into the French limited-area model is evaluated. It leads to a significant improvement in the modelling of the surface pressure field up to 9 h ahead. Their incorporation improves the location and intensity of the heavy precipitation event that occurred in the South of France in September 2021.
Timo Schmid, Raphael Portmann, Leonie Villiger, Katharina Schröer, and David N. Bresch
Nat. Hazards Earth Syst. Sci., 24, 847–872, https://doi.org/10.5194/nhess-24-847-2024, https://doi.org/10.5194/nhess-24-847-2024, 2024
Short summary
Short summary
Hailstorms cause severe damage to buildings and cars, which motivates a detailed risk assessment. Here, we present a new open-source hail damage model based on radar data in Switzerland. The model successfully estimates the correct order of magnitude of car and building damages for most large hail events over 20 years. However, large uncertainty remains in the geographical distribution of modelled damages, which can be improved for individual events by using crowdsourced hail reports.
Colin Raymond, Anamika Shreevastava, Emily Slinskey, and Duane Waliser
Nat. Hazards Earth Syst. Sci., 24, 791–801, https://doi.org/10.5194/nhess-24-791-2024, https://doi.org/10.5194/nhess-24-791-2024, 2024
Short summary
Short summary
How can we systematically understand what causes high levels of atmospheric humidity and thus heat stress? Here we argue that atmospheric rivers can be a useful tool, based on our finding that in several US regions, atmospheric rivers and humid heat occur close together in space and time. Most typically, an atmospheric river transports moisture which heightens heat stress, with precipitation following a day later. These effects tend to be larger for stronger and more extensive systems.
Marcos Roberto Benso, Roberto Fray Silva, Gabriela Gesualdo Chiquito, Antonio Mauro Saraiva, Alexandre Cláudio Botazzo Delbem, Patricia Angélica Alves Marques, and Eduardo Mario Mendiondo
EGUsphere, https://doi.org/10.5194/egusphere-2023-3002, https://doi.org/10.5194/egusphere-2023-3002, 2024
Short summary
Short summary
The production of food is susceptible to several climate hazards such as droughts, excessive rainfall, and heat waves. In this paper, we present a methodology that uses artificial intelligence for assessing the impact of climate risks on food production. Our methodology helps us to automatically select the most relevant indices and critical thresholds of these indices that when surpassed can increase the danger of crop yield loss.
Joseph Smith, Cathryn Birch, John Marsham, Simon Peatman, Massimo Bollasina, and George Pankiewicz
Nat. Hazards Earth Syst. Sci., 24, 567–582, https://doi.org/10.5194/nhess-24-567-2024, https://doi.org/10.5194/nhess-24-567-2024, 2024
Short summary
Short summary
Nowcasting uses observations to make predictions of the atmosphere on short timescales and is particularly applicable to the Maritime Continent, where storms rapidly develop and cause natural disasters. This paper evaluates probabilistic and deterministic satellite nowcasting algorithms over the Maritime Continent. We show that the probabilistic approach is most skilful at small scales (~ 60 km), whereas the deterministic approach is most skilful at larger scales (~ 200 km).
Julia Miller, Andrea Böhnisch, Ralf Ludwig, and Manuela I. Brunner
Nat. Hazards Earth Syst. Sci., 24, 411–428, https://doi.org/10.5194/nhess-24-411-2024, https://doi.org/10.5194/nhess-24-411-2024, 2024
Short summary
Short summary
We assess the impacts of climate change on fire danger for 1980–2099 in different landscapes of central Europe, using the Canadian Forest Fire Weather Index (FWI) as a fire danger indicator. We find that today's 100-year FWI event will occur every 30 years by 2050 and every 10 years by 2099. High fire danger (FWI > 21.3) becomes the mean condition by 2099 under an RCP8.5 scenario. This study highlights the potential for severe fire events in central Europe from a meteorological perspective.
Clemens Schwingshackl, Anne Sophie Daloz, Carley Iles, Kristin Aunan, and Jana Sillmann
Nat. Hazards Earth Syst. Sci., 24, 331–354, https://doi.org/10.5194/nhess-24-331-2024, https://doi.org/10.5194/nhess-24-331-2024, 2024
Short summary
Short summary
Ambient heat in European cities will substantially increase under global warming, as projected by three heat metrics calculated from high-resolution climate model simulations. While the heat metrics consistently project high levels of ambient heat for several cities, in other cities the projected heat levels vary considerably across the three heat metrics. Using complementary heat metrics for projections of ambient heat is thus important for assessments of future risks from heat stress.
Dragan Petrovic, Benjamin Fersch, and Harald Kunstmann
Nat. Hazards Earth Syst. Sci., 24, 265–289, https://doi.org/10.5194/nhess-24-265-2024, https://doi.org/10.5194/nhess-24-265-2024, 2024
Short summary
Short summary
The influence of model resolution and settings on the reproduction of heat waves in Germany between 1980–2009 is analyzed. Outputs from a high-resolution model with settings tailored to the target region are compared to those from coarser-resolution models with more general settings. Neither the increased resolution nor the tailored model settings are found to add significant value to the heat wave simulation. The models exhibit a large spread, indicating that the choice of model can be crucial.
Josep Bonsoms, Juan I. López-Moreno, Esteban Alonso-González, César Deschamps-Berger, and Marc Oliva
Nat. Hazards Earth Syst. Sci., 24, 245–264, https://doi.org/10.5194/nhess-24-245-2024, https://doi.org/10.5194/nhess-24-245-2024, 2024
Short summary
Short summary
Climate warming is changing mountain snowpack patterns, leading in some cases to rain-on-snow (ROS) events. Here we analyzed near-present ROS and its sensitivity to climate warming across the Pyrenees. ROS increases during the coldest months of the year but decreases in the warmest months and areas under severe warming due to snow cover depletion. Faster snow ablation is anticipated in the coldest and northern slopes of the range. Relevant implications in mountain ecosystem are anticipated.
Tiberiu-Eugen Antofie, Stefano Luoni, Alois Tilloy, Andrea Sibilia, Sandro Salari, Gustav Eklund, Davide Rodomonti, Christos Bountzouklis, and Christina Corbane
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-220, https://doi.org/10.5194/nhess-2023-220, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
This is the first study that uses spatial patterns (clusters/hot-spots) and meta-analysis in order to identify the regions at European level at risk to multi-hazards. The findings point out the socio-economic dimension as determinant factor for the risk potential to multi-hazard. The outcome provides valuable input for the Disaster Risk Management policy support and will assist national authorities on the implementation of a multi-hazard approach in the National Risk Assessments preparation.
Sonja Szymczak, Frederick Bott, Vigile Marie Fabella, and Katharina Fricke
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-196, https://doi.org/10.5194/nhess-2023-196, 2023
Revised manuscript accepted for NHESS
Short summary
Short summary
We investigate the correlation between heavy rainfall events and three associated natural hazards along the German rail network using GIS analyses and random-effects logistic models. The results show that 23 % of flood, 14 % of gravitational mass movements and 2 % of tree fall events between 2017–2020 occurred after a heavy rainfall event and the probability of occurrence of flood and tree fall events is significantly increased. The study contributes to more resilient rail transport.
Matthew D. K. Priestley, David B. Stephenson, Adam A. Scaife, Daniel Bannister, Christopher J. T. Allen, and David Wilkie
Nat. Hazards Earth Syst. Sci., 23, 3845–3861, https://doi.org/10.5194/nhess-23-3845-2023, https://doi.org/10.5194/nhess-23-3845-2023, 2023
Short summary
Short summary
This research presents a model for estimating extreme gusts associated with European windstorms. Using observed storm footprints we are able to calculate the return level of events at the 200-year return period. The largest gusts are found across NW Europe, and these are larger when the North Atlantic Oscillation is positive. Using theoretical future climate states we find that return levels are likely to increase across NW Europe to levels that are unprecedented compared to historical storms.
Cited articles
Aalto, J. and Venäläinen, A. (Eds.): Climate change and forest management affect forest fire risk in Fennoscandia, Finnish Meteorological Institute Reports 2021:3, Helsinki, 156 pp., http://hdl.handle.net/10138/330898 (last access: 19 November 2024), 2021.
Abatzoglou, J. T. and Williams, A. P.: Impact of anthropogenic climate change on wildfire across western US forests, P. Natl. Acad. Sci. USA, 113, 11770–11775, https://doi.org/10.1073/pnas.1607171113, 2016.
Abatzoglou, J. T., Williams, A. P., and Barbero, R.: Global emergence of anthropogenic climate change in fire weather indices, Geophys. Res. Lett., 46, 326–336, https://doi.org/10.1029/2018GL080959, 2019.
Aeschbach-Hertig, W. and Gleeson, T.: Regional strategies for the accelerating global problem of groundwater depletion, Nat. Geosci., 5, 853–861, https://doi.org/10.1038/ngeo1617, 2012.
Agrar-&Forstbericht Südtirol: Bericht über das Jahr 2021, https://www.provinz.bz.it/land-forstwirtschaft/landwirtschaft/publikationen.asp?publ_action=300&publ_image_id=616940 (last access: 30 October 2024), 2021.
AIEF: Memoria del Inventario Español de Especies Terrestres, https://www.miteco.gob.es/es/biodiversidad/temas/inventarios-nacionales/es-00-memoria-19-dist_tcm30-524045.pdf (last access: 19 November 2024), 2019.
AIEF: Informe de Estado de la Diversidad Forestal en España, https://www.miteco.gob.es/es/biodiversidad/temas/inventarios-nacionales/idf2020_tcm30-524136.pdf (last access: 19 November 2024), 2020.
Albrich, K., Rammer, W., and Seidl, R.: Climate change causes critical transitions and irreversible alterations of mountain forests, Glob. Change Biol., 26, 4013–4027, https://doi.org/10.1111/gcb.15118, 2020.
Albrich, K., Seidl, R., Rammer, W., and Thom, D.: From sink to source: changing climate and disturbance regimes could tip the 21st century carbon balance of an unmanaged mountain forest landscape, Forestry, 96, 399–409, https://doi.org/10.1093/forestry/cpac022, 2023.
Allen, C. D., Macalady, A. K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., Kitzberger, T., Rigling, A., Breshears, D. D., Hogg, E. H. (Ted), Gonzalez, P., Fensham, R., Zhang, Z., Castro, J., Demidova, N., Lim, J.-H., Allard, G., Running, S. W., Semerci, A., and Cobb, N.: A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests, Forest Ecol. Manage., 259, 660–684, https://doi.org/10.1016/j.foreco.2009.09.001, 2010.
Allen, C. D., Breshears, D. D., and McDowell, N. G.: On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene, Ecosphere, 6, 1–55, https://doi.org/10.1890/ES15-00203.1, 2015.
Alpconv: The Alps in 25 Maps: https://www.alpconv.org/fileadmin/user_upload/Publications/25maps.pdf (last access: 28 November 2024), 2018.
Anderegg, W. R., Kane, J. M., and Anderegg, L. D.: Consequences of widespread tree mortality triggered by drought and temperature stress, Nat. Clim. Change, 3, 30–36, https://doi.org/10.1038/nclimate1635, 2013.
AON: Weather, Climate, and Catastrophe Insight, https://www.aon.com/reinsurance/getmedia/1b516e4d-c5fa-4086-9393-5e6afb0eeded/20220125-2021-weather-climate-catastrophe-insight.pdf (last access: 30 October 2024), 2018.
APA: Seca, https://rea.apambiente.pt/content/seca (last access: 27 June 2023), 2023.
Bader, S., Collaud Coen, M., Duguay-Tetzlaff, A., Frei, C., Fukutome, S., Gehrig, R., Maillard Barras, E., Martucci, G., Romanens, G., Scherrer, S., Schlegel, T., Spirig, Ch., Stübi, R., Vuilleumier, L., and Zubler, E.: Klimareport 2018, Berichte & Bulletins, Bundesamt für Meteorologie und Klimatologie MeteoSchweiz, Bern, Switzerland, ISSN 2296-1488, 2019.
Banerjee, T., De Roo, F., and Mauder, M.: Explaining the convector effect in canopy turbulence by means of large-eddy simulation, Hydrol. Earth Syst. Sci., 21, 2987–3000, https://doi.org/10.5194/hess-21-2987-2017, 2017.
Bakke, S. J., Ionita, M., and Tallaksen, L. M.: The 2018 northern European hydrological drought and its drivers in a historical perspective, Hydrol. Earth Syst. Sci., 24, 5621–5653, https://doi.org/10.5194/hess-24-5621-2020, 2020.
Bakke, S. J., Ionita, M., and Tallaksen, L. M.: Recent European drying and its link to prevailing large-scale atmospheric patterns, Sci. Rep., 13, 21921, https://doi.org/10.1038/s41598-023-48861-4, 2023.
Bardalen, A., Pettersen, I., Dombu, S. V., Rosnes, O., Mittenzwei, K., and Skulstad, A.: Klimaendring utfordrer det norske matsystemet. Kunnskapsgrunnlag for vurdering av klimarisiko i verdikjeder med matsystemet som case, NIBIO rapport 8 (110), https://hdl.handle.net/11250/3013268 (last access: 27 November 2024), 2022.
Bastos, A., Orth, R., Reichstein, M., Ciais, P., Viovy, N., Zaehle, S., Anthoni, P., Arneth, A., Gentine, P., Joetzjer, E., Lienert, S., Loughran, T., McGuire, P. C., O, S., Pongratz, J., and Sitch, S.: Vulnerability of European ecosystems to two compound dry and hot summers in 2018 and 2019, Earth Syst. Dynam., 12, 1015–1035, https://doi.org/10.5194/esd-12-1015-2021, 2021.
BBC: Droughts in England and their impacts, BBC News, https://www.bbc.com/news/uk-england-lancashire-44853173 (last access: 14 March 2023), 2018.
Beguería, S., Vicente-Serrano, S. M., Reig, F., and Latorre, B.: Standardized precipitation evapotranspiration index (SPEI) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring, Int. J. Climatol., 33, 2308–2319, 2013.
Beloiu, M., Stahlmann, R., and Beierkuhnlein, C.: Drought impacts in forest canopy and deciduous tree saplings in Central European forests, Forest Ecol. Manag., 509, 120075, https://doi.org/10.1016/j.foreco.2022.120075, 2022.
Bento, V. A., Ribeiro, A. F., Russo, A., Gouveia, C. M., Cardoso, R. M., and Soares, P. M.: The impact of climate change in wheat and barley yields in the Iberian Peninsula, Sci. Rep., 11, 1–12, 2021.
Beobide-Arsuaga, G., Düsterhus, A., Müller, W. A., Barnes, E. A., and Baehr, J.: Spring Regional Sea Surface Temperatures as a Precursor of European Summer Heatwaves, Geophys. Res. Lett., 50, e2022GL100727, https://doi.org/10.1029/2022gl100727, 2023.
Bezak, N. and Mikoš, M.: Changes in the compound drought and extreme heat occurrence in the 1961–2018 period at the European scale, Water, 12, 3543, 2020.
BFW: Borkenkaefer und Sturmschäden in Österreich bis 2020, https://www.bfw.gv.at/wp-content/uploads/Abb_Borkenkaefer_SturmSchnee_bis2020_Oesterreich.pdf (last access: 15 November 2024), 2020.
BFW: Borkenkäferbefall in Südösterreich, https://www.bfw.gv.at/pressemeldungen/borkenkaefer-fichtenwaelder-im-sueden-oesterreichs-stark-betroffen/ (last access: 15 November 2024), 2023.
Blunden, J. and Arndt, D. S.: State of the Climate in 2018, B. Am. Meteorol. Soc., 100, Si-S306, https://doi.org/10.1175/2019BAMSStateoftheClimate.1, 2019.
Bundesforste: Waldbilanz 2022, https://www.bundesforste.at/service-presse/presse/pressedetail/news/bundesforste-waldbilanz-2022-gepraegt-von-hitze-trockenheit-und-kaefer.html (last access: 15 November 2024), 2023.
BMEL: Ergebnisse der Waldzustandserhebung 2019, https://www.bmel.de/SharedDocs/Downloads/DE/_Wald/ergebnisse-waldzustandserhebung-2019.pdf?__blob=publicationFile&v=11 (last access: 19 November 2024), 2020.
BMEL: Ergebnisse der Waldzustandserhebung 2022, https://www.bmel-statistik.de/fileadmin/daten/0320000-2022.pdf (last access: 19 November 2024), 2023a.
BMEL: Internationaler Tag des Waldes 2021, https://www.bmel.de/DE/themen/wald/waelder-weltweit/tag-des-waldes.html (last access: 19 November 2024), 2023b.
Bork, K., Triebenbacher, C., and Hahn, A.: Schadholz muss schnell raus, BLW, 5, 48–50, 2024.
Boergens, E., Güntner, A., Dobslaw, H., and Dahle, C.: Quantifying the Central European droughts in 2018 and 2019 with GRACE Follow-On, Geophys. Res. Lett., 47, e2020GL087285, https://doi.org/10.1029/2020GL087285, 2020.
Bonaldo, D., Bellafiore, D., Ferrarin, C., Ferretti, R., Ricchi, A., Sangelantoni, L., and Vitelletti, M. L.: The summer 2022 drought: a taste of future climate for the Po valley (Italy)?, Reg. Environ. Change, 23, 1, https://doi.org/10.1007/s10113-022-02004-z, 2023.
Brás, T. A., Seixas, J., Carvalhais, N., and Jägermeyr, J.: Severity of drought and heatwave crop losses tripled over the last five decades in Europe, Environ. Res. Lett., 16, 065012, https://doi.org/10.1088/1748-9326/abf004, 2021.
Breil, M., Rechid, D., Davin, E. L., de Noblet-Ducoudré, N., Katragkou, E., Cardoso, R. M., Hoffmann, P., Jach, L. L., Soares, P. M. M., Sofiadis, G., Strada, S., Strandberg, G., Tölle, M. H., and Warrach-Sagi, K.: The opposing effects of reforestation and afforestation on the diurnal temperature cycle at the surface and in the lowest atmospheric model level in the European summer, J. Climate, 33, 9159–9179, 2020.
Brecka, A. F., Shahi, C., and Chen, H. Y.: Climate change impacts on boreal forest timber supply, Forest Policy Econ., 92, 11–21, 2018.
Brodribb, T. J., Powers, J., Cochard, H., and Choat, B.: Hanging by a thread? Forests and drought, Science, 368, 261–266, 2020.
Brun, P., Psomas, A., Ginzler, C., Thuiller, W., Zappa, M., and Zimmermann, N. E.: Large-scale early-wilting response of Central European forests to the 2018 extreme drought, Glob. Change Biol., 26, 7021–7035, 2020.
Büntgen, U., Urban, O., Krusic, P. J., Rybníček, M., Kolář, T., Kyncl, T., Ač, A., Koňasová, E., Čáslavský, J., Esper, J., Wagner, S., Saurer, M., Tegel, W., Dobrovolný, P., Cherubini, P., Reinig, F., and Trnka, M.: Recent European drought extremes beyond Common Era background variability, Nat. Geosci., 14, 190–196, 2021.
Bülow, K., Bauer, S., Steuri, B., Groth, M., Knutzen, F., and Rechid, D.: Stadtwald Karlsruhe im Klimawandel – Der Wald heute und in Zukunft, Zenodo, https://doi.org/10.5281/zenodo.11473737, 2024.
Buras, A., Rammig, A., and Zang, C. S.: The European Forest Condition Monitor: using remotely sensed forest greenness to identify hot spots of forest decline, Front. Plant Sci., 12, 689220, https://doi.org/10.3389/fpls.2021.689220, 2021.
Buras, A., Meyer, B., and Rammig, A.: Record reduction in European forest canopy greenness during the 2022 drought, EGU General Assembly 2023, Vienna, Austria, 24–28 April 2023, EGU23-8927, https://doi.org/10.5194/egusphere-egu23-8927, 2023.
Bussotti, F., Papitto, G., Di Martino, D., Cocciufa, C., Cindolo, C., Cenni, E., Bettini, D., Iacopetti, G., and Pollastrini, M.: Le condizioni delle foreste italiane stanno peggiorando a causa di eventi climatici estremi? Evidenze dalle reti di monitoraggio nazionali ICP Forests – CON.ECO.FOR., Forest@, 19, 74–81, https://doi.org/10.3832/efor4134-019, 2022.
Bussotti, F., Bettini, D., Carrari, E., Selvi, F., and Pollastrini, M.: Cambiamenti climatici in atto: osservazioni sugli impatti degli eventi siccitosi sulle foreste toscane, Forest@, 20, 1–9, https://doi.org/10.3832/efor4224-019, 2023.
Byrne, M. P. and O'Gorman, P. A.: Link between land-ocean warming contrast and surface relative humidities in simulations with coupled climate models, Geophys. Res. Lett., 40, 5223–5227, https://doi.org/10.1002/grl.50971, 2013.
Caesar, L., Rahmstorf, S., Robinson, A., Feulner, G., and Saba, V.: Observed fingerprint of a weakening Atlantic Ocean overturning circulation, Nature, 556, 191–196, https://doi.org/10.1038/s41586-018-0006-5, 2018.
Christidis, N., and Stott, P. A.: The influence of anthropogenic climate change on wet and dry summers in Europe, Sci. Bull., 66, 813–823, https://doi.org/10.1016/j.scib.2021.01.020, 2021.
CIPRA: Bergwald im Klimawandel, https://www.cipra.org/de/news/bergwald-im-klimawandel (last access: 15 November 2024), 2022.
CIW: Evaluatierapport waterschaarste en droogte 2018, https://www.integraalwaterbeleid.be/nl/nieuws/downloads-van-nieuwsberichten/evaluatierapport-waterschaarste-en-droogte-2018 (last access: 16 August 2024), 2019.
CIW: Evaluatierapport waterschaarste en droogte 2019, https://www.integraalwaterbeleid.be/nl/nieuws/downloads-van-nieuwsberichten/evaluatierapport-waterschaarste-en-droogte-2019 (last access: 16 August 2024), 2020.
CIW: Evaluatierapport waterschaarste en droogte 2020, https://www.integraalwaterbeleid.be/nl/overleg/droogtecommissie/evaluatierapport-waterschaarste-en-droogte-2020-1 (last access: 16 August 2024), 2021.
Copernicus: Mapping of emergency response for the 2023 floods, https://emergency.copernicus.eu/mapping/list-of-components/EMSR281 (last access: 15 November 2024), 2023.
Cartwright, J. M., Littlefield, C. E., Michalak, J. L., Lawler, J. J., and Dobrowski, S. Z.: Topographic, soil, and climate drivers of drought sensitivity in forests and shrublands of the Pacific Northwest, USA, Sci. Rep., 10, 18486, https://doi.org/10.1038/s41598-020-75273-5, 2020.
Daloz, A. S., Schwingshackl, C., Mooney, P., Strada, S., Rechid, D., Davin, E. L., Katragkou, E., de Noblet-Ducoudré, N., Belda, M., Halenka, T., Breil, M., Cardoso, R. M., Hoffmann, P., Lima, D. C. A., Meier, R., Soares, P. M. M., Sofiadis, G., Strandberg, G., Toelle, M. H., and Lund, M. T.: Land–atmosphere interactions in sub-polar and alpine climates in the CORDEX flagship pilot study Land Use and Climate Across Scales (LUCAS) models – Part 1: Evaluation of the snow-albedo effect, The Cryosphere, 16, 2403–2419, https://doi.org/10.5194/tc-16-2403-2022, 2022.
Davies, G. M., Gray, A., Rein, G., and Legg, C. J.: Peat consumption and carbon loss due to smouldering wildfire in a temperate peatland, Forest Ecol. Manag., 308, 169–177, https://doi.org/10.1016/j.foreco.2013.07.001, 2013.
Davies, S., Bathgate, S., Petr, M., Gale, A., Patenaude, G., and Perks, M.: Drought risk to timber production – A risk versus return comparison of commercial conifer species in Scotland, Forest Policy Econ., 117, 102189, https://doi.org/10.1016/j.forpol.2020.102189, 2020.
Davin, E. L., Rechid, D., Breil, M., Cardoso, R. M., Coppola, E., Hoffmann, P., Jach, L. L., Katragkou, E., de Noblet-Ducoudré, N., Radtke, K., Raffa, M., Soares, P. M. M., Sofiadis, G., Strada, S., Strandberg, G., Tölle, M. H., Warrach-Sagi, K., and Wulfmeyer, V.: Biogeophysical impacts of forestation in Europe: first results from the LUCAS (Land Use and Climate Across Scales) regional climate model intercomparison, Earth Syst. Dynam., 11, 183–200, https://doi.org/10.5194/esd-11-183-2020, 2020.
DAV: Waldbrand und Klima, https://magazin.alpenverein.de/artikel/waldbrand-klima-mensch_a8c8fe7a-67c8-417c-9e65-95835ba16f17 (last access: 19 November 2024), 2022.
de Noblet-Ducoudré, N., Boisier, J. P., Pitman, A., Bonan, G. B., Brovkin, V., Cruz, F., and Voldoire, A.: Determining robust impacts of land-use-induced land cover changes on surface climate over North America and Eurasia: results from the first set of LUCID experiments, J. Climate, 25, 3261–3281, https://doi.org/10.1175/JCLI-D-11-00338.1, 2012.
DAERA: Wildfire damage across Mournes assessed by DAERA and partner agencies, https://www.daera-ni.gov.uk/news/wildfire-damage-across-mournes-assessed-by-daera-and-partner-agencies (last access: 19 November 2024), 2022.
Danielewicz, W. (Ed.): Dąbrowy Krotoszyńskie monografia przyrodniczo-gospodarcza, G&P Oficyna Wydawnicza, PTL, Poznań, ISBN 978-83-7272-318-5, 2016.
Desiato, F., Fioravanti, G., Fraschetti, P., Perconti, W., Piervitali, E., and Pavan, V.: Gli indicatori del clima in Italia nel 2018 – ISPRA Report, https://www.isprambiente.gov.it/it/pubblicazioni/stato-dellambiente/gli-indicatori-del-clima-in-italia-nel-2018 (last access: 24 July 2022), 2018.
DFWR: Schäden durch Fowi, https://dfwr.de/wp-content/uploads/2022/01/DFWR-Position-Schaeden-Fowi-Langfassung-Studie.pdf (last access: 15 August 2024), 2021.
Drouard, M., Kornhuber, K., and Woollings, T.: Disentangling dynamic contributions to summer 2018 anomalous weather over Europe, Geophys. Res. Lett., 46, 12537–12546, https://doi.org/10.1029/2019GL084601, 2019.
Dubach, V., Beenken, L., Bader, M., Odermatt, O., Stroheker, S., Hölling, D., treenet, Vögtli, I., Augustinus, B. A., and Queloz, V.: Protection des forêts – Vue d'ensemble 2020, WSL Ber. 110, 57 p., https://doi.org/10.3929/ethz-a-004498101, 2021.
Duchez, A., Frajka-Williams, E., Josey, S. A., Evans, D. G., Grist, J. P., Marsh, R., McCarthy, G. D., Sinha, B., Berry, D. I., and Hirschi, J. J.-M.: Drivers of exceptionally cold North Atlantic Ocean temperatures and their link to the 2015 European heat wave, Environ. Res. Lett., 11, 074004, https://doi.org/10.1088/1748-9326/11/7/074004, 2016.
DESTATIS: Holzernte 2019, https://www.destatis.de/DE/Presse/Pressemitteilungen/2020/07/PD20_N041_412.html#:~:text=Im Jahr 2019 wurden 46,waren es 54 Millionen Kubikmeter (last access: 15 November 2024), 2020.
DESTATIS: Holzeinschlag, https://www.destatis.de/DE/Themen/ Branchen-Unternehmen/Landwirtschaft-Forstwirtschaft-Fischerei/Wald-Holz/aktuell-holzeinschlag.html (last access: 15 November 2024), 2023.
Dittus, A. J., Collins, M., Sutton, R., and Hawkins, E.: Reversal of projected European summer precipitation decline in a stabilizing climate, Geophys. Res. Lett., 51, e2023GL107448, https://doi.org/10.1029/2023GL107448, 2024.
Dolomitenstadt: 220 Mio. Borkenkäfer gingen in Osttirol in die Falle, https://www.dolomitenstadt.at/2022/08/03/220-mio-borkenkaefer-gingen-in-osttirol-in-die-falle/ (last access: 15 November 2024), 2023.
Dobor, L., Hlásny, T., Rammer, W., Zimová, S., Barka, I., and Seidl, R.: Is salvage logging effectively dampening bark beetle outbreaks and preserving forest carbon stocks?, J. Appl. Ecol., 57, 67–76, 2020a.
Dobor, L., Hlásny, T., and Zimová, S.: Contrasting vulnerability of monospecific and species-diverse forests to wind and bark beetle disturbance: The role of management, Ecol. Evol., 10, 12233–12245, 2020b.
DSB: Skogbrannsesongen 2018, https://www.dsb.no/globalassets/dokumenter/rapporter/skogbrannsesongen_2018_nn.pd (last access: 19 October 2024), 2019.
DWD: https://www.dwd.de/DE/wetter/thema_des_tages/2022/4/20.html (last access: 15 November 2024), 2022.
Dyderski, M. K., Pawlik, Ł., Chwistek, K., and Czarnota, P.: Tree aboveground biomass increment and mortality in temperate mountain forests: Tracing dynamic changes along 25-year monitoring period, For. Ecol. Manag., 540, 121054, https://doi.org/10.1016/j.foreco.2023.121054, 2023.
EC-JRC Drought Reports, https://joint-research-centre.ec.europa.eu/european-and-global-drought-observatories/drought-reports_en (last access: 21 August 2024), 2024.
EFFIS: Annual Statistics for UK, https://effis.jrc.ec.europa.eu/apps/effis.statistics/estimates (last access: 20 March 2023), 2023a.
EFFIS: Annual Statistics for Ireland, https://effis.jrc.ec.europa.eu/apps/effis.statistics/estimates (last access: 20 March 2023), 2023b.
Eriksen, C. and Hauri, A.: Climate Change in the Swiss Alps, CSS Analyses in Security Policy, 290, https://doi.org/10.3929/ethz-b-000496457, 2021.
EUFORGEN: Pinus cembra, https://www.euforgen.org/species/pinus-cembra (last access: 22 August 2024), 2024.
European Commission, Libertà, G., Vivancos, T., Leray, T., Costa, H., San-Miguel-Ayanz, J., Branco, A., Durrant, T., Lana, F., Nuijten, D., Ahlgren, A., Löffler, P., Ferrari, D., De Rigo, D., Boca, R., and Maianti, P.: Forest fires in Europe, Middle East and North Africa 2017, Publ. Off. EU, https://doi.org/10.2760/663443, 2018.
EUROSTAT: Forests and forestry statistics, https://ec.europa.eu/eurostat/documents/3217494/7777899/KS-FK-16-001-EN-N.pdf/cae3c56f-53e2-404a-9e9e-fb5f57ab49e3?t=1484314012000 (last access: 15 November 2024), 2016.
EUROSTAT: Latest statistics on forest and wood products, https://ec.europa.eu/eurostat/web/products-eurostat-news/w/edn-20230321-1 (last access: 24 April 2023), 2023.
Euwid: Sweden assuming 5.1m m3 of beetle-damaged wood for 2022, https://www.euwid-wood-products.com/news/roundwood-sawnwood/sweden-assuming-51m-m3-of-beetle-damaged-wood-for-2022-211222/ (last access: 22 March 2024), 2022.
Fan, Y., Miguez-Macho, G., Jobbágy, E. G., Jackson, R. B., and Otero-Casal, C.: Hydrologic regulation of plant rooting depth, P. Natl. Acad. Sci., 114, 10572–10577, https://doi.org/10.1073/pnas.1712381114, 2017.
Feller, U., Kingston-Smith, A. H., and Centritto, M.: Editorial: abiotic stresses in agroecology: a challenge for whole plant physiology, Front. Environ. Sci., 5, 13, https://doi.org/10.3389/fenvs.2017.00013, 2017.
Feuerwehrverband: Rekord-Waldbrandsommer 2022: Fast 4300 Hektar Wald verbrannt – Waldeigentümer und Feuerwehren fordern finanzielle Unterstützung für Präventionsmaßnahmen, https://www.feuerwehrverband.de/rekord-waldbrandsommer-2022-fast-4300-hektar-wald-verbrannt-waldeigentuemer-und-feuerwehren-fordern-finanzielle-unterstuetzung-fuer-praeventionsmassnahmen/ (last access: 15 November 2024), 2022.
Fernandez-Carrillo, A., Patočka, Z., Dobrovolný, L., Franco-Nieto, A., and Revilla-Romero, B.: Monitoring bark beetle forest damage in Central Europe. A remote sensing approach validated with field data, Remote Sens., 12, 3634, https://doi.org/10.3390/rs12213634, 2020.
Feurdean, A., Vannière, B., Finsinger, W., Warren, D., Connor, S. C., Forrest, M., Liakka, J., Panait, A., Werner, C., Andrič, M., Bobek, P., Carter, V. A., Davis, B., Diaconu, A.-C., Dietze, E., Feeser, I., Florescu, G., Gałka, M., Giesecke, T., Jahns, S., Jamrichová, E., Kajukało, K., Kaplan, J., Karpińska-Kołaczek, M., Kołaczek, P., Kuneš, P., Kupriyanov, D., Lamentowicz, M., Lemmen, C., Magyari, E. K., Marcisz, K., Marinova, E., Niamir, A., Novenko, E., Obremska, M., Pędziszewska, A., Pfeiffer, M., Poska, A., Rösch, M., Słowiński, M., Stančikaitė, M., Szal, M., Święta-Musznicka, J., Tanţău, I., Theuerkauf, M., Tonkov, S., Valkó, O., Vassiljev, J., Veski, S., Vincze, I., Wacnik, A., Wiethold, J., and Hickler, T.: Fire hazard modulation by long-term dynamics in land cover and dominant forest type in eastern and central Europe, Biogeosciences, 17, 1213–1230, https://doi.org/10.5194/bg-17-1213-2020, 2020.
Forest health: https://assets.gov.ie/136864/6a39a3ce-3f1d-461b-bbd9-7dd9bf7da570.pdf (last access: 15 November 2024), 2021.
Forest Research: A review of the evidence base on tree health and pests, https://cdn.forestresearch.gov.uk/2008/01/fcrn101.pdf (last access: 20 March 2023), 2008.
Forest Research: Public Opinion of Forestry 2019 – Northern Ireland, https://cdn.forestresearch.gov.uk/2022/03/pof2020ni.pdf (last access: 20 March 2023), 2019.
Forest Research: Public Opinion of Forestry 2021: UK and England, https://cdn.forestresearch.gov.uk/2022/02/pof_uk_eng_2021.pdf (last access: 20 March 2023), 2021.
Forest Research: Provisional Woodland Statistics 2022, https://cdn.forestresearch.gov.uk/2022/06/PWS-statsnotice-16jun22.pdf (last access: 20 March 2023), 2022a.
Forest Research: Forestry Statistics 2022, https://www.forestresearch.gov.uk/tools-and-resources/statistics/forestry-statistics/ (last access: 20 March 2023), 2022b.
Forest Research: Pest and Disease Resources – Phytophthora pluvialis, https://www.forestresearch.gov.uk/tools-and-resources/fthr/pest-and-disease-resources/phytophthora-pluvialis/ (last access: 20 March 2023), 2022c.
Forest Statistics Ireland: https://www.teagasc.ie/media/website/crops/forestry/advice/Forest-Statistics-Ireland-2020.pdf (last access: 20 March 2023), 2020.
Forzieri, G., Girardello, M., Ceccherini, G., Spinoni, J., Feyen, L., Hartmann, H., Beck, P. S. A., Camps-Valls, G., Chirici, G., Mauri, A., and Cescatti, A.: Emergent vulnerability to climate-driven disturbances in European forests, Nat. Commun., 12, 1081, https://doi.org/10.1038/s41467-021-21399-7, 2021.
GAN-NIK: Resultados 2021 Red de Evaluacion Fitosanitaria de las Mas, https://www.navarra.es/NR/rdonlyres/4FC06980-DB33-40F3-8698-3BC9938F0142/480640/Resultados2021ReddeEvaluacionFitosanitariadelasMas.pdf (last access: 20 August 2024), 2019.
Garbarino, M., Morresi, D., Urbinati, C., Malandra, F., Motta, R., Sibona, E. M., Vitali, A., and Weisberg, P. J.: Contrasting land use legacy effects on forest landscape dynamics in the Italian Alps and the Apennines, Landscape Ecol., 35, 2679–2694, https://doi.org/10.1007/s10980-020-01013-9, 2020.
García-León, D., Casanueva, A., Standardi, G., Burgstall, A., Flouris, A. D., and Nybo, L.: Current and projected regional economic impacts of heatwaves in Europe, Nat. Commun., 12, 5807, https://doi.org/10.1038/s41467-021-26050-z, 2021.
García-Herrera, R., Garrido-Perez, J. M., Barriopedro, D., Ordóñez, C., Vicente-Serrano, S. M., Nieto, R., Gimeno, L., Sorí, R., and Yiou, P.: The European 2016/17 Drought, J. Climate, 32, 3169–3187, https://doi.org/10.1175/JCLI-D-18-0331.1, 2019.
Gazol, A. and Camarero, J. J.: Compound climate events increase tree drought mortality across European forests, Sci. Total Environ., 816, 151604, https://doi.org/10.1016/j.scitotenv.2021.151604, 2022.
Gazol, A., Camarero, J. J., Jiménez, J. J., Moret-Fernández, D., López, M. V., Sangüesa-Barreda, G., and Igual, J. M.: Beneath the canopy: Linking drought-induced forest die-off and changes in soil properties, For. Ecol. Manag., 422, 294–302, https://doi.org/10.1016/j.foreco.2018.03.019, 2018.
GeoSphere Austria: Klimamonitoring, https://www.zamg.ac.at/cms/de/klima/klima-aktuell/klimamonitoring/?param=t&period=period-ymd-2024-08-20&ref=1 (last access: 22 August 2024), 2024.
Geological Survey of Sweden: Årsredovisning 2017, https://resource.sgu.se/produkter/broschyrer/arsredovisning-2017.pdf (last access: 15 November 2024), 2017.
George, J. P., Bürkner, P. C., Sanders, T. G., Neumann, M., Cammalleri, C., Vogt, J. V., and Lang, M.: Long-term forest monitoring reveals constant mortality rise in European forests, Plant Biol., 24, 199–209, https://doi.org/10.1111/plb.13430, 2022.
Gliksman, D., Averbeck, P., Becker, N., Gardiner, B., Goldberg, V., Grieger, J., Handorf, D., Haustein, K., Karwat, A., Knutzen, F., Lentink, H. S., Lorenz, R., Niermann, D., Pinto, J. G., Queck, R., Ziemann, A., and Franzke, C. L. E.: Review article: A European perspective on wind and storm damage – from the meteorological background to index-based approaches to assess impacts, Nat. Hazards Earth Syst. Sci., 23, 2171–2201, https://doi.org/10.5194/nhess-23-2171-2023, 2023.
Global Fire Monitoring Center: News, https://gfmc.online/media/2018/02-2018/news_20180223_pt.html (last access: 15 November 2024), 2018.
Greenpeace: Un año horribilis para España: incendios, sequía, olas de calor e inundaciones, https://es.greenpeace.org/es/sala-de-prensa/comunicados/2022-un-ano-horribilis-para-espana-incendios-sequia-olas-de-calor-e-inundaciones/ (last access: April 2023), 2022.
Gimbel, K. F., Puhlmann, H., and Weiler, M.: Does drought alter hydrological functions in forest soils?, Hydrol. Earth Syst. Sci., 20, 1301–1317, https://doi.org/10.5194/hess-20-1301-2016, 2016.
Głowacka, B. (Ed.), Hilszczański, J., Jabłoński, T., Łukaszewicz, J., Skrzecz, I., and Tarwacki, G.: Metodyka integrowanej ochrony drzewostanów iglastych, Instytut Badawczy Leśnictwa, ISBN 978-83-62830-28-2, 2013.
Grodzki, W.: The decline of Norway spruce Picea abies (L.) Karst. stands in Beskid Slaski and Zywiecki: Theoretical concept and reality, Beskydy, 3, 19–26, 2010.
Grünig, M., Seidl, R., and Senf, C.: Increasing aridity causes larger and more severe forest fires across Europe, Glob. Change Biol., 29, 1648–1659, https://doi.org/10.1111/gcb.16385, 2023.
Grünzweig, J. M., de Boeck, H. J., Rey, A., Santos, M. J., Adam, O., Bahn, M., Belnap, J., Deckmyn, G., Dekker, S. C., Flores, O., Gliksman, D., Helman, D., Hultine, K. R., Liu, L., Meron, E., Michael, Y., Sheffer, E., Throop, H. L., Tzuk, O., and Yakir, D.: Dryland mechanisms could widely control ecosystem functioning in a drier and warmer world, Nat. Ecol. Evol., 6, 1064–1076, https://doi.org/10.1038/s41559-022-01779-y, 2022.
Gouvernement Français: France Relance – Toutes les mesures du plan de relance national, https://agriculture.gouv.fr/telecharger/118602 (last access: 15 November 2024), 2020.
Gunther, M.: Uvanlig barkbilleangrep i Vestfold. Forskning.no https://www.forskning.no/insekter-nibio-partner/uvanlig-barkbilleangrep-i-vestfold/1319291 (last access: 17 December 2024). 2019.
Haarsma, R. J., Selten, F. M., and Drijfhout, S. S.: Decelerating Atlantic meridional overturning circulation main cause of future west European summer atmospheric circulation changes, Environ. Res. Lett., 10, 094007, https://doi.org/10.1088/1748-9326/10/9/094007, 2015.
Hanewinkel, M., Cullmann, D. A., Schelhaas, M. J., Nabuurs, G. J., and Zimmermann, N. E.: Climate change may cause severe loss in the economic value of European forest land, Nat. Clim. Change, 3, 203–208, https://doi.org/10.1038/nclimate1687, 2013.
Hanssen-Bauer, I., Hisdal, H., Hygen, H. O., and Mayer, S.: Climate in Norway 2100: a national climate assessment, Norwegian Center for Climate Services report 1/2017, https://www.miljodirektoratet.no/globalassets/publikasjoner/m741/m741.pdf (last access: 27 November 2024), 2017.
Hari, V., Rakovec, O., Markonis, Y., Hanel, M., and Kumar, R.: Increased future occurrences of the exceptional 2018–2019 Central European drought under global warming, Sci. Rep., 10, 1–10, https://doi.org/10.1038/s41598-020-68872-9, 2020.
Hartick, C., Furusho-Percot, C., Goergen, K., and Kollet, S.: An interannual probabilistic assessment of subsurface water storage over Europe using a fully coupled terrestrial model, Water Resour. Res., 57, e2020WR027828, https://doi.org/10.1029/2020WR027828, 2021.
Hauser, M., Gudmundsson, L., Orth, R., Jézéquel, A., Haustein, K., Vautard, R., van Oldenborgh, G. J., Wilcox, L., and Seneviratne, S. I.: Methods and model dependency of extreme event attribution: The 2015 European drought, Earth’s Future, 5, 1034–1043, https://doi.org/10.1002/2017EF000612, 2017.
Heinze, B.: Bei uns und über dem Gartenzaun: die Entwicklung des Eschentriebsterbens in Österreich im europäischen Kontext, BFW-Praxisinformation Nr. 43, 7–12, Translation: Reneema Hazarika/BFW, https://shop.bfw.ac.at/bfw-praxisinformation/bfw-praxisinfo-43-2017.html (last access: 19 November 2024), 2017.
Hellwig, J., de Graaf, I. E. M., Weiler, M., and Stahl, K.: Large-Scale Assessment of Delayed Groundwater Responses to Drought, Water Resour. Res., 56, e2019WR025441, https://doi.org/10.1029/2019WR025441, 2020.
Hemery, G., Petrokofsky, G., Ambrose-Oji, B., Forster, J., Hemery, T., and O'Brien, L.: Awareness, action, and aspirations in the forestry sector in responding to environmental change: Report of the British Woodlands Survey 2020, 33 pp., 2020.
Henley, J.: Europe's rivers run dry as scientists warn drought could be worst in 500 years, https://www.theguardian.com/environment/2022/aug/ (last access: 27 February 2023), 2022.
Hermann, M., Röthlisberger, M., Gessler, A., Rigling, A., Senf, C., Wohlgemuth, T., and Wernli, H.: Meteorological history of low-forest-greenness events in Europe in 2002–2022, Biogeosciences, 20, 1155–1180, https://doi.org/10.5194/bg-20-1155-2023, 2023.
Hewelke, E., Oktaba, L., Gozdowski, D., Kondras, M., Olejniczak, I., and Górska, E. B.: Intensity and persistence of soil water repellency in pine forest soil in a temperate continental climate under drought conditions, Water, 10, 1121, https://doi.org/10.3390/w10091121, 2018.
Highland Council: Scotland's firefighters responded to more than one wildfire a day during spring last year, https://www.highland.gov.uk/news/article/15161/scotland_s_firefighters_responded_to_ more_than_one_wildfire_a_day_during_spring_last_year (last access: 22 March 2023), 2023.
Hicks, L. C., Rahman, M. M., Carnol, M., Verheyen, K., and Rousk, J.: The legacy of mixed planting and precipitation reduction treatments on soil microbial activity, biomass and community composition in a young tree plantation, Soil Biol. Biochem., 124, 227–235, https://doi.org/10.1016/j.soilbio.2018.06.022, 2018.
Hlásny, T., Krokene, P., Liebhold, A., Montagné-Huck, C., Müller, J., Qin, H., Raffa, K., Schelhaas, M.-J., Seidl, R., Svoboda, M., and Viiri, H.: Living with bark beetles: impacts, outlook and management options, No. 8, European Forest Institute, https://doi.org/10.36333/fs08, 2019.
Hlásny, T., Zimová, S., Merganičová, K., Štěpánek, P., Modlinger, R., and Turčáni, M.: Devastating outbreak of bark beetles in the Czech Republic: Drivers, impacts, and management implications, For. Ecol. Manag., 490, 119075, https://doi.org/10.1016/j.foreco.2021.119075, 2021.
Holman, I. P., Hess, T. M., Rey, D., and Knox, J. W.: A multi-level framework for adaptation to drought within temperate agriculture, Front. Environ. Sci., 8, 589871, https://doi.org/10.3389/fenvs.2020.589871, 2021.
Hoy, A., Haensel, S., Skalak, P., Ustrnul, Z., and Bochníček, O.: The extreme European summer of 2015 in a long-term perspective, Int. J. Climatol., 37, 943–962, https://doi.org/10.1002/joc.4722, 2017.
Hundhausen, M., Feldmann, H., Laube, N., and Pinto, J. G.: Future heat extremes and impacts in a convection-permitting climate ensemble over Germany, Nat. Hazards Earth Syst. Sci., 23, 2873–2893, https://doi.org/10.5194/nhess-23-2873-2023, 2023.
Huuskonen, S., Domisch, T., Finér, L., Hantula, J., Hynynen, J., Matala, J., Miina, J., Neuvonen, S., Nevalainen, S., Niemistö, P., Nikula, A., Piria, T., Siitonen, J., Smolander, A., Tonteri, T., Uotila, K., and Viiri, H.: What is the potential for replacing monocultures with mixed-species stands to enhance ecosystem services in boreal forests in Fennoscandia?, For. Ecol. Manag., 479, 118558, https://doi.org/10.1016/j.foreco.2020.118558, 2021.
Hroššo, B., Mezei, P., Potterf, M., Majdák, A., Blaženec, M., Korolyova, N., and Jakuš, R.: Drivers of Spruce Bark Beetle (Ips typographus) Infestations on Downed Trees after Severe Windthrow, Forests, 11, 1290, https://doi.org/10.3390/f11121290, 2020.
ICP forests: Annual Report, https://www.icp-forests.org/pdf/TR2007.pdf (last access: 27 June 2023), 2007.
ICCP: Douville, H., Raghavan, K., Renwick, J., Allan, R. P., Arias, P. A., Barlow, M., Cerezo-Mota, R., Cherchi, A., Gan, T. Y., Gergis, J., Jiang, D., Khan, A., Pokam Mba, W., Rosenfeld, D., Tierney, J., and Zolina, O.: Water Cycle Changes, in: Climate Change 2021: The Physical Science Basis, Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., and Yu, R., New York, NY, USA, 1055–1210, https://doi.org/10.1017/9781009157896.010, 2021a.
ICCP: IPCC: Summary for Policymakers, in: Climate Change 2021: The Physical Science Basis, Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 3–32, https://doi.org/10.1017/9781009157896.001, 2021b.
Ilmastokatsaus: Elokuu 2019, https://doi.org/10.35614/ISSN-2341-6408-IK-2019-08-00, 2019.
Ilmastokatsaus: Ilmastovuosikatsaus 2020, https://doi.org/10.35614/ISSN-2341-6408-IVK-2020-00, 2020.
Ilmastokatsaus: Ilmastovuosikatsaus 2021, https://doi.org/10.35614/ISSN-2341-6408-IVK-2021-00, 2021.
Ilmastokatsaus: Ilmastovuosikatsaus 2022, https://doi.org/10.35614/ISSN-2341-6408-IVK-2022-00, 2022.
IMKTRO: Wetter und Klima – Fakten zum Klimawandel – Klimawandel in Mitteleuropa – Niederschlag, https://www.kit.edu/IMKTRO (last access: 21 August 2024), 2023a.
IMKTRO: Wetter und Klima – Fakten zum Klimawandel – Klimawandel in Mitteleuropa – Temperatur, https://www.kit.edu/IMKTRO (last access: 21 August 2024), 2023b.
Inward, D. J. G., Caiti, E., Barnard, K., Hasbroucq, S., Reed, K., and Grégoire, J. C.: Evidence of cross-channel dispersal into England of the forest pest Ips typographus, J. Pest Sci., 97, 1823–1837, https://doi.org/10.1007/s10340-024-01763-4, 2024.
Ionita, M. and Nagavciuc, V.: Changes in drought features at the European level over the last 120 years, Nat. Hazards Earth Syst. Sci., 21, 1685–1701, https://doi.org/10.5194/nhess-21-1685-2021, 2021a.
Ionita, M., Dima, M., Nagavciuc, V., Scholz, P., and Dima, M.: Past megadroughts in central Europe were longer, more severe and less warm than modern droughts, Commun. Earth Environ., 2, 61, https://doi.org/10.1038/s43247-021-00130-w, 2021b.
Ionita, M., Nagavciuc, V., Scholz, P., and Dima, M.: Long-term drought intensification over Europe driven by the weakening trend of the Atlantic Meridional Overturning Circulation, J. Hydrol. Reg. Stud., 42, 101176, https://doi.org/10.1016/J.EJRH.2022.101176, 2022.
Jabłoński, T., Małecka, M., Sierota, Z., Tarwacki, G., Sukovata, L., Sowińska, A., Ślusarski, S., Wolski, R., Plewa, R., Grodzki, W., Szmidla, H., Sikora, K., and Pudełko, M.: Krótkoterminowa prognoza występowania ważniejszych szkodników i chorób infekcyjnych drzew leśnych w Polsce w 2019 r., Instytut Badawczy Leśnictwa, Analizy i Raporty, 26, 160 pp., ISBN 978-83-62830-76-3, 2019a (in Polish).
Jabłoński, T., Tarwacki, G., and Sukovata, L.: Pine forest conditions in Poland in 201–2018, Conf. Pap., Pine forests: current status, existing challenges and ways forward, Kyiv, 2019b.
Jactel, H., Koricheva, J., and Castagneyrol, B.: Responses of forest insect pests to climate change: not so simple, Curr. Opin. Insect Sci., 35, 103–108, https://doi.org/10.1016/j.cois.2019.07.010, 2019.
Jenkins, M. and Schaap, B.: Forest ecosystem services, Background Analytical Study, 1, https://www.un.org/esa/forests/wp-content/uploads/2018/05/UNFF13_BkgdStudy_ForestsEcoServices.pdf (last access: 19 November 2024), 2018.
Jiang, Y., Marchand, W., Rydval, M., Matula, R., Janda, P., Begović, K., Thom, D., Fruleux, A., Buechling, A., Pavlin, J., Nogueira, J., Dušátko, M., Málek, J., Kníř, T., Veber, A., and Svoboda, M.: Drought resistance of major tree species in the Czech Republic, Agric. For. Meteorol., 348, 109933, https://doi.org/10.1016/j.agrformet.2024.109933, 2024.
Karavani, A., Boer, M. M., Baudena, M., Colinas, C., Díaz-Sierra, R., Pemán, J., de Luis, M., Enríquez-de-Salamanca, Á., and Resco de Dios, V.: Fire-induced deforestation in drought-prone Mediterranean forests: drivers and unknowns from leaves to communities, Ecol. Monogr., 88, 141–169, https://doi.org/10.1002/ecm.1285, 2018.
Kautz, M., Peter, F. J., Harms, L., Kammen, S., and Delb, H.: Patterns, drivers and detectability of infestation symptoms following attacks by the European spruce bark beetle, J. Pest Sci., 96, 403–414, 2023.
Kendon, M., McCarthy, M., Jevrejeva, S., Matthews, A., Sparks, T., and Garforth, J.: State of the UK Climate 2020, Int. J. Climatol., https://doi.org/10.1002/joc.7285, 2021.
Kendon, M., McCarthy, M., Jevrejeva, S., Matthews, A., Sparks, T., Garforth, J., and Kennedy, J.: State of the UK Climate 2021, Int. J. Climatol., https://doi.org/10.1002/joc.7787, 2022.
Kendon, M., McCarthy, M., Jevrejeva, S., Matthews, A., Williams, J., Sparks, T., and West, F.: State of the UK Climate 2022, Int. J. Climatol., https://doi.org/10.1002/joc.8167, 2023.
Kirchmeier-Young, M. C., Gillett, N. P., Zwiers, F. W., Cannon, A. J., and Anslow, F. S.: Attribution of the influence of human-induced climate change on an extreme fire season, Earth Fut., 7, 2–10, 2019.
Kirkpatrick Baird, F., Stubbs Partridge, J., and Spray, D.: Anticipating and mitigating projected climate-driven increases in extreme drought in Scotland, 2021–2040, NatureScot Res. Rep., 1228, ISBN 978-1-78391-878-2, 2021.
Knoke, T., Gosling, E., Thom, D., Chreptun, C., Rammig, A., and Seidl, R.: Economic losses from natural disturbances in Norway spruce forests – A quantification using Monte-Carlo simulations, Ecol. Econ., 185, 107046, https://doi.org/10.1016/j.ecolecon.2021.107046, 2021.
Koehler, J., Dietz, A. J., Zellner, P., Baumhoer, C. A., Dirscherl, M., Cattani, L., Vlahović, Ž., Alasawedah, M. H., Mayer, K., Haslinger, K., Bertoldi, G., Jacob, A., and Kuenzer, C.: Drought in Northern Italy: Long Earth Observation Time Series Reveal Snow Line Elevation to Be Several Hundred Meters Above Long-Term Average in 2022, Remote Sens., 14, 6091, https://doi.org/10.3390/rs14236091, 2022.
Kollet, S. J. and Maxwell, R. M.: Capturing the influence of groundwater dynamics on land surface processes using an integrated, distributed watershed model, Water Resour. Res., 44, 2, https://doi.org/10.1029/2007WR006004, 2008.
Kosenius, A.-K., Tulla, T., Horne, P., Vanha-Majamaa, I., and Kerkelä, L.: Economics of forest fire management and ecosystem services – Cost analysis from North Karelia (in Finnish), PTT Working Papers 165, 54 pp., ISBN 978-952-224-157-3, 2014.
Kotlarski, S., Gobiet, A., Morin, S., Olefs, M., Rajczak, J., and Samacoïts, R.: 21st Century alpine climate change, Clim. Dynam., 60, 65–86, 2023.
Kozhoridze, G., Korolyova, N., and Jakuš, R.: Norway spruce susceptibility to bark beetles is associated with increased canopy surface temperature in a year prior disturbance, For. Ecol. Manage., 547, 121400, https://doi.org/10.1016/j.foreco.2023.121400, 2023.
Krikken, F., Lehner, F., Haustein, K., Drobyshev, I., and van Oldenborgh, G. J.: Attribution of the role of climate change in the forest fires in Sweden 2018, Nat. Hazards Earth Syst. Sci., 21, 2169–2179, https://doi.org/10.5194/nhess-21-2169-2021, 2021.
Krumm, F., Rigling, A., Bollmann, K., Brang, P., Dürr, C., Gessler, A., Schuck, A., Schulz-Marty, T., and Winkel, G.: Synthesis: Improving biodiversity conservation in European managed forests needs pragmatic, courageous, and regionally-rooted management approaches, European Forest Institute (EFI), Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), 608–633, 2020.
Kunert, N.: Das Ende der Kiefer als Hauptbaumart in Mittelfranken, AFZ-Der Wald, 3, 24–25, 2019.
Kunert, N.: Preliminary indications for diverging heat and drought sensitivities in Norway spruce and Scots pine in Central Europe, iForest, 13, 89–96, 2020.
Kurz-Besson, C., Otieno, D., Lobo do Vale, R., Siegwolf, R., Schmidt, M., Herd, A., Nogueira, C., David, T. S., David, J. S., Tenhunen, J., Pereira, J. S., and Chaves, M.: Hydraulic lift in cork oak trees in a savannah-type Mediterranean ecosystem and its contribution to the local water balance, Plant Soil, 282, 361–378, https://doi.org/10.1007/s11104-006-0001-5, 2006.
Kurz-Besson, C., Lousada, J. L., Gaspar, M. J., Correia, I., Soares, P. M. M., Cardoso, R. M., Russo, A., Varino, F., Mériaux, C., Trigo, R. M., and Gouveia, C. M.: Effects of recent minimum temperature and water deficit increases on Pinus pinaster radial growth and wood density in Southern Portugal, Front. Plant Sci., 7, 1170, https://doi.org/10.3389/fpls.2016.01170, 2016.
Kwiatkowski, M., Rutkiewicz, A., and Sawicki, A. (Eds.): Klęski żywiołowe w lasach, Instytut Badawczy Leśnictwa, ISBN 978-83-62830-85-5, 2020.
Laaha, G., Gauster, T., Tallaksen, L. M., Vidal, J.-P., Stahl, K., Prudhomme, C., Heudorfer, B., Vlnas, R., Ionita, M., Van Lanen, H. A. J., Adler, M.-J., Caillouet, L., Delus, C., Fendekova, M., Gailliez, S., Hannaford, J., Kingston, D., Van Loon, A. F., Mediero, L., Osuch, M., Romanowicz, R., Sauquet, E., Stagge, J. H., and Wong, W. K.: The European 2015 drought from a hydrological perspective, Hydrol. Earth Syst. Sci., 21, 3001–3024, https://doi.org/10.5194/hess-21-3001-2017, 2017.
LASY: Trudny, upalny czas dla leśników, https://www.lasy.gov.pl/pl/informacje/aktualnosci/trudny-upalny-czas-dla-lesnikow, last access: 27 June 2023.
Lech, P., Żółciak, A., and Hildebrand, R.: Occurrence of European Mistletoe (Viscum album L.) on Forest Trees in Poland and Its Dynamics of Spread in the Period 2008–2018, Forests, 11, 83, https://doi.org/10.3390/f11010083, 2019.
Lech, P., Zajączkowski, G. (Ed.), Boczoń, A., Hildebrand, R., Kluziński, L., Kowalska, J., Małachowska, J., Wawrzoniak, J., and Zajączkowski, G.: Stan zdrowotny lasów Polski w 2020 roku, Instytut Badawczy Leśnictwa, Sękocin Stary, http://www.gios.gov.pl/monlas/raporty/raport_2020/raport_2020.pdf (last access: 28 November 2024), 2021.
Lehtonen, I. and Venäläinen, A.: Metsäpalokesä 2018 muuttuvassa ilmastossa – poikkeuksellinen vuosi vai uusi normaali?, Finn. Meteorol. Inst. Rep., 2020:2, https://doi.org/10.35614/isbn.9789523361089, 2020.
Lejeune, Q., Davin, E. L., Gudmundsson, L., Winckler, J., and Seneviratne, S. I.: Historical deforestation locally increased the intensity of hot days in northern mid-latitudes, Nat. Clim. Change, 8, 386–390, https://doi.org/10.1038/s41558-018-0140-2, 2018.
Leuschner, C.: Drought response of European beech (Fagus sylvatica L.) – a review, Perspect. Plant Ecol. Evol. Syst., https://doi.org/10.1016/j.ppees.2020.125576, 2020.
Leverkus, A. B., García Murillo, P., Jurado Doña, V., and Pausas, J. G.: Wildfires: Opportunity for restoration?, Science, 363, 134–135, https://doi.org/10.1126/science.aaw2134, 2019.
Li, M., Yao, Y., Simmonds, I., Luo, D., Zhong, L., and Chen, X.: Collaborative impact of the NAO and atmospheric blocking on European heatwaves, with a focus on the hot summer of 2018, Environ. Res. Lett., 15, 114003, https://doi.org/10.1088/1748-9326/aba6ad, 2020.
Liebhold, A. M., Brockerhoff, E. G., Kalisz, S., Nuñez, M. A., Wardle, D. A., and Wingfield, M. J.: Biological invasions in forest ecosystems, Biol. Invasions, 19, 3437–3458, https://doi.org/10.1007/s10530-017-1450-7, 2017.
Lindner, M., Maroschek, M., Netherer, S., Kremer, A., Barbati, A., Garcia-Gonzalo, J., Marchetti, M.: Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems, For. Ecol. Manage., 259, 698–709, https://doi.org/10.1016/j.foreco.2009.09.023, 2010.
Locatelli, T., Beauchamp, K., Perks, M., Xenakis, G., Nicoll, B., and Morison, J.: Drought risk in Scottish forests, Forest Research, https://doi.org/10.7488/era/1292, 2021.
López, R., Cano, F. J., Choat, B., Cochard, H., and Gil, L.: Plasticity in vulnerability to cavitation of Pinus canariensis occurs only at the driest end of an aridity gradient, Front. Plant Sci., 7, 769, https://doi.org/10.3389/fpls.2016.00769, 2016.
MAA (Ministère de l'Agriculture et de l'Alimentation): Récolte de bois et production de sciages en 2018, Agreste Chiffres et Données, n°2019-17, ISSN 2259-5104, 2019a.
MAA (Ministère de l'Agriculture et de l'Alimentation): Récolte de bois et production de sciages en 2019, Agreste Primeur, n°2021-2, ISSN 1760-7132, 2021a.
MAA (Ministère de l'Agriculture et de l'Alimentation): Récolte de bois en 2020. Repli de 2,5 % dans le contexte de l'épidémie de Covid-19, Agreste Primeur, n°2022-2, ISSN 0246-1803, 2022a.
MAA (Ministère de l'Agriculture et de l'Alimentation): Récolte de bois et production de sciages en 2021, Agreste Chiffres et Données, n°2023-3, ISSN 2259-5104, 2023.
Mao, J., Nierop, K. G. J., Dekker, S. C., Dekker, L. W., and Chen, B.: Understanding the mechanisms of soil water repellency from nanoscale to ecosystem scale: a review, J. Soils Sediments, 19, 171–185, https://doi.org/10.1007/s11368-018-2195-9, 2019.
Martinez del Castillo, E., Zang, C. S., Buras, A., and Others: Climate-change-driven growth decline of European beech forests, Commun. Biol., 5, 163, https://doi.org/10.1038/s42003-022-03107-3, 2022.
Matías Resina, L., Bose, A. K., Gessler, A., Bolte, A., Bottero, A., Buras, A., and Cailleret, M.: Growth and resilience responses of Scots pine to extreme droughts across Europe depend on predrought growth conditions, Glob. Change Biol., 26, 4521–4537, https://doi.org/10.1111/gcb.15166, 2020.
Matiu, M., Crespi, A., Bertoldi, G., Carmagnola, C. M., Marty, C., Morin, S., Schöner, W., Cat Berro, D., Chiogna, G., De Gregorio, L., Kotlarski, S., Majone, B., Resch, G., Terzago, S., Valt, M., Beozzo, W., Cianfarra, P., Gouttevin, I., Marcolini, G., Notarnicola, C., Petitta, M., Scherrer, S. C., Strasser, U., Winkler, M., Zebisch, M., Cicogna, A., Cremonini, R., Debernardi, A., Faletto, M., Gaddo, M., Giovannini, L., Mercalli, L., Soubeyroux, J.-M., Sušnik, A., Trenti, A., Urbani, S., and Weilguni, V.: Observed snow depth trends in the European Alps: 1971 to 2019, The Cryosphere, 15, 1343–1382, https://doi.org/10.5194/tc-15-1343-2021, 2021.
Melin, M. (Ed.), Terhonen, E. (Ed.), Aarnio, L., Hantula, J., Helenius, P., Henttonen, H., Huitu, O., Härkönen, M., Isberg, T., Kaitera, J., Kasanen, R., Koivula, M., Kuitunen, P., Korhonen, K. T., Laurila, I., Lindberg, H., Linnakoski, R., Luoranen, J., Matala, J., Niemimaa, J., Nuorteva, H., Piri, T., Poimala, A., Poteri, M., Pouttu, A., Siitonen, J., Silver, T., Strandström, M., Uimari, A., Vainio, E., Vanha-Majamaa, I., Vuorinen, M., and Ylioja, T.: Metsätuhot vuonna 2021 (in Finnish), Luonnonvara- ja biotalouden tutkimus 38/2022, Natural Resources Institute Finland, Helsinki, http://urn.fi/URN:ISBN:978-952-380-423-4 (last access: 19 November 2024), 2022.
Merkur: Schloss Neuschwanstein Waldbrand Gefahr, https://www.merkur.de/bayern/schloss-neuschwanstein-waldbrand-tirol-feuer-gefahr-bayern-feuer-trockenheit-grenze-news-91407046.html, last access: 19 February 2024.
Mette, T. and Kölling, C.: Die Zukunft der Kiefer in Franken, LWF Aktuell, 2, 14–17, 2020.
MET Norway: Tørkesommeren 2018, MetINFO, 14, https://www.met.no/publikasjoner/met-info (last access: 15 November 2024), 2019.
Metsäkeskus: Kirjanpainajatuhojen kasvuun kannattaa varautua, https://www.metsakeskus.fi/fi/ajankohtaista/kirjanpainajatuhojen-kasvuun-kannattaa-varautua, last access: 1 March 2023.
Mezei, P., Fleischer, P., Rozkošný, J., Kurjak, D., Dzurenko, M., Rell, S., Lalík, M., and Galko, J.: Weather conditions and host characteristics drive infestations of sessile oak (Quercus petraea) trap trees by oak bark beetles (Scolytus intricatus), For. Ecol. Manage., 503, 119775, https://doi.org/10.1016/j.foreco.2021.119775, 2022.
Michel, A., Prescher, A.-K., and Schwärzel, K. (Eds.): Forest Condition in Europe: The 2019 Assessment, ICP Forests Technical Report, BFW Austrian Research Centre for Forests, Vienna, ISBN 978-3-903258-17-4, 2019.
Michel, A., Kirchner, T., Prescher, A.-K., and Schwärzel, K. (Eds.): Forest Condition in Europe: The 2020 Assessment, ICP Forests Technical Report, Thünen Institute, https://doi.org/10.3220/ICPTR1606916913000, 2020.
Michel, A., Kirchner, T., Prescher, A.-K., and Schwärzel, K. (Eds.): Forest Condition in Europe: The 2021 Assessment, ICP Forests Technical Report, Thünen Institute, https://doi.org/10.3220/ICPTR1624952851000, 2021.
Michel, A., Kirchner, T., Prescher, A.-K., and Schwärzel, K. (Eds.): Forest Condition in Europe: The 2022 Assessment, ICP Forests Technical Report, Thünen Institute, https://doi.org/10.3220/ICPTR1656330928000, 2022.
Milanovic, S., Markovic, N., Pamucar, D., Gigovic, L., Kostic, P., and Milanovic, S. D.: Forest fire probability mapping in Eastern Serbia: Logistic regression versus random forest method, Forests, 12, 5, https://doi.org/10.3390/f12010005, 2021.
Miljødirektoratet: Klimatiltak i Norge mot 2030: Oppdatert kunnskapsgrunnlag om utslippsreduksjonspotensial, barrierer og mulige virkemidler, Miljødirektoratet: Oslo, https://www.miljodirektoratet.no/publikasjoner/2023/juni-2023/klimatiltak-i-norge-mot-2030/ (last access: 27 November 2024), 2023.
Mitchell, D., Heaviside, C., Schaller, N., Allen, M., Ebi, K. L., Fischer, E. M., and Vardoulakis, S.: Extreme heat-related mortality avoided under Paris Agreement goals, Nat. Clim. Change, 8, 551–553, https://doi.org/10.1038/s41558-018-0210-1, 2018.
Moemken, J., Koerner, B., Ehmele, F., Feldmann, H., and Pinto, J. G.: Recurrence of drought events over Iberia. Part II: Future changes using regional climate projections, Tellus A, 74, 262–279, https://doi.org/10.16993/tellusa.52, 2022.
Mohr, S., Ehret, U., Kunz, M., Ludwig, P., Caldas-Alvarez, A., Daniell, J. E., Ehmele, F., Feldmann, H., Franca, M. J., Gattke, C., Hundhausen, M., Knippertz, P., Küpfer, K., Mühr, B., Pinto, J. G., Quinting, J., Schäfer, A. M., Scheibel, M., Seidel, F., and Wisotzky, C.: A multi-disciplinary analysis of the exceptional flood event of July 2021 in central Europe – Part 1: Event description and analysis, Nat. Hazards Earth Syst. Sci., 23, 525–551, https://doi.org/10.5194/nhess-23-525-2023, 2023.
Möhring, B., Bitter, A., Bub, G., Dieter, M., Dög, M., Hanewinkel, M., Hatzfeld, N., Köhler, J., Ontrup, G., Rosenberger, R., Seintsch, B., and Thoma, F.: Schadenssumme insgesamt 12,7 Mrd. Euro – Abschätzung der ökonomischen Schäden der Extremwetterereignisse der Jahre 2018 bis 2020 in der Forstwirtschaft, Holz-Zentralblatt, 9, 155–158, 2021.
Montanari, A., Nguyen, H., Rubinetti, S., Ceola, S., Galelli, S., Rubino, A., and Zanchettin, D.: Why the 2022 Po River drought is the worst in the past two centuries, Sci. Adv., 9, eadg8304, https://doi.org/10.1126/sciadv.adg8304, 2023.
Mooney, P. A., Rechid, D., Davin, E. L., Katragkou, E., de Noblet-Ducoudré, N., Breil, M., Cardoso, R. M., Daloz, A. S., Hoffmann, P., Lima, D. C. A., Meier, R., Soares, P. M. M., Sofiadis, G., Strada, S., Strandberg, G., Toelle, M. H., and Lund, M. T.: Land–atmosphere interactions in sub-polar and alpine climates in the CORDEX Flagship Pilot Study Land Use and Climate Across Scales (LUCAS) models – Part 2: The role of changing vegetation, The Cryosphere, 16, 1383–1397, https://doi.org/10.5194/tc-16-1383-2022, 2022.
Moravec, V., Markonis, Y., Rakovec, O., Svoboda, M., Trnka, M., Kumar, R., and Hanel, M.: Europe under multi-year droughts: how severe was the 2014–2018 drought period?, Environ. Res. Lett., 16, 034062, https://doi.org/10.1088/1748-9326/abe828, 2021.
Morin, X., Fahse, L., Jactel, H., Scherer-Lorenzen, M., García-Valdés, R., and Bugmann, H.: Long-term response of forest productivity to climate change is mostly driven by change in tree species composition, Sci. Rep., 8, 5627, https://doi.org/10.1038/s41598-018-23763-y, 2018.
Morcillo, L., Gallego, D., González, E., and Vilagrosa, A.: Forest decline triggered by phloem parasitism-related biotic factors in Aleppo pine (Pinus halepensis), Forests, 10, 608, https://doi.org/10.3390/f10080608, 2019.
Motta, R., Ascoli, D., Corona, P., Marchetti, M., and Vacchiano, G.: Selvicoltura e schianti da vento. Il caso della “tempesta Vaia,” For. J. Silvic. For. Ecol., 15, 94, https://doi.org/10.3832/EFOR2990-015, 2018.
Müller, M. M., Vilà-Vilardell, L., Vacik, H., Mayer, C., Mayr, S., Carrega, P., and Maier, H.: Forest fires in the Alps: State of knowledge, future challenges and options for an integrated fire management, EUSALP Action Group, 8, https://doi.org/10.13140/RG.2.2.15609.42081, 2020.
Müller, M. M.: Rekordbrand TÜPl Allentsteig, https://fireblog.boku.ac.at/2022/04/12/rekordbrand-tuepl-allentsteig, last access: 12 April 2022.
Müller, L. M. and Bahn, M.: Drought legacies and ecosystem responses to subsequent drought, Glob. Change Biol., 28, 5086–5103, https://doi.org/10.1111/gcb.16351, 2022.
Nardi, D., Jactel, H., Pagot, E., Samalens, J. C., and Marini, L.: Drought and stand susceptibility to attacks by the European spruce bark beetle: A remote sensing approach, Agric. For. Entomol., 25, 119–129, https://doi.org/10.1111/afe.12533, 2023.
NBI-7: Lerink, B., Schelhaas, M. J., Clerkx, S., Teeuwen, S., Oldenburger, J., and Beerkens, G.: 7e Nederlandse Bosinventarisatie: een gemengde boodschap, Vakblad Natuur Bos Landschap, 19, 8–11, 2022.
Neuvonen, S.: Ilmastonmuutos ja metsien hyönteistuhot (in Finnish), Metsätieteen aikakauskirja, 10498, https://doi.org/10.14214/ma.10498, 2020.
Nevalainen, S. and Pouttu, A. (Eds.): Metsätuhot vuonna 2016 (in Finnish), Luonnonvara- ja biotalouden tutkimus 50/2017, Natural Resources Institute Finland, Helsinki, http://urn.fi/URN:ISBN:978-952-326-447-2 (last access: 15 November 2024), 2017.
NIBIO: Kilden Forest data portal, https://kilden.nibio.no/?lang=nb&topic=skogportal&bgLayer=graatone_cache&X=6773739.61&Y=-94941.10&zoom=1.979699915287064&layers_opacity=0.75,0.75,0.75,0.75&layers=barkbille_registrering_17,barkbille_historiske,barkbille_granressurser,barkbille_utsatte_omrader&catalogNodes=1237,1238 (last access: 15 November 2024), 2023.
NordicWoodJournal: Forest fires in Sweden – huge areas burned in 2018: https://nordicwoodjournal.com/editorial/forest-fires-sweden/ (last access: 20 November 2024).
Norwegian Center for Climate Services: Observations and weather statistics, https://seklima.met.no/observations/ (last access: 15 November 2024), 2023.
NRW: https://naturalresources.wales/about-us/news-and-blogs/news/fires-cause-100k-of-damage-to-afan-valley-and-seven-sister-forests/?lang=en (last access: 18 November 2024), 2020.
Nuorteva, H. (Ed.): Metsätuhot vuonna 2018, Luonnonvara- ja biotalouden tutkimus 85/2019, Natural Resources Institute Finland, Helsinki, http://urn.fi/URN:ISBN:978-952-326-878-4 (last access: 19 November 2024), 2019 (in Finnish).
Nuorteva, H. (Ed.), Kytö, M. (Ed.), Aarnio, L., Ahola, A., Balázs, A., Elfving, R., Haapanen, M., Hantula, J., Henttonen, H., Huitu, O., Ihalainen, A., Kaitera, J., Kuitunen, P., Kashif, M., Korhonen, K. T., Lindberg, H., Linnakoski, R., Matala, J., Melin, M., Neuvonen, S., Niemimaa, J., Pietilä, V., Piri, T., Poteri, M., Pusenius, J., Silver, T., Strandström, M., Tikkanen, O.-P., Uimari, A., Vanha-Majamaa, I., Viiri, H., Vuorinen, M., and Ylioja, T.: Metsätuhot vuonna 2019 (in Finnish), Luonnonvara- ja biotalouden tutkimus 1/2022, Natural Resources Institute Finland, Helsinki, http://urn.fi/URN:ISBN:978-952-380-348-0 (last access: 19 November 2024), 2022.
NVE: Groundwater observations Norway, July 2018, https://www.senorge.no/ (last access: 15 November 2024), 2023.
NW-FVA: Waldzustandsbericht Niedersachsen 2022, https://www.ml.niedersachsen.de/download/190134/Waldzustandsbericht_Niedersachsen_ 2022.pdf (last access: 15 November 2024), 2022.
O'Hanlon, R., Ryan, C., Choiseul, J., Murchie, A. K., and Williams, C. D.: Catalogue of pests and pathogens of trees on the island of Ireland, Biol. Environ. Proc. Roy. Irish Acad., 121B, 21–45, https://doi.org/10.1353/bae.2021.0005, 2021.
Öhrn, P., Berlin, M., Elfstrand, M., Krokene, P., and Jönsson, A. M.: Seasonal variation in Norway spruce response to inoculation with bark beetle-associated bluestain fungi one year after a severe drought, Forest Ecol. Manag., 496, 119443, https://doi.org/10.1016/j.foreco.2021.119443, 2021.
Olefs, M., Formayer, H., Gobiet, A., Marke, T., Schöner, W., and Revesz, M.: Past and future changes of the Austrian climate–Importance for tourism, J. Outdoor Recreat. Tour., 34, 100395, https://doi.org/10.1016/j.jort.2021.100395, 2021.
ONF (Office National des Forêts): Forêts publiques françaises: quel nouveau visage?, https://www.onf.fr/onf/lonf-agit/+/8cf::forets-publiques-francaises-quel-nouveau-visage.html (last access: 15 November 2024), 2020.
ONF (Office National des Forêts): En forêt, la crise des scolytes s'accélère partout en France, https://www.onf.fr/onf/+/2e0::epidemie-de-scolytes-les-forestiers-de-lonf-sur-le-front.html (last access: 15 November 2024), 2021.
Orwig, D. A. and Abrams, M. D.: Variation in radial growth responses to drought among species, site, and canopy strata, Trees, 11, 474–484, https://doi.org/10.1007/s004680050114, 1997.
Patacca, M., Lindner, M., Lucas-Borja, M. E., Cordonnier, T., Fidej, G., Gardiner, B., and Schelhaas, M. J.: Significant increase in natural disturbance impacts on European forests since 1950, Glob. Change Biol., 29, 1359–1376, https://doi.org/10.1111/gcb.16578, 2023.
Peñuelas, J. and Filella, I.: Deuterium labelling of roots provides evidence of deep water access and hydraulic lift by Pinus nigra in a Mediterranean forest of NE Spain, Environ. Exp. Bot., 49, 201–208, https://doi.org/10.1016/S0098-8472(02)00070-9, 2003.
Pereira, M. G., Trigo, R. M., DaCamara, C. C., Pereira, J. M. C., and Leite, S. M.: Synoptic patterns associated with large summer forest fires in Portugal, Agr. Forest Meteorol., 129, 11–25, https://doi.org/10.1016/j.agrformet.2004.12.007, 2005.
Perugini, L., Caporaso, L., Marconi, S., Cescatti, A., Quesada, B., de Noblet-Ducoudré, N., and Arneth, A.: Biophysical effects on temperature and precipitation due to land cover change, Environ. Res. Lett., 12, 053002, https://doi.org/10.1088/1748-9326/aa6b3f, 2017.
Peters, W., Bastos, A., Ciais, P., and Vermeulen, A.: A historical, geographical and ecological perspective on the 2018 European summer drought, Philos. T. Roy. Soc. B, 375, 20190505, https://doi.org/10.1098/rstb.2019.0505, 2020.
Pettit, J. M., Voelker, S. L., DeRose, R. J., and Burton, J. I.: Spruce beetle outbreak was not driven by drought stress: Evidence from a tree-ring iso-demographic approach indicates temperatures were more important, Glob. Change Biol., 26, 5829–5843, https://doi.org/10.1111/gcb.15291, 2020.
Philipp, M., Wegmann, M., and Kübert-Flock, C.: Quantifying the Response of German Forests to Drought Events via Satellite Imagery, Remote Sens., 13, 1845, https://doi.org/10.3390/rs13091845, 2021.
Pilli, R., Vizzarri, M., and Chirici, G.: Combined effects of natural disturbances and management on forest carbon sequestration: the case of Vaia storm in Italy, Ann. For. Sci., 78, 1–18, https://doi.org/10.1007/s13595-021-01043-6, 2021.
Pirtskhalava-Karpova, N., Trubin, A., Karpov, A., and Jakuš, R.: Drought initialised bark beetle outbreak in Central Europe: Meteorological factors and infestation dynamic, Forest Ecol. Manag., 554, 121666, https://doi.org/10.1016/j.foreco.2023.121666, 2024.
Piton, B., Benest, F., Caroulle, F., Cuny, H., Gosselin, M., Montagné-Huck, C., Nicolas, M., and Rocquencourt, A.: État et évolution des forêts françaises métropolitaines, Synthèse des indicateurs de gestion durable 2020, https://foret.ign.fr/api/upload/IGD_2020_SYNTHESE.pdf (last access: 19 November 2024), 2021.
Plewa, R. and Mokrzycki, T.: Występowanie, biologia i znaczenie gospodarcze kornika ostrozębnego Ips acuminatus (Gyllenhal, 1827) (Coleoptera, Curculionidae, Scolytinae) w Polsce, Sylwan, 161, 619–629, https://doi.org/10.26202/sylwan.2017077, 2017.
Polish Supreme Chamber of Control: https://www.nik.gov.pl/aktualnosci/zapobieganie-suszy-rolniczej.html, last access: 27 June 2023.
Popkin, G.: Forest fight, Science, 374, 1184–1189, https://doi.org/10.1126/science.acx9733, 2021.
Prieto, I., Armas, C., and Pugnaire, F. I.: Water release through plant roots: new insights into its consequences at the plant and ecosystem level, New Phytol., 193, 830–841, 2012.
Przybyl, K.: Wpływ warunków klimatycznych na zamieranie dębów w Polsce oraz symptomy choroby, Arboretum Kornickie, 34, https://rcin.org.pl/Content/189871/KOR001_148916.pdf (last access: 28 November 2024), 1989 (in Polish).
Rabbel, I., Bogena, H., Neuwirth, B., and Diekkrüger, B.: Using sap flow data to parameterize the Feddes water stress model for Norway Spruce, Water-Sui, 10, https://doi.org/10.3390/w10030279, 2018.
RAF Italia 2017–2018: Rapporto sullo stato delle foreste e del settore forestale in Italia, Rapporto sullo stato delle foreste e del settore forestale in Veneto 2020, https://www.reterurale.it/flex/cm/pages/ServeBLOB.php/L/IT/IDPagina/19231 (last access: 15 November 2024), 2019.
Rakovec, O., Samaniego, L., Hari, V., Markonis, Y., Moravec, V., Thober, S., et al.: The 2018–2020 multi-year drought sets a new benchmark in Europe, Earth's Future, 10, e2021EF002394, https://doi.org/10.1029/2021EF002394, 2022.
REA: https://rea.ec.europa.eu/news/fighting-flames-eu-funded-projects-protecting-forests-fire-destruction-2024-07-23_en, last access: 21 August 2024.
Rechid, D., Davin, E., de Noblet-Ducoudré, N., and Katragkou, E.: CORDEX Flagship Pilot Study “LUCAS-Land Use & Climate Across Scales”-a new initiative on coordinated regional land use change and climate experiments for Europe, EGU General Assembly Conference Abstracts, 13172, Geophysical Research Abstracts, Vol. 19, EGU2017-13172, 23–28 April 2017, EGU General Assembly 2017, Vienna, Austria, 2017.
Ribeiro, A. F., Russo, A., Gouveia, C. M., and Pires, C. A.: Drought-related hot summers: a joint probability analysis in the Iberian Peninsula, Weather Climate Extremes, 30, 100279, https://doi.org/10.1016/j.wace.2020.100279, 2020.
Rico, L., Ogaya, R., Barbeta, A., and Peñuelas, J.: Changes in DNA methylation fingerprint of Quercus ilex trees in response to experimental field drought simulating projected climate change, Plant Biol., 16, 419–427, https://doi.org/10.1111/plb.12049, 2014.
Rita, A., Camarero, J. J., Nolè, A., Borghetti, M., Brunetti, M., Pergola, N., Serio, C., Vicente-Serrano, S. M., Tramutoli, V., and Ripullone, F.: The impact of drought spells on forests depends on site conditions: the case of 2017 summer heat wave in southern Europe, Glob. Change Biol., 26, 851–863, 2020.
Rotenberg, E. and Yakir, D.: Contribution of semi-arid forests to the climate system, Science, 327, 451–454, https://doi.org/10.1126/science.1180556, 2010.
Rousi, E., Selten, F., Rahmstorf, S., and Coumou, D.: Changes in North Atlantic Atmospheric Circulation in a Warmer Climate Favor Winter Flooding and Summer Drought over Europe, J. Climate, 34, 2277–2295, https://doi.org/10.1175/JCLI-D-20-0311.1, 2021.
Rousi, E., Kornhuber, K., Beobide-Arsuaga, G., Luo, F., and Coumou, D.: Accelerated western European heatwave trends linked to more-persistent double jets over Eurasia, Nat. Commun., 13, 31432, https://doi.org/10.1038/s41467-022-31432-y, 2022.
Rousi, E., Fink, A. H., Andersen, L. S., Becker, F. N., Beobide-Arsuaga, G., Breil, M., Cozzi, G., Heinke, J., Jach, L., Niermann, D., Petrovic, D., Richling, A., Riebold, J., Steidl, S., Suarez-Gutierrez, L., Tradowsky, J. S., Coumou, D., Düsterhus, A., Ellsäßer, F., Fragkoulidis, G., Gliksman, D., Handorf, D., Haustein, K., Kornhuber, K., Kunstmann, H., Pinto, J. G., Warrach-Sagi, K., and Xoplaki, E.: The extremely hot and dry 2018 summer in central and northern Europe from a multi-faceted weather and climate perspective, Nat. Hazards Earth Syst. Sci., 23, 1699–1718, https://doi.org/10.5194/nhess-23-1699-2023, 2023.
Ruffault, J., Curt, T., Moron, V., Trigo, R. M., Mouillot, F., Koutsias, N., and Dupuy, J. L.: Increased likelihood of heat-induced large wildfires in the Mediterranean Basin, Sci. Rep., 10, 13790, https://doi.org/10.1038/s41598-020-70069-z, 2020.
Rukh, S., Sanders, T. G. M., Krüger, I., Schad, T., and Bolte, A.: Distinct responses of European beech (Fagus sylvatica L.) to drought intensity and length: a review of the impacts of the 2003 and 2018–2019 drought events in Central Europe, Forests, 14, 248, https://doi.org/10.3390/f14020248, 2023.
Ruosteenoja, K., Markkanen, T., and Räisänen, J.: Thermal seasons in northern Europe in projected future climate, Int. J. Climatol., 40, 4444–4462, https://doi.org/10.1002/joc.6471, 2020.
Russo, A., Gouveia, C. M., Páscoa, P., DaCamara, C. C., Sousa, P. M., and Trigo, R. M.: Assessing the role of drought events on wildfires in the Iberian Peninsula, Agr. Forest Meteorol., 237, 50–59, https://doi.org/10.1016/j.agrformet.2017.01.021, 2017.
Saintonge, F.-X., Gillette, M., Blaser, S., Queloz, V., and Leroy, Q.: Situation et gestion de la crise liée aux scolytes de l'Épicéa commun fin 2021 dans l'est de la France, en Suisse et en Wallonie, Rev. For. Fr., 73, 619–641, https://doi.org/10.20870/revforfr.2021.7201, 2021.
Salomón, R. L., Peters, R. L., Zweifel, R., Sass-Klaassen, U. G. W., Stegehuis, A. I., Smiljanic, M., Poyatos, R., Babst, F., Cienciala, E., Fonti, P., Lerink, B. J. W., Lindner, M., Martinez-Vilalta, J., Mencuccini, M., Nabuurs, G.-J., van der Maaten, E., von Arx, G., Bär, A., Akhmetzyanov, L., Balanzategui, D., Bellan, M., Bendix, J., Berveiller, D., Blaženec, M., Čada, V., Carraro, V., Cecchini, S., Chan, T., Conedera, M., Delpierre, N., Delzon, S., Ditmarová, Ľ., Dolezal, J., Dufrêne, E., Edvardsson, J., Ehekircher, S., Forner, A., Frouz, J., Ganthaler, A., Gryc, V., Güney, A., Heinrich, I., Hentschel, R., Janda, P., Ježík, M., Kahle, H.-P., Knüsel, S., Krejza, J., Kuberski, Ł., Kučera, J., Lebourgeois, F., Mikoláš, M., Matula, R., Mayr, S., Oberhuber, W., Obojes, N., Osborne, B., Paljakka, T., Plichta, R., Rabbel, I., Rathgeber, C. B. K., Salmon, Y., Saunders, M., Scharnweber, T., Sitková, Z., Stangler, D. F., Stereńczak, K., Stojanović, M., Střelcová, K., Světlík, J., Svoboda, M., Tobin, B., Trotsiuk, V., Urban, J., Valladares, F., Vavrčík, H., Vejpustková, M., Walthert, L., Wilmking, M., Zin, E., Zou, J., and Steppe, K.: The 2018 European heatwave led to stem dehydration but not to consistent growth reductions in forests, Nat. Commun., 13, 31432, https://doi.org/10.1038/s41467-021-27579-9, 2022.
San-Miguel-Ayanz, J., Oom, D., Artes, T., Viegas, D. X., Fernandes, P., Faivre, N., and Castellnou, M.: Forest fires in Portugal in 2017, in: Science for Disaster Risk Management 2020: Acting Today, Protecting Tomorrow, edited by: Casajus Valles, A., Marin Ferrer, M., Poljanšek, K., and Clark, I., EUR 30183 EN, Publications Office of the European Union, Luxembourg, https://doi.org/10.2760/571085, 2020.
SCB: Marken i Sverige, https://www.scb.se/hitta-statistik/sverige-i-siffror/miljo/marken-i-sverige/ (last access: 21 November 2024), 2020.
Scherrer, D., Ascoli, D., Conedera, M., Fischer, C., Maringer, J., Moser, B., Wohlgemuth, T. et al.: Canopy disturbances catalyse tree species shifts in Swiss forests, Ecosystems, 25, 199–214, https://doi.org/10.1007/s10021-021-00649-1, 2022.
Schnabel, F., Purrucker, S., Schmitt, L., Engelmann, R. A., Kahl, A., Richter, R., Seele-Dilbat, C., Skiadaresis, G., and Wirth, C.: Cumulative growth and stress responses to the 2018–2019 drought in a European floodplain forest, Glob. Change Biol., 28, 1870–1883, https://doi.org/10.1111/gcb.16028, 2021.
Schreiner Zeitung: https://www.schreinerzeitung.ch/de/artikel/zweithochster-je-registrierter-borkenkaferbefall-der-schweiz (last access: 18 November 2024), 2020.
Schuldt, B., Knutzen, F., Delzon, S., Jansen, S., Müller-Haubold, H., Burlett, R., Clough, Y., and Leuschner, C.: How adaptable is the hydraulic system of European beech in the face of climate change-related precipitation reduction?, New Phytol., 210, 443–458, https://doi.org/10.1111/nph.13798, 2016.
Schuldt, B., Buras, A., Arend, M., Vitasse, Y., Beierkuhnlein, C., Damm, A., Gharun, M., Grams, T. E. E., Hauck, M., Hajek, P., Hartmann, H., Hiltbrunner, E., Hoch, G., Holloway-Phillips, M., Körner, C., Larysch, E., Lübbe, T., Nelson, D. B., Rammig, A., Rigling, A., Rose, L., Ruehr, N. K., Schumann, K., Weiser, F., Werner, C., Wohlgemuth, T., Zang, C. S., and Kahmen, A.: A first assessment of the impact of the extreme 2018 summer drought on Central European forests, Basic Appl. Ecol., 45, 86–103, https://doi.org/10.1016/j.baae.2020.04.003, 2020.
Schumacher, D. L., Zachariah, M., Otto, F., Barnes, C., Philip, S., Kew, S., Vahlberg, M., Singh, R., Heinrich, D., Arrighi, J., van Aalst, M., Thalheimer, L., Raju, E., Hauser, M., Hirschi, M., Gudmundsson, L., Beaudoing, H. K., Rodell, M., Li, S., Yang, W., Vecchi, G. A., Vautard, R., Harrington, L. J., and Seneviratne, S. I.: High temperatures exacerbated by climate change made 2022 Northern Hemisphere soil moisture droughts more likely, World Weather Attribution, United Kingdom, https://coilink.org/20.500.12592/f00cjq (last access: 9 December 2024), 2022.
Schumacher, D. L., Zachariah, M., Otto, F., Barnes, C., Philip, S., Kew, S., Vahlberg, M., Singh, R., Heinrich, D., Arrighi, J., van Aalst, M., Hauser, M., Hirschi, M., Bessenbacher, V., Gudmundsson, L., Beaudoing, H. K., Rodell, M., Li, S., Yang, W., Vecchi, G. A., Harrington, L. J., Lehner, F., Balsamo, G., and Seneviratne, S. I.: Detecting the human fingerprint in the summer 2022 western–central European soil drought, Earth Syst. Dynam., 15, 131–154, https://doi.org/10.5194/esd-15-131-2024, 2024.
Scottish Forestry: https://www.forestry.gov.scot/sustainable-forestry/tree-health/tree-pests-and-diseases/great-spruce-bark-beetle-in-scotland (last access: 18 November 2024), 2023a.
Scottish Forestry: https://www.forestry.gov.scot/publications/1385-updated-d-micans-distribution-map-in-scotland-january-2022/download (last access: 18 November 2024), 2023b.
Seaton, F. M., Jones, D. L., Creer, S., George, P. B. L., Smart, S. M., Lebron, I., Barrett, G., Emmett, B. A., and Robinson, D. A.: Plant and soil communities are associated with the response of soil water repellency to environmental stress, Sci. Total Environ., 687, 929–938, https://doi.org/10.1016/j.scitotenv.2019.06.050, 2019.
Sefton, C., Muchan, K., Parry, S., Matthews, B., Barker, L. J., Turner, S., and Hannaford, J.: The 2019/2020 floods in the UK: a hydrological appraisal, Weather, https://doi.org/10.1002/wea.3993, 2021.
Seidl, R., Schelhaas, M. J., Rammer, W., et al.: Increasing forest disturbances in Europe and their impact on carbon storage, Nat. Clim. Change, 4, 806–810, https://doi.org/10.1038/nclimate2318, 2014.
Seidl, R., Thom, D., Kautz, M., Martin-Benito, D., Peltoniemi, M., Vacchiano, G., Wild, J., Ascoli, D., Petr, M., Honkaniemi, J., Lexer, M. J., Trotsiuk, V., Mairota, P., Svoboda, M., Fabrika, M., Nagel, T. A., and Reyer, C. P. O.: Forest disturbances under climate change, Nat. Clim. Chang., 7, 395–402, https://doi.org/10.1038/nclimate3303, 2017.
Seidl, R., Honkaniemi, J., Aakala, T., Aleinikov, A., Angelstam, P., Bouchard, M., Boulanger, Y., Burton, P. J., De Grandpré, L., Gauthier, S., Hansen, W. D., Jepsen, J. U., Jõgiste, K., Kneeshaw, D. D., Kuuluvainen, T., Lisitsyna, O., Makoto, K., Mori, A. S., Pureswaran, D. S., Shorohova, E., Shubnitsina, E., Taylor, A. R., Vladimirova, N., Vodde, F., and Senf, C.: Globally consistent climate sensitivity of natural disturbances across boreal and temperate forest ecosystems, Ecography, 43, 967–978, https://doi.org/10.1111/ecog.04995, 2020.
Senf, C. and Seidl, R.: Persistent impacts of the 2018 drought on forest disturbance regimes in Europe, Biogeosciences, 18, 5223–5230, https://doi.org/10.5194/bg-18-5223-2021, 2021a.
Senf, C. and Seidl, R.: Storm and fire disturbances in Europe: Distribution and trends, Glob. Change Biol., 27, 3605–3619, 2021b.
Seneviratne, S. I., Zhang, X., Adnan, M., Badi, W., Dereczynski, C., Di Luca, A., Ghosh, S., Iskandar, I., Kossin, J., Lewis, S., Otto, F., Pinto, I., Satoh, M., Vicente-Serrano, S. M., Wehner, M., and Zhou, B.: Chapter 11: Weather and climate extreme events in a changing climate, 2021.
Sierota, Z., Grodzki, W., and Szczepkowski, A.: Abiotic and Biotic Disturbances Affecting Forest Health in Poland over the Past 30 Years: Impacts of Climate and Forest Management, Forests, 10, 75, https://doi.org/10.3390/f10010075, 2019.
Sierota, Z. and Grodzki, W.: Picea abies-Armillaria-Ips: A strategy or coincidence?, Forests, 11, 1023, https://doi.org/10.3390/F11091023, 2020.
Sioen, G., Verschelde, P., and Roskams, P.: Bosvitaliteitsinventaris 2018. Resultaten uit het bosvitaliteitsmeetnet (Level 1), Rapports van het Instituut voor Natuur- en Bosonderzoek, Nr. 20, Instituut voor Natuur- en Bosonderzoek, https://doi.org/10.21436/inbor.16207115, 2019.
Sioen, G., Verschelde, P., and Roskams, P.: Bosvitaliteitsinventaris 2019: Resultaten uit het bosvitaliteitsmeetnet (Level 1), Rapports van het Instituut voor Natuur- en Bosonderzoek, Nr. 20, Instituut voor Natuur- en Bosonderzoek, https://doi.org/10.21436/inbor.18050253, 2020.
Sioen, G., Verschelde, P., and Roskams, P.: Bosvitaliteitsinventaris 2020: Resultaten uit het bosvitaliteitsmeetnet (Level 1), Rapports van het Instituut voor Natuur- en Bosonderzoek, Nr. 20, Instituut voor Natuur- en Bosonderzoek, https://doi.org/10.21436/inbor.34283136, 2021.
Sioen, G., Verschelde, P., and Roskams, P.: Bosvitaliteitsinventaris 2021. Resultaten uit het bosvitaliteitsmeetnet (Level 1), Rapports van het Instituut voor Natuur- en Bosonderzoek, Nr. 7, Instituut voor Natuur- en Bosonderzoek, https://doi.org/10.21436/inbor.71783042, 2022.
Sioen, G., Verschelde, P., and Roskams, P.: Bosvitaliteitsinventaris 2022. Resultaten uit het bosvitaliteitsmeetnet (Level 1), Rapports van het Instituut voor Natuur- en Bosonderzoek, Nr. 4, https://doi.org/10.21436/inbor.90109478, 2023.
Sire, L., Schmidt Yáñez, P., Wang, C., Bézier, A., Courtial, B., Cours, J., Fontaneto, D., Larrieu, L., Bouget, C., Thorn, S., Müller, J., Yu, D. W., Monaghan, M. T., Herniou, E. A., and Lopez-Vaamonde, C.: Climate-induced forest dieback drives compositional changes in insect communities that are more pronounced for rare species, Commun. Biol., 5, 57, https://doi.org/10.1038/s42003-021-02968-4, 2022.
Skrzecz, I., Tkaczyk, M., and Oszako, T.: Current Problems of Forest Protection (25–27 October 2022, Katowice Poland), Appl. Sci., 12, 12745, https://doi.org/10.3390/app122412745, 2022.
SMHI: Året 2022. Mycket tört i sydöstra Sverige, https://www.smhi.se/klimat/klimatet-da-och-nu/arets-vader/aret-2022-mycket-torrt-i-sydostra-sverige-1.190565 (last access: 15 November 2024), 2023.
Sofiadis, G., Katragkou, E., Davin, E. L., Rechid, D., de Noblet-Ducoudre, N., Breil, M., Cardoso, R. M., Hoffmann, P., Jach, L., Meier, R., Mooney, P. A., Soares, P. M. M., Strada, S., Tölle, M. H., and Warrach Sagi, K.: Afforestation impact on soil temperature in regional climate model simulations over Europe, Geosci. Model Dev., 15, 595–616, https://doi.org/10.5194/gmd-15-595-2022, 2022.
Spinoni, J., Vogt, J. V., Naumann, G., Barbosa, P., and Dosio, A.: Will drought events become more frequent and severe in Europe?, Int. J. Climatol., 38, 1718–1736, 2018.
SSB: Landskogtakseringen (forest volume statistics Norway), https://www.ssb.no/statbank/table/06289/tableViewLayout1/ (last access: 15 November 2024), 2022.
Stagge, J. H., Kingston, D. G., Tallaksen, L. M., and Hannah, D. M.: Observed drought indices show increasing divergence across Europe, Sci. Rep., 7, 1–10, https://doi.org/10.1038/s41598-017-14283-2, 2017.
Statsforvalteren: Årsmelding 2019. Skogbruket i Vestfold og Telemark, https://www.statsforvalteren.no/siteassets/fm-vestfold-og-telemark/landbruk-og-mat/skogbruk/arsmelding-2020-hele-med-logo.pdf (last access: 27 November 2024), 2020.
Statsforvalteren: Årsmelding 2020. Skogbruket i Vestfold og Telemark, https://www.statsforvalteren.no/contentassets/73e08d3b324a45db9077831c5fa2c04b/skogbruket-i-vestfold-og-telemark-2021.pdf (last access: 27 November 2024), 2021.
Stelzl, A., Pointl, M., and Fuchs-Hanusch, D.: Estimating Future Peak Water Demand with a Regression Model Considering Climate Indices, Water, 13, 1912, https://doi.org/10.3390/w13141912, 2021.
Stephan, R., Erfurt, M., Terzi, S., Žun, M., Kristan, B., Haslinger, K., and Stahl, K.: An inventory of Alpine drought impact reports to explore past droughts in a mountain region, Nat. Hazards Earth Syst. Sci., 21, 2485–2501, https://doi.org/10.5194/nhess-21-2485-2021, 2021.
Středová, H., Fukalová, P., Chuchma, F., and Středa, T.: A complex method for estimation of multiple abiotic hazards in forest ecosystems, Water, 12, 2872, https://doi.org/10.3390/w12102872, 2020.
Sturm, J., Santos, M. J., Schmid, B., and Damm, A.: Satellite data reveal differential responses of Swiss forests to unprecedented 2018 drought, Glob. Chang. Biol., 28, 2956–2978, https://doi.org/10.1111/gcb.16194, 2022.
Suarez-Gutierrez, L., Li, C., Müller, W. A., and Marotzke, J.: Internal variability in European summer temperatures at 1.5 °C and 2 °C of global warming, Environ. Res. Lett., 13, 064026, https://doi.org/10.1088/1748-9326/aaba58, 2018.
Suarez-Gutierrez, L., Müller, W. A., and Marotzke, J.: Extreme heat and drought typical of an end-of-century climate could occur over Europe soon and repeatedly, Commun. Earth Environ., 4, 415, https://doi.org/10.1038/s43247-023-01075-y, 2023.
Süßel, F. and Brüggemann, W.: Tree water relations of mature oaks in southwest Germany under extreme drought stress in summer 2018, Plant Stress, 1, 100010, https://doi.org/10.1016/j.stress.2021.100010, 2021.
Sommerfeld, A., Rammer, W., Heurich, M., Hilmers, T., Müller, J., and Seidl, R.: Do bark beetle outbreaks amplify or dampen future bark beetle disturbances in Central Europe?, J. Ecol., 109, 737–749, 2021.
SRF: https://www.srf.ch/news/schweiz/der-schweizer-wald-leidet-extremer-befall-von-borkenkaefern (last access: 15 November 2024), 2020.
Susza: Data from official governamental page, compared with other European Countries, https://www.gov.pl/web/susza/susza (last access: 28 November 2024), 2023.
Swedish Board of Agriculture: Långsiktiga effekter av torkan 2018, och hur jordbruket kan bli mer motståndskraftigt mot extremväder, Jorbruksverkets rapport RA 19/13, https://webbutiken.jordbruksverket.se/sv/artiklar/ra1913.html (last access: 19 November 2024), 2019.
SZ: https://www.sueddeutsche.de/bayern/schloss-neuschwanstein-allgaeu-waldbrand-1.5547353 (last access: 15 November 2024), 2022.
Tagesschau: https://www.rainews.it/tgr/tagesschau/articoli/2022/10/ tag-Borkenkaefer-5000-Hektar-in-Suedtirol-befallen-e7437c6e-2139-4b00-87d4-bf6d265595e9.html (last access: 15 November 2024), 2022.
Telegraph: https://www.telegraph.co.uk/news/fire-storm-the-wildfires-sweeping-europe-and-britain/ (last access: on 14 March 2023), 2018.
Terhonen, E., Melin, M., Aarnio, L., Granberg, F., Hantula, J., Henttonen, H., Huitu, O., Huuskonen, S., Härkönen, M., Kaitera, J., Koivula, M., Kokko, A., Kokkonen, J., Korhonen, K. T., Laurila, I., Lehto, T., Luoranen, J., Niemimaa, J., Nuorteva, H., Pennanen, T., Piri, T., Poimala, A., Pouttu, A., Pätäri, V., Siitonen, J., Silver, T., Strandström, M., Sutela, S., Tikkanen, O.-P., Vainio, E., Vanha-Majamaa, I., Velmala, S., and Ylioja, T.: Metsätuhot vuonna 2022 (in Finnish), Luonnonvara- ja biotalouden tutkimus 48/2023, Natural Resources Institute Finland, Helsinki, http://urn.fi/URN:ISBN:978-952-380-694-8 (last access: 19 November 2024), 2023.
Teuling, A. J., Seneviratne, S. I., Stöckli, R., Reichstein, M., Moors, E., Ciais, P., Luyssaert, S., van den Hurk, B., Ammann, C., Bernhofer, C., Dellwik, E., Gianelle, D., Gielen, B., Grünwald, T., Klumpp, K., Montagnani, L., Moureaux, C., Sottocornola, M., and Wohlfahrt, G.: Contrasting response of European forest and grassland energy exchange to heatwaves, Nat. Geosci., 3, 722–727, 2010.
Teutschbein, C., Jonsson, E., Todorović, A., Tootoonchi, F., Stenfors, E., and Grabs, T.: Drought Propagation through the Water-Energy-Food-Ecosystem Nexus: a Nordic Perspective, https://doi.org/10.1016/j.jhydrol.2022.128963, 2022a.
Teutschbein, C., Montano, B. Q., Todorović, A., and Grabs, T.: Streamflow droughts in Sweden: Spatiotemporal patterns emerging from six decades of observations, J. Hydrol. Regional Stud., 42, 101171, https://doi.org/10.1016/j.ejrh.2022.101171, 2022b.
The Herald: Scotland escaped global 2021 wildfire crisis so far, https://www.heraldscotland.com/news/19482198.scotland-escaped-global-2021-wildfire-crisis-far/ (last access: 14 March 2023), 2021.
Thonfeld, F., Gessner, U., Holzwarth, S., Kriese, J., da Ponte, E., Huth, J., and Kuenzer, C.: A First Assessment of Canopy Cover Loss in Germany's Forests after the 2018–2020 Drought Years, Remote Sens., 14, 562, https://doi.org/10.3390/rs14030562, 2022.
Thom, D. and Seidl, R.: Accelerating Mountain Forest Dynamics in the Alps, Ecosystems, 25, 603–617, https://doi.org/10.1007/s10021-021-00674-0, 2022.
Thom, D., Rammer, W., Laux, P., Smiatek, G., Kunstmann, H., Seibold, S., and Seidl, R.: Will forest dynamics continue to accelerate throughout the 21st century in the Northern Alps?, https://doi.org/10.1111/gcb.16133, 2022.
Thrippleton, T., Lüscher, F., and Bugmann, H.: Climate change impacts across a large forest enterprise in the Northern Pre-Alps: dynamic forest modelling as a tool for decision support, Eur. J. Forest Res., 139, 483–498, 2020.
TMIL: https://infrastruktur-landwirtschaft.thueringen.de/fileadmin/Forst_und_Jagd_Fischerei/Forstwirtschaft/2022_Waldzustandsbericht_barrierefrei.pdf (last access: 15 November 2024), 2022.
Toreti, A., Bavera, D., Acosta Navarro, J., Cammalleri, C., de Jager, A., Di Ciollo, C., Hrast Essenfelder, A., Maetens, W., Magni, D., Masante, D., Mazzeschi, M., Niemeyer, S., and Spinoni, J.: Drought in Europe August 2022, Publications Office of the European Union, Luxembourg, JRC13049, https://doi.org/10.2760/264241, 2022a.
Toreti, A., Bavera, D., Avanzi, F., Cammalleri, C., De Felice, M., de Jager, A., Di Ciollo, C., Gabellani, S., Maetens, W., Magni, D., Manfron, G., Masante, D., Mazzeschi, M., McCormick, N., Naumann, G., Niemeyer, S., Rossi, L., Seguini, L., Spinoni, J., and van den Berg, M.: Drought in northern Italy March 2022, EUR 31037 EN, Publications Office of the European Union, Luxembourg, JRC128974, https://doi.org/10.2760/781876, 2022b.
Toreti, A., Bavera, D., Acosta Navarro, J., Arias-Muñoz, C., Avanzi, F., Marinho Ferreira Barbosa, P., De Jager, A., Di Ciollo, C., Ferraris, L., Fioravanti, G., Gabellani, S., Grimaldi, S., Hrast Essenfelder, A., Isabellon, M., Jonas, T., Maetens, W., Magni, D., Masante, D., Mazzeschi, M., McCormick, N., Meroni, M., Rossi, L., Salamon, P., and Spinoni, J.: Drought in Europe March 2023, EUR 31448 EN, Publications Office of the European Union, Luxembourg, JRC133025, https://doi.org/10.2760/998985, 2023.
Toth, D., Maitah, M., Maitah, K., and Jarolínová, V.: The impacts of calamity logging on the development of spruce wood prices in Czech forestry, Forests, 11, 283, https://doi.org/10.3390/f11030283, 2020.
Turco, M., Jerez, S., Augusto, S., Tarín-Carrasco, P., Ratola, N., Jiménez-Guerrero, P., and Trigo, R. M.: Climate drivers of the 2017 devastating fires in Portugal, Sci. Rep., 9, 13886, https://doi.org/10.1038/s41598-019-50281-2, 2019.
Turco, M., Abatzoglou, J. T., Herrera, S., Zhuang, Y., Jerez, S., Lucas, D. D., AghaKouchak, A., and Cvijanovic, I.: Anthropogenic climate change impacts exacerbate summer forest fires in California, Proc. Natl. Acad. Sci., 120, e2213815120, https://doi.org/10.1073/pnas.2213815120, 2023.
Turner, S., Barker, L. J., Hannaford, J., Muchan, K., Parry, S., and Sefton, C.: The 2018/2019 drought in the UK: a hydrological appraisal, Weather, 76, 248–253, 2021.
Tyukavina, A., Potapov, P., Hansen, M. C., Pickens, A. H., Stehman, S. V., Turubanova, S., Parker, D., Zalles, V., Lima, A., Kommareddy, I., Song, X.-P., Wang, L., and Harris, N.: Global trends of forest loss due to fire from 2001 to 2019, Front. Remote Sens., 3, 825190, https://doi.org/10.3389/frsen.2022.825190, 2022.
UBA: Waldbrände in Deutschland, Umweltbundesamt, https://www.umweltbundesamt.de/daten/land-forstwirtschaft/waldbraende#waldbrande-in-deutschland (last access: 15 November 2024), 2023a.
UBA: Das Monitoringbericht 2023, Umweltbundesamt, https://www.umweltbundesamt.de/sites/default/files/medien/376/publikationen/das-monitoringbericht_2023_bf_korr.pdf (last access: 19 August 2023), 2023b.
Ukkola, A. M., De Kauwe, M. G., Roderick, M. L., Abramowitz, G., and Pitman, A. J.: Robust future changes in meteorological drought in CMIP6 projections despite uncertainty in precipitation, Geophys. Res. Lett., 47, e2020GL087820, https://doi.org/10.1029/2020GL087820, 2020.
UN: Member States, United Nations, https://www.un.org/en/about-us/member-states (last access: 9 February 2024), 2024.
UNECE Committee on Forest and the Forest Industry and the European Forestry Commission (Foresta2022): Sweden: Country market statement 2022, UNECE, https://unece.org/forestry-timber/documents/2022/10/informal-documents/sweden-country-market-statement-2022 (last access 1 March 2023), 2022.
Van Der Wiel, K., Batelaan, T. J., and Wanders, N.: Large increases of multi-year droughts in north-western Europe in a warmer climate, Clim. Dyn., 59, 1–20, https://doi.org/10.1007/S00382-022-06373-3, 2022.
Van Loon, A. F.: Hydrological drought explained, WIREs Water, 2, 359–392, 2015.
Veijalainen, N., Ahopelto, L., Marttunen, M., Jääskeläinen, J., Britschgi, R., Orvomaa, M., Belinskij, A., and Keskinen, M.: Severe drought in Finland: Modeling effects on water resources and assessing climate change impacts, Sustainability, 11, 2450, https://doi.org/10.3390/su11082450, 2019.
Venäläinen, A., Lehtonen, I., and Mäkelä, A.: Laaja-alaisia metsäpaloja mahdollistavat säätilanteet Suomen ilmastossa [The risk of large forest fires in Finland], Finnish Meteorological Institute, Reports 2016:3 (in Finnish, English Abstract), https://helda.helsinki.fi/handle/10138/161478 (last access: 15 November 2024), 2016.
Verkerk, P. J., Delacote, P., Hurmekoski, E., Kunttu, J., Matthews, R., Mäkipää, R., Mosley, F., Perugini, L., Reyer, C. P. O., Roe, S., and Trømborg, E.: Forest-based climate change mitigation and adaptation in Europe. From Science to Policy, 14, European Forest Institute, https://doi.org/10.36333/fs14, 2022.
Vicedo-Cabrera, A. M., Scovronick, N., Sera, F., Royé, D., Schneider, R., Tobias, A., Astrom, C., Guo, Y., Honda, Y., Hondula, D. M., Abrutzky, R., Tong, S., Coelho, M., de Sousa Zanotti Stagliorio, P. H., Nascimento Saldiva, E., Lavigne, P., Matus Correa, N. Valdes Ortega, H. Kan, S. Osorio, Kyselý, J., Urban, A., Orru, H., Indermitte, E., Jaakkola, J. J. K., Ryti, N., Pascal, M., Schneider, A., Katsouyanni, K., Samoli, E., Mayvaneh, F., Entezari, A., Goodman, P., Zeka, A., Michelozzi, P., de’Donato, F., Hashizume, M., Alahmad, B., Hurtado Diaz, M., De La Cruz Valencia, C., Overcenco, A., Houthuijs, D., Ameling, C., Rao, S., Di Ruscio, F., Carrasco-Escobar, G., Seposo, X., Silva, S., Madureira, J., Holobaca, I. H., Fratianni, S., Acquaotta, F., Kim, H., Lee, W., Iniguez, C., Forsberg, B., Ragettli, M. S., Guo, Y. L. L., Chen, B. Y., Li, S., Armstrong, B., Aleman, A., Zanobetti, A., Schwartz, J., Dang, T. N., Dung, D. V., Gillett, N., Haines, A., Mengel, M., Huber, V., Gasparrini, A.: The burden of heat-related mortality attributable to recent human-induced climate change, Nat. Clim. Change, 11, 492–500, 2021.
Vicente-Serrano, S. M., Beguería, S., Lorenzo-Lacruz, J., Camarero, J. J., López-Moreno, J. I., Azorin-Molina, C., Revuelto, J., Morán-Tejeda, E., and Sanchez-Lorenzo, A.: Performance of drought indices for ecological, agricultural, and hydrological applications, Earth Interact., 16, 1–27, 2012.
Vicente-Serrano, S. M., Gouveia, C., Camarero, J. J., Beguería, S., Trigo, R., López-Moreno, J. I., Azorín-Molina, C., Pasho, E., and Lorenzo-Lacruz, J., Revuelto, J., Morán-Tejeda, E., and Sanchez-Lorenzo, A.: The response of vegetation to drought time-scales across global land biomes, P. Natl. Acad. Sci. USA., 110, 52–57, 2013.
Vicente-Serrano, S. M., Quiring, S. M., Pena-Gallardo, M., Yuan, S., and Dominguez-Castro, F.: A review of environmental droughts: Increased risk under global warming?, Earth-Sci. Rev., 201, 102953, https://doi.org/10.1016/j.earscirev.2019.102953, 2020.
Vogel, M. M., Zscheischler, J., Wartenburger, R., Dee, D., and Seneviratne, S. I.: Concurrent 2018 hot extremes across Northern Hemisphere due to human-induced climate change, Earth's Future, 7, 692–703, 2019.
Vogel, J., Paton, E., Aich, V., and Bronstert, A.: Increasing compound warm spells and droughts in the Mediterranean Basin, Weather Clim. Extremes, 32, 100312, https://doi.org/10.1016/j.wace.2021.100312, 2021.
Waldschutz: Leichte Zunahme von Buchdrucker-Befallsherden, https://www.dora.lib4ri.ch/wsl/islandora/object/wsl:32875/datastream/PDF/Stroheker-2023-Leichte_Zunahme_von_Buchdrucker-Befallsherden-(published_version).pdf (last access: 15 November 2024), 2023.
Wataha: An increase in the bark beetle population in Norwegian forests, Wataha, https://wataha.no/en/2021/11/15/an-increase-in-the-bark-beetle-population-in-norwegian-forests/ (last access: 21 August 2024), 2021.
Watts, N., Amann, M., Arnell, N., Ayeb-Karlsson, S., Beagley, J., Belesova, K., Boykoff, M., Byass, P., Cai, W., Campbell-Lendrum, D., Capstick, S., Chambers, J., Coleman, S., Dalin, C., Daly, M., Dasandi, N., Dasgupta, S., Davies, M., Di Napoli, C., Dominguez-Salas, P., Drummond, P., Dubrow, R., Ebi, K. L., Eckelman, M., Ekins, P., Escobar, L. E., Georgeson, L., Golder, S., Grace, D., Graham, H., Haggar, P., Hamilton, I., Hartinger, S., Hess, J., Hsu, S.-C., Hughes, N., Jankin Mikhaylov, S., Jimenez, M. P., Kelman, I., Kennard, H., Kiesewetter, G., Kinney, P. L., Kjellstrom, T., Kniveton, D., Lampard, P., Lemke, B., Liu, Y., Liu, Z., Lott, M., Lowe, R., Martinez-Urtaza, J., Maslin, M., McAllister, L., McGushin, A., McMichael, C., Milner, J., Moradi-Lakeh, M., Morrissey, K., Munzert, S., Murray, K. A., Neville, T., Nilsson, M., Odhiambo Sewe, M., Oreszczyn, T., Otto, M., Owfi, F., Pearman, O., Pencheon, D., Quinn, R., Rabbaniha, M., Robinson, E., Rocklöv, J., Romanello, M., Semenza, J. C., Sherman, J., Shi, L., Springmann, M., Tabatabaei, M., Taylor, J., Triñanes, J., Shumake-Guillemot, J., Vu, B., Wilkinson, P., Winning, M., Gong, P., Montgomery, H., and Costello, A.: The 2020 report of The Lancet Countdown on health and climate change: Responding to converging crises, Lancet, 397, 129–170, 2021.
Wawrzoniak, J. (Ed.), Boczoń, A., Hildebrand, R., Kowalska, A., Lech, P., Małachowska, J., Wawrzoniak, J., and Zajączkowski, G.: Stan zdrowotny lasów Polski w 2018 roku, Instytut Badawczy Lesnictwa, Sękocin Stary, http://www.gios.gov.pl/monlas/raporty/raport_2018/raport_2018.pdf (last access: 28 November 2024), 2019 (in Polish).
Weigel, R., Bat-Enerel, B., Dulamsuren, C., Muffler, L., Weithmann, G., and Leuschner, C.: Summer drought exposure, stand structure, and soil properties jointly control the growth of European beech along a steep precipitation gradient in northern Germany, Glob. Change Biol., 29, 763–779, 2023.
WSL: Trockenheit 2018: Buchen mit frühzeitig verfärbtem Laub neigen zum Absterben in den Folgejahren, WSL, https://www.wsl.ch/de/news/trockenheit-2018-buchen-mit-fruehzeitig-verfaerbtem-laub-neigen-zum-absterben-in-den-folgejahren/ (last access: 20 November 2024), 2022.
WSL: Leichte Zunahme des Borkenkäfer-Befalls im Jahr 2022, WSL, https://www.wsl.ch/de/news/leichte-zunahme-des-borkenkaefer-befalls-im-jahr-2022/#:~:text=Ausblick,überdurchschnittlich warm und trocken bleibt (last access: 15 November 2024), 2023a.
WSL: Zwischenberichte, WSL, https://www.waldwissen.net/assets/technik/inventur/wsl_zwischenergebnisse-lfi5/Zwischenergebnisse_LFI_print.pdf#page=2 (last access: 15 November 2024), 2023b.
Winkel, G., Lovrić, M., Muys, B., Katila, P., Lundhede, T., Pecurul, M., Pettenella, D., Pipart, N., Plieninger, T., Prokofieva, I., Parra, C., Pülzl, H., Roitsch, D., Roux, J.-L., Thorsen, B. J., Tyrväinen, L., Torralba, M., Vacik, H., Weiss, G., and Wunder, S.: Governing Europe's forests for multiple ecosystem services: Opportunities, challenges, and policy options, For. Policy Econ., 145, 102849, https://doi.org/10.1016/j.forpol.2022.102849, 2022.
Zahradník, P. and Zahradníková, M.: Salvage felling in the Czech Republic`s forests during the last twenty years, Cent. Eur. For. J., 65, 12–20, 2019.
Winland-project Policy Brief VII: Kuivuus koettelee myös Suomea – Olemmeko tarpeeksi varautuneita?, ISBN 978-952-60-3774-5 (PDF), https://winlandtutkimus.fi/wp-content/uploads/2019/04/Winland-kuivuus.pdf (last access: 2 June 2022), 2019 (in Finnish).
Worlds Aid: Worlds Aid, https://www.worldsaid.com/node/1378 (last access: 15 November 2024), 2022.
Wulff, S. and Roberge, J.-M.: Forest monitoring: Synthesis of 2010–2018 results, SLU, https://pub.epsilon.slu.se/21827/1/wulff_s_et_al_210201.pdf (last access: 15 November 2024), 2020.
Yu, G. R., Zhuang, J., Nakayama, K., and Jin, Y.: Root water uptake and profile soil water as affected by vertical root distribution, Plant Ecol., 189, 15–30, 2007.
Yu, Z., Wang, J., Liu, S., Rentch, J. S., Sun, P., and Lu, C.: Global gross primary productivity and water use efficiency changes under drought stress, Environ. Res. Lett., 12, 014016, https://doi.org/10.1088/1748-9326/aa5258, 2017.
Xoplaki, E., Ellsäßer, F., Grieger, J., Nissen, K. M., Pinto, J., Augenstein, M., Chen, T.-C., Feldmann, H., Friederichs, P., Gliksman, D., Goulier, L., Haustein, K., Heinke, J., Jach, L., Knutzen, F., Kollet, S., Luterbacher, J., Luther, N., Mohr, S., Mudersbach, C., Müller, C., Rousi, E., Simon, F., Suarez-Gutierrez, L., Szemkus, S., Vallejo-Bernal, S. M., Vlachopoulos, O., and Wolf, F.: Compound events in Germany in 2018: drivers and case studies, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2023-1460, 2023.
Zas, R., Touza, R., Sampedro, L., Lario, F. J., Bustingorri, G., and Lema, M.: Variation in resin flow among Maritime pine populations: Relationship with growth potential and climatic responses, For. Ecol. Manag., 474, 118351, https://doi.org/10.1016/j.foreco.2020.118351, 2020.
Zscheischler, J., Martius, O., Westra, S., Bevacqua, E., Raymond, C., Horton, R. M., van den Hurk, B., AghaKouchak, A., Jézéquel, A., Mahecha, M. D., Maraun, D., Ramos, A. M., Ridder, N. N., Thiery, W., and Vignotto, E.: A typology of compound weather and climate events, Nat. Rev. Earth Environ., 1, 333–347, 2020.
Short summary
Our research, involving 22 European scientists, investigated drought and heat impacts on forests in 2018–2022. Findings reveal that climate extremes are intensifying, with central Europe being most severely impacted. The southern region showed resilience due to historical drought exposure, while northern and Alpine areas experienced emerging or minimal impacts. The study highlights the need for region-specific strategies, improved data collection, and sustainable practices to safeguard forests.
Our research, involving 22 European scientists, investigated drought and heat impacts on forests...
Altmetrics
Final-revised paper
Preprint