Articles | Volume 25, issue 11
https://doi.org/10.5194/nhess-25-4475-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-25-4475-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The 2022 drought needs to be a turning point for European drought risk management
Riccardo Biella
CORRESPONDING AUTHOR
Centre of Natural Hazards and Disaster Science, Uppsala, Sweden
Department of Earth Sciences, Uppsala University, Uppsala, Sweden
Anastasiya Shyrokaya
Centre of Natural Hazards and Disaster Science, Uppsala, Sweden
Department of Earth Sciences, Uppsala University, Uppsala, Sweden
Monica Ionita
Paleoclimate Dynamics Group, Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, 27570 Bremerhaven, Germany
Forest Biometrics Laboratory – Faculty of Forestry, “Ştefan cel Mare” University of Suceava, Universităţii street, no. 13, 720229, Suceava, Romania
Raffaele Vignola
Earth Systems and Global Change, Wageningen University and Research, Wageningen, the Netherlands
Samuel J. Sutanto
Earth Systems and Global Change, Wageningen University and Research, Wageningen, the Netherlands
Andrijana Todorovic
University of Belgrade, Faculty of Civil Engineering, Institute for Hydraulic and Environmental Engineering, Belgrade, Serbia
Claudia Teutschbein
Centre of Natural Hazards and Disaster Science, Uppsala, Sweden
Department of Earth Sciences, Uppsala University, Uppsala, Sweden
Daniela Cid
Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya, Spain
Hydrogeology Group (UPC-CSIC), Barcelona, Spain
Maria Carmen Llasat
Department of Applied Physics, University of Barcelona, Barcelona, Spain
IdRA, Water Research Institut, University of Barcelona, Barcelona, Spain
Pedro Alencar
Chair of Ecohydrology, Technical University of Berlin, Berlin, Germany
Alessia Matanó
Institute for Environmental Studies (IVM), Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
Elena Ridolfi
Dipartimento di Ingegneria Civile, Edile e Ambientale, Università degli Studi di Roma La Sapienza, 00184 Roma, Italy
Benedetta Moccia
Dipartimento di Ingegneria Civile, Edile e Ambientale, Università degli Studi di Roma La Sapienza, 00184 Roma, Italy
Ilias Pechlivanidis
Swedish Meteorological and Hydrological Institute, Norrköping, Sweden
Anne van Loon
Chair of Ecohydrology, Technical University of Berlin, Berlin, Germany
Doris E. Wendt
University of Bristol, Bristol, UK
Elin Stenfors
Centre of Natural Hazards and Disaster Science, Uppsala, Sweden
Department of Earth Sciences, Uppsala University, Uppsala, Sweden
Fabio Russo
Dipartimento di Ingegneria Civile, Edile e Ambientale, Università degli Studi di Roma La Sapienza, 00184 Roma, Italy
Jean-Philippe Vidal
INRAE, RiverLy, Villeurbanne, France
Lucy Barker
UK Centre for Ecology & Hydrology, Wallingford, United Kingdom
Mariana Madruga de Brito
Department of Urban and Environmental Sociology, Helmholtz Centre for Environmental Research, Leipzig, Germany
Marleen Lam
Water Resources Management (WRM), Wageningen University & Research (WUR), Wageningen, the Netherlands
Monika Bláhová
Global Change Research Institute CAS, Brno, Czech Republic
Mendel University in Brno, Brno, Czech Republic
Patricia Trambauer
Deltares, Delft, the Netherlands
Raed Hamed
Chair of Ecohydrology, Technical University of Berlin, Berlin, Germany
Scott J. McGrane
Department of Economics, Strathclyde Business School, University of Strathclyde, Glasgow, United Kingdom
Applied Physics Department, Stanford University, Stanford, California, CA, USA
Serena Ceola
Department of Civil, Chemical, Environmental and Materials Engineering, Alma Mater Studiorum Università di Bologna, Bologna, Italy
Sigrid J. Bakke
Norwegian water and energy directorate, Oslo, Norway
Svitlana Krakovska
Ukrainian Hydrometeorological Institute, Kyiv, Ukraine
National Antarctic Scientific Center, Kyiv, Ukraine
Viorica Nagavciuc
Paleoclimate Dynamics Group, Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, 27570 Bremerhaven, Germany
Forest Biometrics Laboratory – Faculty of Forestry, “Ştefan cel Mare” University of Suceava, Universităţii street, no. 13, 720229, Suceava, Romania
Faranak Tootoonchi
Department of Crop Production Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
Giuliano Di Baldassarre
Centre of Natural Hazards and Disaster Science, Uppsala, Sweden
Department of Earth Sciences, Uppsala University, Uppsala, Sweden
Sandra Hauswirth
Department of Physical Geography, Faculty of Geosciences, Utrecht University, Utrecht, the Netherlands
Shreedhar Maskey
IHE Delft Institute for Water Education, Delft, the Netherlands
Svitlana Zubkovych
Department of Earth Sciences, Uppsala University, Uppsala, Sweden
Marthe Wens
Chair of Ecohydrology, Technical University of Berlin, Berlin, Germany
Lena M. Tallaksen
Department of Geosciences, University of Oslo, Oslo, Norway
Related authors
Anne F. Van Loon, Sarra Kchouk, Alessia Matanó, Faranak Tootoonchi, Camila Alvarez-Garreton, Khalid E. A. Hassaballah, Minchao Wu, Marthe L. K. Wens, Anastasiya Shyrokaya, Elena Ridolfi, Riccardo Biella, Viorica Nagavciuc, Marlies H. Barendrecht, Ana Bastos, Louise Cavalcante, Franciska T. de Vries, Margaret Garcia, Johanna Mård, Ileen N. Streefkerk, Claudia Teutschbein, Roshanak Tootoonchi, Ruben Weesie, Valentin Aich, Juan P. Boisier, Giuliano Di Baldassarre, Yiheng Du, Mauricio Galleguillos, René Garreaud, Monica Ionita, Sina Khatami, Johanna K. L. Koehler, Charles H. Luce, Shreedhar Maskey, Heidi D. Mendoza, Moses N. Mwangi, Ilias G. Pechlivanidis, Germano G. Ribeiro Neto, Tirthankar Roy, Robert Stefanski, Patricia Trambauer, Elizabeth A. Koebele, Giulia Vico, and Micha Werner
Nat. Hazards Earth Syst. Sci., 24, 3173–3205, https://doi.org/10.5194/nhess-24-3173-2024, https://doi.org/10.5194/nhess-24-3173-2024, 2024
Short summary
Short summary
Drought is a creeping phenomenon but is often still analysed and managed like an isolated event, without taking into account what happened before and after. Here, we review the literature and analyse five cases to discuss how droughts and their impacts develop over time. We find that the responses of hydrological, ecological, and social systems can be classified into four types and that the systems interact. We provide suggestions for further research and monitoring, modelling, and management.
Riccardo Biella, Anastasiya Shyrokaya, Ilias Pechlivanidis, Daniela Cid, Maria Carmen Llasat, Marthe Wens, Marleen Lam, Elin Stenfors, Samuel Sutanto, Elena Ridolfi, Serena Ceola, Pedro Alencar, Giuliano Di Baldassarre, Monica Ionita, Mariana Madruga de Brito, Scott J. McGrane, Benedetta Moccia, Viorica Nagavciuc, Fabio Russo, Svitlana Krakovska, Andrijana Todorovic, Faranak Tootoonchi, Patricia Trambauer, Raffaele Vignola, and Claudia Teutschbein
EGUsphere, https://doi.org/10.5194/egusphere-2024-2073, https://doi.org/10.5194/egusphere-2024-2073, 2024
Short summary
Short summary
This research by the Drought in the Anthropocene (DitA) network highlights the crucial role of forecasting systems and Drought Management Plans in European drought risk management. Based on a survey of water managers during the 2022 European drought, it underscores the impact of preparedness on response and the evolution of drought management strategies across the continent. The study concludes with a plea for a European Drought Directive.
Kai Kornuber, Emanuele Bevacqua, Mariana Madruga de Brito, Wiebke S. Jäger, Pauline Rivoire, Cassandra D. W. Rogers, Fabiola Banfi, Fulden Batibeniz, James Carruthers, Carlo de Michele, Silvia de Angeli, Christina Deidda, Marleen C. de Ruiter, Andreas H. Fink, Henrique M. D. Goulart, Katharina Küpfer, Patrick Ludwig, Douglas Maraun, Gabriele Messori, Shruti Nath, Fiachra O’Loughlin, Joaquim G. Pinto, Benjamin Poschlod, Alexandre M. Ramos, Colin Raymond, Andreia F. S. Ribeiro, Deepti Singh, Laura Suarez Gutierrez, Philip J. Ward, and Christopher J. White
EGUsphere, https://doi.org/10.5194/egusphere-2025-4683, https://doi.org/10.5194/egusphere-2025-4683, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
Impacts from extreme weather events are becoming increasingly severe under global warming, in particular when events occur simultaneously or successively. While these complex event combinations are often difficult to analyse as impact data, early warning schemes or modelling frameworks might not be fit for purpose. In this perspective we reflect on the usability of compound event research to bridge the gap between academic research and real-world applications, by formulating a set of guidelines.
Bailey J. Anderson, Eduardo Muñoz-Castro, Lena M. Tallaksen, Alessia Matano, Jonas Götte, Rachael Armitage, Eugene Magee, and Manuela I. Brunner
Hydrol. Earth Syst. Sci., 29, 6069–6092, https://doi.org/10.5194/hess-29-6069-2025, https://doi.org/10.5194/hess-29-6069-2025, 2025
Short summary
Short summary
When floods happen during or shortly after droughts, the impacts of each of the events can be magnified. In hydrological research, defining these events represents a challenging and important task in the process of understanding where and why they occur. We have used real-word examples to address some of these challenges and show different approaches influence outcomes. We make suggestions on when to use which approach and outline some pitfalls of which researchers should be aware.
Shaochun Huang, Wai Kwok Wong, Andreas Dobler, Sigrid Jørgensen Bakke, Stein Beldring, Ingjerd Haddeland, Hans Olav Hygen, Tyge Løvset, Stephanie Mayer, Kjetil Melvold, Irene Brox Nilsen, Gusong Ruan, Silje Lund Sørland, and Anita Verpe Dyrrdal
EGUsphere, https://doi.org/10.5194/egusphere-2025-5331, https://doi.org/10.5194/egusphere-2025-5331, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
This paper documents the model experiment used to generate the most updated, comprehensive and detailed climate and hydrological projections for the national climate assessment report for Norway published in October 2025. The new datasets (COR-BA-2025 and distHBV-COR-BA-2025) of these projections are openly accessible and will serve as a knowledge base for climate change adaptation to decision makers at various administrative levels in Norway.
Kerstin Stahl, Kathrin Szillat, Veit Blauhut, Monika Hlavsova, Lauro Rossi, Dario Masante, and Andrea Toreti
EGUsphere, https://doi.org/10.5194/egusphere-2025-4806, https://doi.org/10.5194/egusphere-2025-4806, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
Drought impact information is important for risk assessment. But, there is little consensus on impact datamonitoring. The European Drought Impacts Database (EDID) combines several existing datasets with the results from new searches for impact information in a structured database with spatial and temporal attributes. Allowing research as well as operational use, its contents show where and when in Europe drought has affected agriculture, water supply, ecosystems, and other sectors.
Denise Ruijsch, Sandra Margrit Hauswirth, Hester Biemans, and Niko Wanders
EGUsphere, https://doi.org/10.5194/egusphere-2025-4966, https://doi.org/10.5194/egusphere-2025-4966, 2025
This preprint is open for discussion and under review for Earth System Dynamics (ESD).
Short summary
Short summary
We studied how plants respond to long droughts using model simulations and satellite data. The model reproduces drought impacts fairly well but tends to show plants recovering too quickly. Improving how the model represents plant stress and recovery will help predict how ecosystems respond to more frequent and severe droughts in the future.
Ni Li, Wim Thiery, Shorouq Zahra, Mariana Madruga de Brito, Koffi Worou, Murathan Kurfalı, Seppe Lampe, Paul Muñoz, Clare Flynn, Camila Trigoso, Joakim Nivre, Jakob Zscheischler, and Gabriele Messori
EGUsphere, https://doi.org/10.5194/egusphere-2025-4891, https://doi.org/10.5194/egusphere-2025-4891, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
Climate extremes threaten society and ecosystems. Understanding impacts is critical, despite open databases like EM-DAT and DesInventar, reliable impact data remain scattered across various text sources. Wikimpacts 1.0, using GPT4o, provides comprehensive socio-economic impact data on 2,928 events from 1034 to 2024. It offers broader storm coverage and finer spatial resolution impact data than EM-DAT, showcasing the potential of natural language processing to enhance climate impact datasets.
Anna Luisa Hemshorn de Sánchez, Wouter R. Berghuijs, Anne F. Van Loon, Dimmie Hendriks, and Ype van der Velde
EGUsphere, https://doi.org/10.5194/egusphere-2025-5139, https://doi.org/10.5194/egusphere-2025-5139, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
This study explores how mean and extreme river flows respond to annual climate variability. Maps show where river flow is more sensitive to climate in Europe. Maximum flows are generally the most sensitive and minimum flows the least sensitive to precipitation changes. Sensitivities are influenced by many factors like climate, soil, and terrain. These findings improve our understanding of how rivers respond to climate and can support water management and disaster risk reduction across Europe.
Pedro Henrique Lima Alencar, Saskia Arndt, Kei Namba, Márk Somogyvári, Frederik Bart, Fabio Brill, Juan F. Dueñas, Peter Feindt, Daniel Johnson, Nariman Mahmoodi, Christoph Merz, Subham Mukherjee, Katrin Nissen, Eva Nora Paton, Tobias Sauter, Dörthe Tetzlaff, Franziska Tügel, Thomas Vogelpohl, Stenka Valentinova Vulova, Behnam Zamani, and Hui Hui Zhang
Nat. Hazards Earth Syst. Sci., 25, 4043–4051, https://doi.org/10.5194/nhess-25-4043-2025, https://doi.org/10.5194/nhess-25-4043-2025, 2025
Short summary
Short summary
As climate change escalates, the Berlin-Brandenburg region faces new challenges. Climate change-induced extreme events are expected to cause new conflicts to emerge and aggravate existing ones. To guide future research, we co-develop a list of key questions on climate and water challenges in the region. Our findings highlight the need for new research approaches. We expect this list to provide a roadmap for actionable knowledge production to address climate and water challenges in the region.
Samuel Jonson Sutanto, Confidence Duku, Merve Gülveren, Rutger Dankers, and Spyridon Paparrizos
Nat. Hazards Earth Syst. Sci., 25, 3879–3895, https://doi.org/10.5194/nhess-25-3879-2025, https://doi.org/10.5194/nhess-25-3879-2025, 2025
Short summary
Short summary
Drought and heatwave risks in Europe will worsen due to climate change, especially when they occur together or successively. Our study shows that both events will become more frequent and severe across Europe, with even greater increases under high-emission scenarios. In Germany, drought-related economic losses may double, and heatwave deaths could rise ninefold by 2100. These findings stress the urgent need for climate action to reduce future impacts.
Jamie Hannaford, Stephen Turner, Amulya Chevuturi, Wilson Chan, Lucy J. Barker, Maliko Tanguy, Simon Parry, and Stuart Allen
Hydrol. Earth Syst. Sci., 29, 4371–4394, https://doi.org/10.5194/hess-29-4371-2025, https://doi.org/10.5194/hess-29-4371-2025, 2025
Short summary
Short summary
This extended review asks whether hydrological (river flow) droughts have become more severe over time in the UK based on literature review and original analyses. The UK is a good international exemplar, given the richness of available data. We find that there is little compelling evidence for a trend towards worsening river flow droughts, at odds with future climate change projections. We outline reasons for this discrepancy and make recommendations to guide researchers and policymakers.
Elin Stenfors, Malgorzata Blicharska, Thomas Grabs, and Claudia Teutschbein
Nat. Hazards Earth Syst. Sci., 25, 3381–3395, https://doi.org/10.5194/nhess-25-3381-2025, https://doi.org/10.5194/nhess-25-3381-2025, 2025
Short summary
Short summary
Utilizing a survey that includes respondents from seven societal sectors, the role of water dependency in drought vulnerability was explored. Differences were found in the perceived impact of vulnerability factors on drought risk in relation to water dependency (i.e., dependency on either soil moisture or groundwater and surface water). The results highlight the importance of accounting for water dependency and clearly defining the drought hazard in drought vulnerability or risk assessments.
Srinidhi Jha, Lucy J. Barker, Jamie Hannaford, and Maliko Tanguy
EGUsphere, https://doi.org/10.5194/egusphere-2025-4096, https://doi.org/10.5194/egusphere-2025-4096, 2025
Short summary
Short summary
The influence of climate change on drought in the UK has gained attention recently. However, a probabilistic assessment of temperature’s nonstationary influences on hydrological drought characteristics, which could provide key insights into future risks and uncertainties, has not been conducted. This study evaluates changes across seasons and warming scenarios, finding that rare droughts may become more severe, while frequent summer droughts are shorter but more intense.
Guillaume Evin, Benoit Hingray, Guillaume Thirel, Agnès Ducharne, Laurent Strohmenger, Lola Corre, Yves Tramblay, Jean-Philippe Vidal, Jérémie Bonneau, François Colleoni, Joël Gailhard, Florence Habets, Frédéric Hendrickx, Louis Héraut, Peng Huang, Matthieu Le Lay, Claire Magand, Paola Marson, Céline Monteil, Simon Munier, Alix Reverdy, Jean-Michel Soubeyroux, Yoann Robin, Jean-Pierre Vergnes, Mathieu Vrac, and Eric Sauquet
EGUsphere, https://doi.org/10.5194/egusphere-2025-2727, https://doi.org/10.5194/egusphere-2025-2727, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
Explore2 provides hydrological projections for 1,735 French catchments. Using QUALYPSO, this study assesses uncertainties, including internal variability. By the end of the century, low flows are projected to decline in southern France under high emissions, while other indicators remain uncertain. Emission scenarios and regional climate models are key uncertainty sources. Internal variability is often as large as climate-driven changes.
Elin Stenfors, Malgorzata Blicharska, Thomas Grabs, and Claudia Teutschbein
Hydrol. Earth Syst. Sci., 29, 3809–3832, https://doi.org/10.5194/hess-29-3809-2025, https://doi.org/10.5194/hess-29-3809-2025, 2025
Short summary
Short summary
Through a survey involving six water-dependent sectors, the relevance and impact of drought vulnerability factors for sectors and societies in forested cold climates were studied. Results show that the relevance and impact of vulnerability factors differ across sectors and how governance processes and policies are important for drought risk. Results offer unique insights into the dynamics of drought vulnerability that are valuable for risk assessment, drought plans, and increasing resilience.
Claudia Teutschbein, Thomas Grabs, Markus Giese, Andrijana Todorović, and Roland Barthel
Nat. Hazards Earth Syst. Sci., 25, 2541–2564, https://doi.org/10.5194/nhess-25-2541-2025, https://doi.org/10.5194/nhess-25-2541-2025, 2025
Short summary
Short summary
This study is an exploration of how droughts develop and spread in high-latitude regions, focusing on the unique conditions found in areas like Scandinavia. It reveals that droughts affect soil, rivers, and groundwater differently, depending on such factors as land cover, water availability, and soil properties. The findings highlight the importance of tailored water management strategies to protect resources and ecosystems in these regions, especially as climate change continues to affect weather patterns.
Alessandro Gagliardi, Norel Rimbu, Gerrit Lohmann, and Monica Ionita
EGUsphere, https://doi.org/10.5194/egusphere-2025-3071, https://doi.org/10.5194/egusphere-2025-3071, 2025
Short summary
Short summary
This study shows that stable oxygen isotope ratios from Greenland ice cores can help identify extreme winter events in Europe. In years with a lack of the heavier oxygen isotope, we found changes in the atmospheric circulation over Europe. These changes bring warmer, wetter conditions to the Norwegian coast and colder, drier conditions to southern Europe. The pattern appears in both recent and past data, staying stable over the last 400 years.
Jan Sodoge, Taís Maria Nunes Carvalho, and Mariana Madruga de Brito
Geosci. Commun., 8, 191–196, https://doi.org/10.5194/gc-8-191-2025, https://doi.org/10.5194/gc-8-191-2025, 2025
Short summary
Short summary
Thousands of geoscience abstracts are presented at the European Geosciences Union (EGU) General Assembly, but researchers often miss key insights by focusing on their own field. Using natural language processing (NLP), we help scientists find relevant research across disciplines. This approach breaks down boundaries, encouraging broader knowledge sharing and new interdisciplinary connections in the geosciences.
Yanchen Zheng, Gemma Coxon, Mostaquimur Rahman, Ross Woods, Saskia Salwey, Youtong Rong, and Doris E. Wendt
Geosci. Model Dev., 18, 4247–4271, https://doi.org/10.5194/gmd-18-4247-2025, https://doi.org/10.5194/gmd-18-4247-2025, 2025
Short summary
Short summary
Groundwater is vital for people and ecosystems, but most physical models lack the representation of surface–groundwater interactions, leading to inaccurate streamflow predictions in groundwater-rich areas. This study presents DECIPHeR-GW v1, which links surface and groundwater systems to improve predictions of streamflow and groundwater levels. Tested across England and Wales, DECIPHeR-GW shows high accuracy, especially in southeast England, making it a valuable tool for large-scale water management.
Burak Bulut, Eugene Magee, Rachael Armitage, Opeyemi E. Adedipe, Maliko Tanguy, Lucy J. Barker, and Jamie Hannaford
EGUsphere, https://doi.org/10.5194/egusphere-2025-3176, https://doi.org/10.5194/egusphere-2025-3176, 2025
Short summary
Short summary
This study developed a generic machine learning model to forecast drought impacts, with the UK as the main focus. The same model was successfully validated in Germany, showing potential for use in other regions. It captured local patterns of past drought impacts, matching observed events. Using weather and soil data, the model supports early warning and drought risk management. Results are promising, though testing in more climates and conditions would strengthen confidence.
Alessia Matanó, Raed Hamed, Manuela I. Brunner, Marlies H. Barendrecht, and Anne F. Van Loon
Hydrol. Earth Syst. Sci., 29, 2749–2764, https://doi.org/10.5194/hess-29-2749-2025, https://doi.org/10.5194/hess-29-2749-2025, 2025
Short summary
Short summary
Persistent droughts change how rivers respond to rainfall. Our study of over 5000 catchments worldwide found that hydrological and soil moisture droughts decrease river-flow response to rain, especially in arid regions, while vegetation decline slightly increases it. Snow-covered areas are more resilient due to stored water buffering changes. Droughts can also cause long-lasting changes, with short and intense droughts reducing river response to rainfall and prolonged droughts increasing it.
Louise Cavalcante, David W. Walker, Sarra Kchouk, Germano Ribeiro Neto, Taís Maria Nunes Carvalho, Mariana Madruga de Brito, Wieke Pot, Art Dewulf, and Pieter R. van Oel
Nat. Hazards Earth Syst. Sci., 25, 1993–2005, https://doi.org/10.5194/nhess-25-1993-2025, https://doi.org/10.5194/nhess-25-1993-2025, 2025
Short summary
Short summary
Drought affects not only water availability but also agriculture, the economy, and communities. This study explores how public policies help reduce these impacts in Ceará, Northeast Brazil. Using qualitative drought monitoring data, interviews, and policy analysis, we found that policies supporting local economies help lessen drought effects. However, most reported impacts are still related to water shortages, showing the need for broader strategies beyond water supply investment.
Faranak Tootoonchi, Göran Bergkvist, and Giulia Vico
EGUsphere, https://doi.org/10.5194/egusphere-2025-1982, https://doi.org/10.5194/egusphere-2025-1982, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
In Northern Europe, current temperatures limit the time available for soil preparation and crop growth. Warming may extend the growing season and improve growing conditions, but higher temperatures also increase evapotranspiration and raises the risk of water stress. We evaluated the role of various climatic conditions on crop yield fluctuations in Sweden over 1965–2020 and found that unless Sweden receives more rain in the growing season, crop yields will likely decrease with warming climates.
Eric Sauquet, Guillaume Evin, Sonia Siauve, Ryma Aissat, Patrick Arnaud, Maud Bérel, Jérémie Bonneau, Flora Branger, Yvan Caballero, François Colléoni, Agnès Ducharne, Joël Gailhard, Florence Habets, Frédéric Hendrickx, Louis Héraut, Benoît Hingray, Peng Huang, Tristan Jaouen, Alexis Jeantet, Sandra Lanini, Matthieu Le Lay, Claire Magand, Louise Mimeau, Céline Monteil, Simon Munier, Charles Perrin, Olivier Robelin, Fabienne Rousset, Jean-Michel Soubeyroux, Laurent Strohmenger, Guillaume Thirel, Flore Tocquer, Yves Tramblay, Jean-Pierre Vergnes, and Jean-Philippe Vidal
EGUsphere, https://doi.org/10.5194/egusphere-2025-1788, https://doi.org/10.5194/egusphere-2025-1788, 2025
Short summary
Short summary
The Explore2 project has provided an unprecedented set of hydrological projections in terms of the number of hydrological models used and the spatial and temporal resolution. The results have been made available through various media. Under the high-emission scenario, the hydrological models mostly agree on the decrease in seasonal flows in the south of France, confirming its hotspot status, and on the decrease in summer flows throughout France, with the exception of the northern part of France.
Claudia Canedo Rosso, Lars Nyberg, and Ilias Pechlivanidis
EGUsphere, https://doi.org/10.5194/egusphere-2025-1843, https://doi.org/10.5194/egusphere-2025-1843, 2025
Short summary
Short summary
Severe droughts have increasingly affected water supply, farming, and forestry in Sweden. This study explored how drought risks have changed over time and across regions using meteorological and hydrological data. Results showed that droughts are becoming more frequent in central and south-eastern Sweden, while northern areas are getting wetter. These insights can support early warnings and help guide decisions on drought preparedness and climate adaptation.
Doris Elise Wendt, Gemma Coxon, Saskia Salwey, and Francesca Pianosi
EGUsphere, https://doi.org/10.5194/egusphere-2025-1645, https://doi.org/10.5194/egusphere-2025-1645, 2025
Short summary
Short summary
Groundwater is a highly-used water source, which drought management is complicated. We introduce a socio-hydrological water resource model (SHOWER) to aid drought management in groundwater-rich managed environments. Results show which and when drought management interventions influence surface water and groundwater storage, with integrated interventions having most effect on reducing droughts. This encourages further exploration to reduce water shortages and improve future drought resilience.
Astrid Vatne, Norbert Pirk, Kolbjørn Engeland, Ane Victoria Vollsnes, and Lena Merete Tallaksen
EGUsphere, https://doi.org/10.5194/egusphere-2025-1140, https://doi.org/10.5194/egusphere-2025-1140, 2025
Short summary
Short summary
Measurements of evaporation are important to understand how evaporation modifies the water balance of northern ecosystems. However, evaporation data in these regions are scarce. We explored a new dataset of evaporation measurements from four wetland sites in Norway and found that up to 30 % of the annual precipitation evaporate back to the atmosphere. Our results indicate that earlier snow melt-out and drier air can increase annual evaporation in the region.
Louise Mimeau, Annika Künne, Alexandre Devers, Flora Branger, Sven Kralisch, Claire Lauvernet, Jean-Philippe Vidal, Núria Bonada, Zoltán Csabai, Heikki Mykrä, Petr Pařil, Luka Polović, and Thibault Datry
Hydrol. Earth Syst. Sci., 29, 1615–1636, https://doi.org/10.5194/hess-29-1615-2025, https://doi.org/10.5194/hess-29-1615-2025, 2025
Short summary
Short summary
Our study projects how climate change will affect the drying of river segments and stream networks in Europe, using advanced modelling techniques to assess changes in six river networks across diverse ecoregions. We found that drying events will become more frequent and intense and will start earlier or last longer, potentially turning some river sections from perennial to intermittent. The results are valuable for river ecologists for evaluating the ecological health of river ecosystem.
Dilli Paudel, Michiel Kallenberg, Stella Ofori-Ampofo, Hilmy Baja, Ron van Bree, Aike Potze, Pratishtha Poudel, Abdelrahman Saleh, Weston Anderson, Malte von Bloh, Andres Castellano, Oumnia Ennaji, Raed Hamed, Rahel Laudien, Donghoon Lee, Inti Luna, Michele Meroni, Janet Mumo Mutuku, Siyabusa Mkuhlani, Jonathan Richetti, Alex C. Ruane, Ritvik Sahajpal, Guanyuan Shai, Vasileios Sitokonstantinou, Rogério de Souza Nóia Júnior, Amit Kumar Srivastava, Robert Strong, Lily-belle Sweet, Petar Vojnovic, and Ioannis N. Athanasiadis
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-83, https://doi.org/10.5194/essd-2025-83, 2025
Revised manuscript under review for ESSD
Short summary
Short summary
Improving crop yield predictions is crucial for food security. Prior research relied on case studies, making it hard to compare methods & track progress. We introduce CY-Bench, a global dataset for forecasting maize and wheat yields across diverse farming systems in over 25 countries. It includes standardized weather, soil, and satellite data, curated by a diverse set of experts. CY-Bench supports the development of better forecasting tools to help decision-makers plan for global food security.
Julius Schlumberger, Tristian Stolte, Helena Margaret Garcia, Antonia Sebastian, Wiebke Jäger, Philip Ward, Marleen de Ruiter, Robert Šakić Trogrlić, Annegien Tijssen, and Mariana Madruga de Brito
EGUsphere, https://doi.org/10.5194/egusphere-2025-850, https://doi.org/10.5194/egusphere-2025-850, 2025
Short summary
Short summary
The risk flood of flood impacts is dynamic as society continuously responds to specific events or ongoing developments. We analyzed 28 studies that assess such dynamics of vulnerability. Most research uses surveys and basic statistics data, while integrated, flexible models are seldom used. The studies struggle to link specific events or developments to the observed changes. Our findings highlight needs and possible directions towards a better assessment of vulnerability dynamics.
Hossein Maazallahi, Foteini Stavropoulou, Samuel Jonson Sutanto, Michael Steiner, Dominik Brunner, Mariano Mertens, Patrick Jöckel, Antoon Visschedijk, Hugo Denier van der Gon, Stijn Dellaert, Nataly Velandia Salinas, Stefan Schwietzke, Daniel Zavala-Araiza, Sorin Ghemulet, Alexandru Pana, Magdalena Ardelean, Marius Corbu, Andreea Calcan, Stephen A. Conley, Mackenzie L. Smith, and Thomas Röckmann
Atmos. Chem. Phys., 25, 1497–1511, https://doi.org/10.5194/acp-25-1497-2025, https://doi.org/10.5194/acp-25-1497-2025, 2025
Short summary
Short summary
This article presents insights from airborne in situ measurements collected during the ROmanian Methane Emissions from Oil and gas (ROMEO) campaign supported by two models. Results reveal Romania's oil and gas methane emissions were significantly under-reported to the United Nations Framework Convention on Climate Change (UNFCCC) in 2019. A large underestimation was also found in the Emissions Database for Global Atmospheric Research (EDGAR) v7.0 for the study domain in the same year.
Viorica Nagavciuc, Gerhard Helle, Maria Rădoane, Cătălin-Constantin Roibu, Mihai-Gabriel Cotos, and Monica Ionita
Biogeosciences, 22, 55–69, https://doi.org/10.5194/bg-22-55-2025, https://doi.org/10.5194/bg-22-55-2025, 2025
Short summary
Short summary
We reconstructed drought conditions for the past 200 years for central and eastern parts of Europe (Romania) using δ18O in oak tree ring cellulose from Romania, revealing periods of both extreme wetness (e.g., 1905–1915) and dryness (e.g., 1818–1835). The most severe droughts occurred in the 19th and 21st centuries, likely linked to large-scale atmospheric circulation. This research highlights the potential of tree rings to improve our understanding of long-term climate variability in Europe.
Monica Ionita, Petru Vaideanu, Bogdan Antonescu, Catalin Roibu, Qiyun Ma, and Viorica Nagavciuc
Nat. Hazards Earth Syst. Sci., 24, 4683–4706, https://doi.org/10.5194/nhess-24-4683-2024, https://doi.org/10.5194/nhess-24-4683-2024, 2024
Short summary
Short summary
Eastern Europe's heat wave history is explored from 1885 to 2023, with a focus on pre-1960 events. The study reveals two periods with more frequent and intense heat waves (HWs): 1920s–1960s and 1980s–present. The research highlights the importance of a long-term perspective, revealing that extreme heat events have occurred throughout the entire study period, and it emphasizes the combined influence of climate change and natural variations on increasing HW severity.
Fabio Brill, Pedro Henrique Lima Alencar, Huihui Zhang, Friedrich Boeing, Silke Hüttel, and Tobia Lakes
Nat. Hazards Earth Syst. Sci., 24, 4237–4265, https://doi.org/10.5194/nhess-24-4237-2024, https://doi.org/10.5194/nhess-24-4237-2024, 2024
Short summary
Short summary
Droughts are a threat to agricultural crops, but different factors influence how much damage occurs. This is important to know to create meaningful risk maps and to evaluate adaptation options. We investigate the years 2013–2022 in Brandenburg, Germany, and find in particular the soil quality and meteorological drought in June to be statistically related to the observed damage. Measurement of crop health from satellites is also related to soil quality and not necessarily to anomalous yields.
Samuel Jonson Sutanto, Matthijs Janssen, Mariana Madruga de Brito, and Maria del Pozo Garcia
Nat. Hazards Earth Syst. Sci., 24, 3703–3721, https://doi.org/10.5194/nhess-24-3703-2024, https://doi.org/10.5194/nhess-24-3703-2024, 2024
Short summary
Short summary
A conventional flood risk assessment only evaluates flood hazard in isolation without considering wildfires. This study, therefore, evaluates the effect of wildfires on flood risk, considering both current and future conditions for the Ebro River basin in Spain. Results show that extreme climate change increases the risk of flooding, especially when considering the effect of wildfires, highlighting the importance of adopting a multi-hazard risk management approach.
María Carmen Llasat, Montserrat Llasat-Botija, Erika Pardo, Raül Marcos-Matamoros, and Marc Lemus-Canovas
Nat. Hazards Earth Syst. Sci., 24, 3423–3443, https://doi.org/10.5194/nhess-24-3423-2024, https://doi.org/10.5194/nhess-24-3423-2024, 2024
Short summary
Short summary
This paper shows the first public and systematic dataset of flood episodes referring to the entire Pyrenees massif, at municipal scale, named PIRAGUA_flood. Of the 181 flood events (1981–2015) that produced 154 fatalities, 36 were transnational, with the eastern part of the massif most affected. Dominant weather types show a southern component flow, with a talweg on the Iberian Peninsula and a depression in the vicinity. A positive and significant trend was found in Nouvelle-Aquitaine.
Ileen N. Streefkerk, Jeroen C. J. H. Aerts, Jens de Bruijn, Khalid Hassaballah, Rhoda Odongo, Teun Schrieks, Oliver Wasonga, and Anne F. Van Loon
EGUsphere, https://doi.org/10.5194/egusphere-2024-2382, https://doi.org/10.5194/egusphere-2024-2382, 2024
Short summary
Short summary
In East Africa are conflict over water and vegetation prominent. On top of that, water abstraction of commercial farms are increasing the competition of water. Therefore, this study has developed a model which can investigate what the influence is of these farming activities on the water balance of the region and people's livelihood activities in times of dry periods. We do that by ‘replacing’ the farms in the model, and see what the effect would be if there were communities or forests instead.
Anne F. Van Loon, Sarra Kchouk, Alessia Matanó, Faranak Tootoonchi, Camila Alvarez-Garreton, Khalid E. A. Hassaballah, Minchao Wu, Marthe L. K. Wens, Anastasiya Shyrokaya, Elena Ridolfi, Riccardo Biella, Viorica Nagavciuc, Marlies H. Barendrecht, Ana Bastos, Louise Cavalcante, Franciska T. de Vries, Margaret Garcia, Johanna Mård, Ileen N. Streefkerk, Claudia Teutschbein, Roshanak Tootoonchi, Ruben Weesie, Valentin Aich, Juan P. Boisier, Giuliano Di Baldassarre, Yiheng Du, Mauricio Galleguillos, René Garreaud, Monica Ionita, Sina Khatami, Johanna K. L. Koehler, Charles H. Luce, Shreedhar Maskey, Heidi D. Mendoza, Moses N. Mwangi, Ilias G. Pechlivanidis, Germano G. Ribeiro Neto, Tirthankar Roy, Robert Stefanski, Patricia Trambauer, Elizabeth A. Koebele, Giulia Vico, and Micha Werner
Nat. Hazards Earth Syst. Sci., 24, 3173–3205, https://doi.org/10.5194/nhess-24-3173-2024, https://doi.org/10.5194/nhess-24-3173-2024, 2024
Short summary
Short summary
Drought is a creeping phenomenon but is often still analysed and managed like an isolated event, without taking into account what happened before and after. Here, we review the literature and analyse five cases to discuss how droughts and their impacts develop over time. We find that the responses of hydrological, ecological, and social systems can be classified into four types and that the systems interact. We provide suggestions for further research and monitoring, modelling, and management.
Riccardo Biella, Anastasiya Shyrokaya, Ilias Pechlivanidis, Daniela Cid, Maria Carmen Llasat, Marthe Wens, Marleen Lam, Elin Stenfors, Samuel Sutanto, Elena Ridolfi, Serena Ceola, Pedro Alencar, Giuliano Di Baldassarre, Monica Ionita, Mariana Madruga de Brito, Scott J. McGrane, Benedetta Moccia, Viorica Nagavciuc, Fabio Russo, Svitlana Krakovska, Andrijana Todorovic, Faranak Tootoonchi, Patricia Trambauer, Raffaele Vignola, and Claudia Teutschbein
EGUsphere, https://doi.org/10.5194/egusphere-2024-2073, https://doi.org/10.5194/egusphere-2024-2073, 2024
Short summary
Short summary
This research by the Drought in the Anthropocene (DitA) network highlights the crucial role of forecasting systems and Drought Management Plans in European drought risk management. Based on a survey of water managers during the 2022 European drought, it underscores the impact of preparedness on response and the evolution of drought management strategies across the continent. The study concludes with a plea for a European Drought Directive.
Alexandre Devers, Jean-Philippe Vidal, Claire Lauvernet, Olivier Vannier, and Laurie Caillouet
Hydrol. Earth Syst. Sci., 28, 3457–3474, https://doi.org/10.5194/hess-28-3457-2024, https://doi.org/10.5194/hess-28-3457-2024, 2024
Short summary
Short summary
Daily streamflow series for 661 near-natural French catchments are reconstructed over 1871–2012 using two ensemble datasets: HydRE and HydREM. They include uncertainties coming from climate forcings, streamflow measurement, and hydrological model error (for HydrREM). Comparisons with other hydrological reconstructions and independent/dependent observations show the added value of the two reconstructions in terms of quality, uncertainty estimation, and representation of extremes.
Arnau Amengual, Romu Romero, María Carmen Llasat, Alejandro Hermoso, and Montserrat Llasat-Botija
Nat. Hazards Earth Syst. Sci., 24, 2215–2242, https://doi.org/10.5194/nhess-24-2215-2024, https://doi.org/10.5194/nhess-24-2215-2024, 2024
Short summary
Short summary
On 22 October 2019, the Francolí River basin experienced a heavy precipitation event, resulting in a catastrophic flash flood. Few studies comprehensively address both the physical and human dimensions and their interrelations during extreme flash flooding. This research takes a step forward towards filling this gap in knowledge by examining the alignment among all these factors.
Barry van Jaarsveld, Sandra M. Hauswirth, and Niko Wanders
Hydrol. Earth Syst. Sci., 28, 2357–2374, https://doi.org/10.5194/hess-28-2357-2024, https://doi.org/10.5194/hess-28-2357-2024, 2024
Short summary
Short summary
Drought often manifests itself in vegetation; however, obtaining high-resolution remote-sensing products that are spatially and temporally consistent is difficult. In this study, we show that machine learning (ML) can fill data gaps in existing products. We also demonstrate that ML can be used as a downscaling tool. By relying on ML for gap filling and downscaling, we can obtain a more holistic view of the impacts of drought on vegetation.
Jan Sodoge, Christian Kuhlicke, Miguel D. Mahecha, and Mariana Madruga de Brito
Nat. Hazards Earth Syst. Sci., 24, 1757–1777, https://doi.org/10.5194/nhess-24-1757-2024, https://doi.org/10.5194/nhess-24-1757-2024, 2024
Short summary
Short summary
We delved into the socio-economic impacts of the 2018–2022 drought in Germany. We derived a dataset covering the impacts of droughts in Germany between 2000 and 2022 on sectors such as agriculture and forestry based on newspaper articles. Notably, our study illustrated that the longer drought had a wider reach and more varied effects. We show that dealing with longer droughts requires different plans compared to shorter ones, and it is crucial to be ready for the challenges they bring.
Mugni Hadi Hariadi, Gerard van der Schrier, Gert-Jan Steeneveld, Samuel J. Sutanto, Edwin Sutanudjaja, Dian Nur Ratri, Ardhasena Sopaheluwakan, and Albert Klein Tank
Hydrol. Earth Syst. Sci., 28, 1935–1956, https://doi.org/10.5194/hess-28-1935-2024, https://doi.org/10.5194/hess-28-1935-2024, 2024
Short summary
Short summary
We utilize the high-resolution CMIP6 for extreme rainfall and streamflow projection over Southeast Asia. This region will experience an increase in both dry and wet extremes in the near future. We found a more extreme low flow and high flow, along with an increasing probability of low-flow and high-flow events. We reveal that the changes in low-flow events and their probabilities are not only influenced by extremely dry climates but also by the catchment characteristics.
Chandni Thakur, Kasiapillai Sudalaimuthu Kasiviswanathan, Claudia Teutschbein, Bankaru-Swamy Soundharajan, M M Diwan Mohaideen, and Venkatesh Budamala
Proc. IAHS, 385, 203–209, https://doi.org/10.5194/piahs-385-203-2024, https://doi.org/10.5194/piahs-385-203-2024, 2024
Short summary
Short summary
This study focuses on advancing the current understanding of the impacts of the El Niño events on the hydrology of the Godavari River Basin (GRB). Variable Infiltration Capacity (VIC) hydrological model was employed to assess the hydrological changes and found a negative correlation of average precipitation, abstractions, and soil moisture with increasing magnitude of El Niño events for the period 1980–2008.
Viorica Nagavciuc, Simon L. L. Michel, Daniel F. Balting, Gerhard Helle, Mandy Freund, Gerhard H. Schleser, David N. Steger, Gerrit Lohmann, and Monica Ionita
Clim. Past, 20, 573–595, https://doi.org/10.5194/cp-20-573-2024, https://doi.org/10.5194/cp-20-573-2024, 2024
Short summary
Short summary
The main aim of this paper is to present the summer vapor pressure deficit (VPD) reconstruction dataset for the last 400 years over Europe based on δ18O records by using a random forest approach. We provide both a spatial and a temporal long-term perspective on the past summer VPD and new insights into the relationship between summer VPD and large-scale atmospheric circulation. This is the first gridded reconstruction of the European summer VPD over the past 400 years.
Louise Mimeau, Annika Künne, Flora Branger, Sven Kralisch, Alexandre Devers, and Jean-Philippe Vidal
Hydrol. Earth Syst. Sci., 28, 851–871, https://doi.org/10.5194/hess-28-851-2024, https://doi.org/10.5194/hess-28-851-2024, 2024
Short summary
Short summary
Modelling flow intermittence is essential for predicting the future evolution of drying in river networks and better understanding the ecological and socio-economic impacts. However, modelling flow intermittence is challenging, and observed data on temporary rivers are scarce. This study presents a new modelling approach for predicting flow intermittence in river networks and shows that combining different sources of observed data reduces the model uncertainty.
Laurent Strohmenger, Eric Sauquet, Claire Bernard, Jérémie Bonneau, Flora Branger, Amélie Bresson, Pierre Brigode, Rémy Buzier, Olivier Delaigue, Alexandre Devers, Guillaume Evin, Maïté Fournier, Shu-Chen Hsu, Sandra Lanini, Alban de Lavenne, Thibault Lemaitre-Basset, Claire Magand, Guilherme Mendoza Guimarães, Max Mentha, Simon Munier, Charles Perrin, Tristan Podechard, Léo Rouchy, Malak Sadki, Myriam Soutif-Bellenger, François Tilmant, Yves Tramblay, Anne-Lise Véron, Jean-Philippe Vidal, and Guillaume Thirel
Hydrol. Earth Syst. Sci., 27, 3375–3391, https://doi.org/10.5194/hess-27-3375-2023, https://doi.org/10.5194/hess-27-3375-2023, 2023
Short summary
Short summary
We present the results of a large visual inspection campaign of 674 streamflow time series in France. The objective was to detect non-natural records resulting from instrument failure or anthropogenic influences, such as hydroelectric power generation or reservoir management. We conclude that the identification of flaws in flow time series is highly dependent on the objectives and skills of individual evaluators, and we raise the need for better practices for data cleaning.
Marleen R. Lam, Alessia Matanó, Anne F. Van Loon, Rhoda A. Odongo, Aklilu D. Teklesadik, Charles N. Wamucii, Marc J. C. van den Homberg, Shamton Waruru, and Adriaan J. Teuling
Nat. Hazards Earth Syst. Sci., 23, 2915–2936, https://doi.org/10.5194/nhess-23-2915-2023, https://doi.org/10.5194/nhess-23-2915-2023, 2023
Short summary
Short summary
There is still no full understanding of the relation between drought impacts and drought indices in the Horn of Africa where water scarcity and arid regions are also present. This study assesses their relation in Kenya. A random forest model reveals that each region, aggregated by aridity, has its own set of predictors for every impact category. Water scarcity was not found to be related to aridity. Understanding these relations contributes to the development of drought early warning systems.
Di Cai, Gerrit Lohmann, Xianyao Chen, and Monica Ionita
EGUsphere, https://doi.org/10.5194/egusphere-2023-1646, https://doi.org/10.5194/egusphere-2023-1646, 2023
Preprint archived
Short summary
Short summary
Our study reveals how a decline in autumn sea ice in the Barents-Kara Seas leads to severe winters in Europe. Using observational data, we illustrate that Arctic sea ice loss isn't just a local issue – it impacts harsh winter conditions globally. Current climate models struggle to reflect these effects accurately, indicating a need for more research. Gaining a more nuanced understanding of this relationship will enhance our climate predictions and preparation for future extremes.
Hanieh Seyedhashemi, Florentina Moatar, Jean-Philippe Vidal, and Dominique Thiéry
Earth Syst. Sci. Data, 15, 2827–2839, https://doi.org/10.5194/essd-15-2827-2023, https://doi.org/10.5194/essd-15-2827-2023, 2023
Short summary
Short summary
This paper presents a past and future dataset of daily time series of discharge and stream temperature for 52 278 reaches over the Loire River basin (100 000 km2) in France, using thermal and hydrological models. Past data are provided over 1963–2019. Future data are available over the 1976–2100 period under different future climate change models (warm and wet, intermediate, and hot and dry) and scenarios (optimistic, intermediate, and pessimistic).
Maliko Tanguy, Michael Eastman, Eugene Magee, Lucy J. Barker, Thomas Chitson, Chaiwat Ekkawatpanit, Daniel Goodwin, Jamie Hannaford, Ian Holman, Liwa Pardthaisong, Simon Parry, Dolores Rey Vicario, and Supattra Visessri
Nat. Hazards Earth Syst. Sci., 23, 2419–2441, https://doi.org/10.5194/nhess-23-2419-2023, https://doi.org/10.5194/nhess-23-2419-2023, 2023
Short summary
Short summary
Droughts in Thailand are becoming more severe due to climate change. Understanding the link between drought impacts on the ground and drought indicators used in drought monitoring systems can help increase a country's preparedness and resilience to drought. With a focus on agricultural droughts, we derive crop- and region-specific indicator-to-impact links that can form the basis of targeted mitigation actions and an improved drought monitoring and early warning system in Thailand.
Rhoda A. Odongo, Hans De Moel, and Anne F. Van Loon
Nat. Hazards Earth Syst. Sci., 23, 2365–2386, https://doi.org/10.5194/nhess-23-2365-2023, https://doi.org/10.5194/nhess-23-2365-2023, 2023
Short summary
Short summary
We characterize meteorological (P), soil moisture (SM) and hydrological (Q) droughts and the propagation from one to the other for 318 catchments in the Horn of Africa. We find that propagation from P to SM is influenced by soil properties and vegetation, while propagation from P to Q is from catchment-scale hydrogeological properties (i.e. geology, slope). We provide precipitation accumulation periods at the subbasin level that can be used as a proxy in drought forecasting in dryland regions.
Norbert Pirk, Kristoffer Aalstad, Yeliz A. Yilmaz, Astrid Vatne, Andrea L. Popp, Peter Horvath, Anders Bryn, Ane Victoria Vollsnes, Sebastian Westermann, Terje Koren Berntsen, Frode Stordal, and Lena Merete Tallaksen
Biogeosciences, 20, 2031–2047, https://doi.org/10.5194/bg-20-2031-2023, https://doi.org/10.5194/bg-20-2031-2023, 2023
Short summary
Short summary
We measured the land–atmosphere exchange of CO2 and water vapor in alpine Norway over 3 years. The extremely snow-rich conditions in 2020 reduced the total annual evapotranspiration to 50 % and reduced the growing-season carbon assimilation to turn the ecosystem from a moderate annual carbon sink to an even stronger source. Our analysis suggests that snow cover anomalies are driving the most consequential short-term responses in this ecosystem’s functioning.
Heidi Kreibich, Kai Schröter, Giuliano Di Baldassarre, Anne F. Van Loon, Maurizio Mazzoleni, Guta Wakbulcho Abeshu, Svetlana Agafonova, Amir AghaKouchak, Hafzullah Aksoy, Camila Alvarez-Garreton, Blanca Aznar, Laila Balkhi, Marlies H. Barendrecht, Sylvain Biancamaria, Liduin Bos-Burgering, Chris Bradley, Yus Budiyono, Wouter Buytaert, Lucinda Capewell, Hayley Carlson, Yonca Cavus, Anaïs Couasnon, Gemma Coxon, Ioannis Daliakopoulos, Marleen C. de Ruiter, Claire Delus, Mathilde Erfurt, Giuseppe Esposito, Didier François, Frédéric Frappart, Jim Freer, Natalia Frolova, Animesh K. Gain, Manolis Grillakis, Jordi Oriol Grima, Diego A. Guzmán, Laurie S. Huning, Monica Ionita, Maxim Kharlamov, Dao Nguyen Khoi, Natalie Kieboom, Maria Kireeva, Aristeidis Koutroulis, Waldo Lavado-Casimiro, Hong-Yi Li, Maria Carmen LLasat, David Macdonald, Johanna Mård, Hannah Mathew-Richards, Andrew McKenzie, Alfonso Mejia, Eduardo Mario Mendiondo, Marjolein Mens, Shifteh Mobini, Guilherme Samprogna Mohor, Viorica Nagavciuc, Thanh Ngo-Duc, Huynh Thi Thao Nguyen, Pham Thi Thao Nhi, Olga Petrucci, Nguyen Hong Quan, Pere Quintana-Seguí, Saman Razavi, Elena Ridolfi, Jannik Riegel, Md Shibly Sadik, Nivedita Sairam, Elisa Savelli, Alexey Sazonov, Sanjib Sharma, Johanna Sörensen, Felipe Augusto Arguello Souza, Kerstin Stahl, Max Steinhausen, Michael Stoelzle, Wiwiana Szalińska, Qiuhong Tang, Fuqiang Tian, Tamara Tokarczyk, Carolina Tovar, Thi Van Thu Tran, Marjolein H. J. van Huijgevoort, Michelle T. H. van Vliet, Sergiy Vorogushyn, Thorsten Wagener, Yueling Wang, Doris E. Wendt, Elliot Wickham, Long Yang, Mauricio Zambrano-Bigiarini, and Philip J. Ward
Earth Syst. Sci. Data, 15, 2009–2023, https://doi.org/10.5194/essd-15-2009-2023, https://doi.org/10.5194/essd-15-2009-2023, 2023
Short summary
Short summary
As the adverse impacts of hydrological extremes increase in many regions of the world, a better understanding of the drivers of changes in risk and impacts is essential for effective flood and drought risk management. We present a dataset containing data of paired events, i.e. two floods or two droughts that occurred in the same area. The dataset enables comparative analyses and allows detailed context-specific assessments. Additionally, it supports the testing of socio-hydrological models.
Colin Manning, Martin Widmann, Douglas Maraun, Anne F. Van Loon, and Emanuele Bevacqua
Weather Clim. Dynam., 4, 309–329, https://doi.org/10.5194/wcd-4-309-2023, https://doi.org/10.5194/wcd-4-309-2023, 2023
Short summary
Short summary
Climate models differ in their representation of dry spells and high temperatures, linked to errors in the simulation of persistent large-scale anticyclones. Models that simulate more persistent anticyclones simulate longer and hotter dry spells, and vice versa. This information is important to consider when assessing the likelihood of such events in current and future climate simulations so that we can assess the plausibility of their future projections.
Alexandre Devers, Jean-Philippe Vidal, Claire Lauvernet, Olivier Vannier, and Laurie Caillouet
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-78, https://doi.org/10.5194/hess-2023-78, 2023
Publication in HESS not foreseen
Short summary
Short summary
The recent development of the a new meteorological dataset providing precipitation and temperature over France – FYRE Climate – has been transformed to streamflow time series over 1871–2012 through the used of a hydrological model. This led to the creation of the daily hydrological reconstructions called HyDRE and HyDRE. These two reconstructions are evaluated allow to better understand the variability of past hydrology over France.
Raed Hamed, Sem Vijverberg, Anne F. Van Loon, Jeroen Aerts, and Dim Coumou
Earth Syst. Dynam., 14, 255–272, https://doi.org/10.5194/esd-14-255-2023, https://doi.org/10.5194/esd-14-255-2023, 2023
Short summary
Short summary
Spatially compounding soy harvest failures can have important global impacts. Using causal networks, we show that soy yields are predominately driven by summer soil moisture conditions in North and South America. Summer soil moisture is affected by antecedent soil moisture and by remote extra-tropical SST patterns in both hemispheres. Both of these soil moisture drivers are again influenced by ENSO. Our results highlight physical pathways by which ENSO can drive spatially compounding impacts.
Sandra M. Hauswirth, Marc F. P. Bierkens, Vincent Beijk, and Niko Wanders
Hydrol. Earth Syst. Sci., 27, 501–517, https://doi.org/10.5194/hess-27-501-2023, https://doi.org/10.5194/hess-27-501-2023, 2023
Short summary
Short summary
Forecasts on water availability are important for water managers. We test a hybrid framework based on machine learning models and global input data for generating seasonal forecasts. Our evaluation shows that our discharge and surface water level predictions are able to create reliable forecasts up to 2 months ahead. We show that a hybrid framework, developed for local purposes and combined and rerun with global data, can create valuable information similar to large-scale forecasting models.
Sigrid Jørgensen Bakke, Niko Wanders, Karin van der Wiel, and Lena Merete Tallaksen
Nat. Hazards Earth Syst. Sci., 23, 65–89, https://doi.org/10.5194/nhess-23-65-2023, https://doi.org/10.5194/nhess-23-65-2023, 2023
Short summary
Short summary
In this study, we developed a machine learning model to identify dominant controls of wildfire in Fennoscandia and produce monthly fire danger probability maps. The dominant control was shallow-soil water anomaly, followed by air temperature and deep soil water. The model proved skilful with a similar performance as the existing Canadian Forest Fire Weather Index (FWI). We highlight the benefit of using data-driven models jointly with other fire models to improve fire monitoring and prediction.
Norbert Pirk, Kristoffer Aalstad, Sebastian Westermann, Astrid Vatne, Alouette van Hove, Lena Merete Tallaksen, Massimo Cassiani, and Gabriel Katul
Atmos. Meas. Tech., 15, 7293–7314, https://doi.org/10.5194/amt-15-7293-2022, https://doi.org/10.5194/amt-15-7293-2022, 2022
Short summary
Short summary
In this study, we show how sparse and noisy drone measurements can be combined with an ensemble of turbulence-resolving wind simulations to estimate uncertainty-aware surface energy exchange. We demonstrate the feasibility of this drone data assimilation framework in a series of synthetic and real-world experiments. This new framework can, in future, be applied to estimate energy and gas exchange in heterogeneous landscapes more representatively than conventional methods.
Mykhailo Savenets, Larysa Pysarenko, Svitlana Krakovska, Alexander Mahura, and Tuukka Petäjä
Atmos. Chem. Phys., 22, 15777–15791, https://doi.org/10.5194/acp-22-15777-2022, https://doi.org/10.5194/acp-22-15777-2022, 2022
Short summary
Short summary
The paper explores the spatio-temporal variability of black carbon during a wildfire in August 2010, with a focus on Ukraine. As a research tool, the seamless Enviro-HIRLAM modelling system is used for investigating the atmospheric transport of aerosol particles emitted by wildfires from remote and local sources. The results of this study improve our understanding of the physical and chemical processes and the interactions of aerosols in the atmosphere.
Eva Sebok, Hans Jørgen Henriksen, Ernesto Pastén-Zapata, Peter Berg, Guillaume Thirel, Anthony Lemoine, Andrea Lira-Loarca, Christiana Photiadou, Rafael Pimentel, Paul Royer-Gaspard, Erik Kjellström, Jens Hesselbjerg Christensen, Jean Philippe Vidal, Philippe Lucas-Picher, Markus G. Donat, Giovanni Besio, María José Polo, Simon Stisen, Yvan Caballero, Ilias G. Pechlivanidis, Lars Troldborg, and Jens Christian Refsgaard
Hydrol. Earth Syst. Sci., 26, 5605–5625, https://doi.org/10.5194/hess-26-5605-2022, https://doi.org/10.5194/hess-26-5605-2022, 2022
Short summary
Short summary
Hydrological models projecting the impact of changing climate carry a lot of uncertainty. Thus, these models usually have a multitude of simulations using different future climate data. This study used the subjective opinion of experts to assess which climate and hydrological models are the most likely to correctly predict climate impacts, thereby easing the computational burden. The experts could select more likely hydrological models, while the climate models were deemed equally probable.
Jaime Gaona, Pere Quintana-Seguí, María José Escorihuela, Aaron Boone, and María Carmen Llasat
Nat. Hazards Earth Syst. Sci., 22, 3461–3485, https://doi.org/10.5194/nhess-22-3461-2022, https://doi.org/10.5194/nhess-22-3461-2022, 2022
Short summary
Short summary
Droughts represent a particularly complex natural hazard and require explorations of their multiple causes. Part of the complexity has roots in the interaction between the continuous changes in and deviation from normal conditions of the atmosphere and the land surface. The exchange between the atmospheric and surface conditions defines feedback towards dry or wet conditions. In semi-arid environments, energy seems to exceed water in its impact over the evolution of conditions, favoring drought.
Samuel Rufat, Mariana Madruga de Brito, Alexander Fekete, Emeline Comby, Peter J. Robinson, Iuliana Armaş, W. J. Wouter Botzen, and Christian Kuhlicke
Nat. Hazards Earth Syst. Sci., 22, 2655–2672, https://doi.org/10.5194/nhess-22-2655-2022, https://doi.org/10.5194/nhess-22-2655-2022, 2022
Short summary
Short summary
It remains unclear why people fail to act adaptively to reduce future losses, even when there is ever-richer information available. To improve the ability of researchers to build cumulative knowledge, we conducted an international survey – the Risk Perception and Behaviour Survey of Surveyors (Risk-SoS). We find that most studies are exploratory and often overlook theoretical efforts that would enable the accumulation of evidence. We offer several recommendations for future studies.
N. Hempelmann, C. Ehbrecht, E. Plesiat, G. Hobona, J. Simoes, D. Huard, T. J. Smith, U. S. McKnight, I. G. Pechlivanidis, and C. Alvarez-Castro
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-4-W1-2022, 187–194, https://doi.org/10.5194/isprs-archives-XLVIII-4-W1-2022-187-2022, https://doi.org/10.5194/isprs-archives-XLVIII-4-W1-2022-187-2022, 2022
Vitali Diaz, Ahmed A. A. Osman, Gerald A. Corzo Perez, Henny A. J. Van Lanen, Shreedhar Maskey, and Dimitri Solomatine
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-252, https://doi.org/10.5194/hess-2022-252, 2022
Preprint withdrawn
Short summary
Short summary
Drought impacts on crops can be assessed in terms of crop yield (CY) variation. The hypothesis is that the spatiotemporal change of drought area is a good input to predict CY. A step-by-step approach for predicting CY is built based on two types of machine learning models. Drought area was found suitable for predicting CY. Since it is currently possible to calculate drought areas within drought monitoring systems, the prediction of drought impacts can be integrated directly into them.
Veit Blauhut, Michael Stoelzle, Lauri Ahopelto, Manuela I. Brunner, Claudia Teutschbein, Doris E. Wendt, Vytautas Akstinas, Sigrid J. Bakke, Lucy J. Barker, Lenka Bartošová, Agrita Briede, Carmelo Cammalleri, Ksenija Cindrić Kalin, Lucia De Stefano, Miriam Fendeková, David C. Finger, Marijke Huysmans, Mirjana Ivanov, Jaak Jaagus, Jiří Jakubínský, Svitlana Krakovska, Gregor Laaha, Monika Lakatos, Kiril Manevski, Mathias Neumann Andersen, Nina Nikolova, Marzena Osuch, Pieter van Oel, Kalina Radeva, Renata J. Romanowicz, Elena Toth, Mirek Trnka, Marko Urošev, Julia Urquijo Reguera, Eric Sauquet, Aleksandra Stevkov, Lena M. Tallaksen, Iryna Trofimova, Anne F. Van Loon, Michelle T. H. van Vliet, Jean-Philippe Vidal, Niko Wanders, Micha Werner, Patrick Willems, and Nenad Živković
Nat. Hazards Earth Syst. Sci., 22, 2201–2217, https://doi.org/10.5194/nhess-22-2201-2022, https://doi.org/10.5194/nhess-22-2201-2022, 2022
Short summary
Short summary
Recent drought events caused enormous damage in Europe. We therefore questioned the existence and effect of current drought management strategies on the actual impacts and how drought is perceived by relevant stakeholders. Over 700 participants from 28 European countries provided insights into drought hazard and impact perception and current management strategies. The study concludes with an urgent need to collectively combat drought risk via a European macro-level drought governance approach.
Hanieh Seyedhashemi, Jean-Philippe Vidal, Jacob S. Diamond, Dominique Thiéry, Céline Monteil, Frédéric Hendrickx, Anthony Maire, and Florentina Moatar
Hydrol. Earth Syst. Sci., 26, 2583–2603, https://doi.org/10.5194/hess-26-2583-2022, https://doi.org/10.5194/hess-26-2583-2022, 2022
Short summary
Short summary
Stream temperature appears to be increasing globally, but its rate remains poorly constrained due to a paucity of long-term data. Using a thermal model, this study provides a large-scale understanding of the evolution of stream temperature over a long period (1963–2019). This research highlights that air temperature and streamflow can exert joint influence on stream temperature trends, and riparian shading in small mountainous streams may mitigate warming in stream temperatures.
Franciele Maria Vanelli, Masato Kobiyama, and Mariana Madruga de Brito
Hydrol. Earth Syst. Sci., 26, 2301–2317, https://doi.org/10.5194/hess-26-2301-2022, https://doi.org/10.5194/hess-26-2301-2022, 2022
Short summary
Short summary
We conducted a systematic literature review of socio-hydrological studies applied to natural hazards and disaster research. Results indicate that there is a wide range of understanding of what
socialmeans in socio-hydrology, and monodisciplinary studies prevail. We expect to encourage socio-hydrologists to investigate different disasters using a more integrative approach that combines natural and social sciences tools by involving stakeholders and broadening the use of mixed methods.
Philip J. Ward, James Daniell, Melanie Duncan, Anna Dunne, Cédric Hananel, Stefan Hochrainer-Stigler, Annegien Tijssen, Silvia Torresan, Roxana Ciurean, Joel C. Gill, Jana Sillmann, Anaïs Couasnon, Elco Koks, Noemi Padrón-Fumero, Sharon Tatman, Marianne Tronstad Lund, Adewole Adesiyun, Jeroen C. J. H. Aerts, Alexander Alabaster, Bernard Bulder, Carlos Campillo Torres, Andrea Critto, Raúl Hernández-Martín, Marta Machado, Jaroslav Mysiak, Rene Orth, Irene Palomino Antolín, Eva-Cristina Petrescu, Markus Reichstein, Timothy Tiggeloven, Anne F. Van Loon, Hung Vuong Pham, and Marleen C. de Ruiter
Nat. Hazards Earth Syst. Sci., 22, 1487–1497, https://doi.org/10.5194/nhess-22-1487-2022, https://doi.org/10.5194/nhess-22-1487-2022, 2022
Short summary
Short summary
The majority of natural-hazard risk research focuses on single hazards (a flood, a drought, a volcanic eruption, an earthquake, etc.). In the international research and policy community it is recognised that risk management could benefit from a more systemic approach. In this perspective paper, we argue for an approach that addresses multi-hazard, multi-risk management through the lens of sustainability challenges that cut across sectors, regions, and hazards.
Viorica Nagavciuc, Patrick Scholz, and Monica Ionita
Nat. Hazards Earth Syst. Sci., 22, 1347–1369, https://doi.org/10.5194/nhess-22-1347-2022, https://doi.org/10.5194/nhess-22-1347-2022, 2022
Short summary
Short summary
Here we have assessed the variability and trends of hot and dry summers in Romania. The length, spatial extent, and frequency of heat waves in Romania have increased significantly over the last 70 years, while no significant changes have been observed in the drought conditions. The increased frequency of heat waves, especially after the 1990s, could be partially explained by an increase in the geopotential height over the eastern part of Europe.
Marthe L. K. Wens, Anne F. van Loon, Ted I. E. Veldkamp, and Jeroen C. J. H. Aerts
Nat. Hazards Earth Syst. Sci., 22, 1201–1232, https://doi.org/10.5194/nhess-22-1201-2022, https://doi.org/10.5194/nhess-22-1201-2022, 2022
Short summary
Short summary
In this paper, we present an application of the empirically calibrated drought risk adaptation model ADOPT for the case of smallholder farmers in the Kenyan drylands. ADOPT is used to evaluate the effect of various top-down drought risk reduction interventions (extension services, early warning systems, ex ante cash transfers, and low credit rates) on individual and community drought risk (adaptation levels, food insecurity, poverty, emergency aid) under different climate change scenarios.
Animesh K. Gain, Yves Bühler, Pascal Haegeli, Daniela Molinari, Mario Parise, David J. Peres, Joaquim G. Pinto, Kai Schröter, Ricardo M. Trigo, María Carmen Llasat, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 22, 985–993, https://doi.org/10.5194/nhess-22-985-2022, https://doi.org/10.5194/nhess-22-985-2022, 2022
Short summary
Short summary
To mark the 20th anniversary of Natural Hazards and Earth System Sciences (NHESS), an interdisciplinary and international journal dedicated to the public discussion and open-access publication of high-quality studies and original research on natural hazards and their consequences, we highlight 11 key publications covering major subject areas of NHESS that stood out within the past 20 years.
Daniel Balting, Simon Michel, Viorica Nagavciuc, Gerhard Helle, Mandy Freund, Gerhard H. Schleser, David Steger, Gerrit Lohmann, and Monica Ionita
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-47, https://doi.org/10.5194/essd-2022-47, 2022
Preprint withdrawn
Short summary
Short summary
Vapor pressure deficit is a key component of vegetation dynamics, soil science, meteorology, and soil science. In this study, we reconstruct the variability of the vapor pressure deficit in the past and examine the changes in future scenarios using climate models. In this way, past, present and future changes of the vapor pressure deficit can be detected locally, regionally, and continentally with higher statistical significance.
Ruud T. W. L. Hurkmans, Bart van den Hurk, Maurice J. Schmeits, Fredrik Wetterhall, and Ilias G. Pechlivanidis
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-604, https://doi.org/10.5194/hess-2021-604, 2022
Manuscript not accepted for further review
Short summary
Short summary
Seasonal forecasts can help in safely and efficiently managing a fresh water reservoir in the Netherlands. We compare hydrological forecast systems of the river Rhine, the lakes most important source and analyze forecast skill for over 1993–2016 and for specific extreme years. On average, forecast skill is high in spring due to Alpine snow and smaller in summer. Dry summers appear to be more predictable, skill increases with event extremity. In those cases, seasonal forecasts are valuable tools.
Raed Hamed, Anne F. Van Loon, Jeroen Aerts, and Dim Coumou
Earth Syst. Dynam., 12, 1371–1391, https://doi.org/10.5194/esd-12-1371-2021, https://doi.org/10.5194/esd-12-1371-2021, 2021
Short summary
Short summary
Soy yields in the US are affected by climate variability. We identify the main within-season climate drivers and highlight potential compound events and associated agricultural impacts. Our results show that soy yields are most negatively influenced by the combination of high temperature and low soil moisture during the summer crop reproductive period. Furthermore, we highlight the role of temperature and moisture coupling across the year in generating these hot–dry extremes and linked impacts.
Vitali Diaz, Ahmed A. A. Osman, Gerald A. Corzo Perez, Henny A. J. Van Lanen, Shreedhar Maskey, and Dimitri Solomatine
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-600, https://doi.org/10.5194/hess-2021-600, 2021
Preprint withdrawn
Short summary
Short summary
Drought effects on crops are usually evaluated through crop yield (CY). The hypothesis is that the drought spatial extent is a good input to predict CY. A machine learning approach to predict crop yield is introduced. The use of drought area was found suitable. Since it is currently possible to calculate drought areas within drought monitoring systems, the direct application to predict drought effects can be integrated into them by following approaches such as the one presented or similar.
Giuliano Di Baldassarre, Elena Mondino, Maria Rusca, Emanuele Del Giudice, Johanna Mård, Elena Ridolfi, Anna Scolobig, and Elena Raffetti
Nat. Hazards Earth Syst. Sci., 21, 3439–3447, https://doi.org/10.5194/nhess-21-3439-2021, https://doi.org/10.5194/nhess-21-3439-2021, 2021
Short summary
Short summary
COVID-19 has affected humankind in an unprecedented way, and it has changed how people perceive multiple risks. In this paper, we compare public risk perceptions in Italy and Sweden in two different phases of the pandemic. We found that people are more worried about risks related to recently experienced events. This finding is in line with the availability heuristic: individuals assess the risk associated with a given hazard based on how easily it comes to their mind.
Manuel Fossa, Bastien Dieppois, Nicolas Massei, Matthieu Fournier, Benoit Laignel, and Jean-Philippe Vidal
Hydrol. Earth Syst. Sci., 25, 5683–5702, https://doi.org/10.5194/hess-25-5683-2021, https://doi.org/10.5194/hess-25-5683-2021, 2021
Short summary
Short summary
Hydro-climate observations (such as precipitation, temperature, and river discharge time series) reveal very complex behavior inherited from complex interactions among the physical processes that drive hydro-climate viability. This study shows how even small perturbations of a physical process can have large consequences on some others. Those interactions vary spatially, thus showing the importance of both temporal and spatial dimensions in better understanding hydro-climate variability.
Petru Cosmin Vaideanu, Mihai Dima, Monica Ionita, and Mirela Voiculescu
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2021-75, https://doi.org/10.5194/esd-2021-75, 2021
Revised manuscript not accepted
Short summary
Short summary
Observing clouds and their properties is not straightforward, however, these are important for reducing climate models uncertainties. Ground-based observations are spatially limited while satellite data are accompanied by various artefacts. In this paper, we use corrected observational and state-of-the-art reanalysis cloud data to show that the recent evolution of total cloud cover on a global scale is linked to the Eastern Pacific and the Central Pacific El Niño–Southern Oscillation.
Doris E. Wendt, John P. Bloomfield, Anne F. Van Loon, Margaret Garcia, Benedikt Heudorfer, Joshua Larsen, and David M. Hannah
Nat. Hazards Earth Syst. Sci., 21, 3113–3139, https://doi.org/10.5194/nhess-21-3113-2021, https://doi.org/10.5194/nhess-21-3113-2021, 2021
Short summary
Short summary
Managing water demand and supply during droughts is complex, as highly pressured human–water systems can overuse water sources to maintain water supply. We evaluated the impact of drought policies on water resources using a socio-hydrological model. For a range of hydrogeological conditions, we found that integrated drought policies reduce baseflow and groundwater droughts most if extra surface water is imported, reducing the pressure on water resources during droughts.
Sara Lindersson, Luigia Brandimarte, Johanna Mård, and Giuliano Di Baldassarre
Nat. Hazards Earth Syst. Sci., 21, 2921–2948, https://doi.org/10.5194/nhess-21-2921-2021, https://doi.org/10.5194/nhess-21-2921-2021, 2021
Short summary
Short summary
Riverine flood risk assessments require the identification of areas prone to potential flooding. We find that (topography-based) hydrogeomorphic floodplain maps can in many cases be useful for riverine flood risk assessments, particularly where hydrologic data are scarce. For 26 countries across the global south, we also demonstrate how dataset choice influences the estimated number of people living within flood-prone zones.
Alexandre Devers, Jean-Philippe Vidal, Claire Lauvernet, and Olivier Vannier
Clim. Past, 17, 1857–1879, https://doi.org/10.5194/cp-17-1857-2021, https://doi.org/10.5194/cp-17-1857-2021, 2021
Short summary
Short summary
This article presents FYRE Climate, a dataset providing daily precipitation and temperature spanning the 1871–2012 period at 8 km resolution over France. FYRE Climate has been obtained through the combination of daily and yearly observations and a gridded reconstruction already available through a statistical technique called data assimilation. Results highlight the quality of FYRE Climate in terms of both long-term variations and reproduction of extreme events.
Elena Mondino, Anna Scolobig, Marco Borga, and Giuliano Di Baldassarre
Nat. Hazards Earth Syst. Sci., 21, 2811–2828, https://doi.org/10.5194/nhess-21-2811-2021, https://doi.org/10.5194/nhess-21-2811-2021, 2021
Short summary
Short summary
Survey data collected over time can provide new insights on how different people respond to floods and can be used in models to study the complex coevolution of human–water systems. We present two methods to collect such data, and we compare the respective results. Risk awareness decreases only for women, while preparedness takes different trajectories depending on the damage suffered. These results support a more diverse representation of society in flood risk modelling and risk management.
Samuel J. Sutanto and Henny A. J. Van Lanen
Hydrol. Earth Syst. Sci., 25, 3991–4023, https://doi.org/10.5194/hess-25-3991-2021, https://doi.org/10.5194/hess-25-3991-2021, 2021
Short summary
Short summary
This paper provides a comprehensive overview of the differences within streamflow droughts derived using different identification approaches, namely the variable threshold, fixed threshold, and the Standardized Streamflow Index, including an analysis of both historical drought and implications for forecasting. Our results clearly show that streamflow droughts derived from different approaches deviate from each other in terms of drought occurrence, timing, duration, and deficit volume.
Pedro Henrique Lima Alencar, Eva Nora Paton, and José Carlos de Araújo
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-278, https://doi.org/10.5194/hess-2021-278, 2021
Manuscript not accepted for further review
Short summary
Short summary
Knowing how long and how fast it rained on a particular day is not often an easy (or cheap) task. It requires equipment and constant monitoring. It can be even harder if you live in an isolated area or if the day you are interested in is so much in the past that such pieces of equipment were not even in the market. In this paper, we propose a new way to assess such information and also show how it can help to model sediment transport and siltation in watersheds.
Marc Sanuy, Tomeu Rigo, José A. Jiménez, and M. Carmen Llasat
Hydrol. Earth Syst. Sci., 25, 3759–3781, https://doi.org/10.5194/hess-25-3759-2021, https://doi.org/10.5194/hess-25-3759-2021, 2021
Short summary
Short summary
This paper is a preliminary study to characterize events of simultaneous heavy rainfall and damaging waves at the regional scale (~600 km of coastline) in the NW Mediterranean. The atmospheric pressure conditions of such events are also classified into three main weather types, which are characterized in terms of severity of the forcing and probability of co-occurrence of simultaneous hazardous waves and rain. The study also presents some historical cases that are compared with obtained results.
Marit Van Tiel, Anne F. Van Loon, Jan Seibert, and Kerstin Stahl
Hydrol. Earth Syst. Sci., 25, 3245–3265, https://doi.org/10.5194/hess-25-3245-2021, https://doi.org/10.5194/hess-25-3245-2021, 2021
Short summary
Short summary
Glaciers can buffer streamflow during dry and warm periods, but under which circumstances can melt compensate precipitation deficits? Streamflow responses to warm and dry events were analyzed using
long-term observations of 50 glacierized catchments in Norway, Canada, and the European Alps. Region, timing of the event, relative glacier cover, and antecedent event conditions all affect the level of compensation during these events. This implies that glaciers do not compensate straightforwardly.
Monica Ionita and Viorica Nagavciuc
Nat. Hazards Earth Syst. Sci., 21, 1685–1701, https://doi.org/10.5194/nhess-21-1685-2021, https://doi.org/10.5194/nhess-21-1685-2021, 2021
Short summary
Short summary
By analyzing the joint frequency of compound events (e.g., high temperatures and droughts), we show that the potential evapotranspiration and mean air temperature are becoming essential components for drought occurrence over Central Europe and the Mediterranean region. This, together with the projected increase in potential evapotranspiration under a warming climate, has significant implications concerning the future occurrence of drought events over these regions.
Aurel Perşoiu, Nenad Buzjak, Alexandru Onaca, Christos Pennos, Yorgos Sotiriadis, Monica Ionita, Stavros Zachariadis, Michael Styllas, Jure Kosutnik, Alexandru Hegyi, and Valerija Butorac
The Cryosphere, 15, 2383–2399, https://doi.org/10.5194/tc-15-2383-2021, https://doi.org/10.5194/tc-15-2383-2021, 2021
Short summary
Short summary
Extreme precipitation events in summer 2019 led to catastrophic loss of cave and surface ice in SE Europe at levels unprecedented during the last century. The projected continuous warming and increase in precipitation extremes could pose an additional threat to glaciers in southern Europe, resulting in a potentially ice-free SE Europe by the middle of the next decade (2035 CE).
Luana Lavagnoli Moreira, Mariana Madruga de Brito, and Masato Kobiyama
Nat. Hazards Earth Syst. Sci., 21, 1513–1530, https://doi.org/10.5194/nhess-21-1513-2021, https://doi.org/10.5194/nhess-21-1513-2021, 2021
Short summary
Short summary
The review of flood vulnerability indices revealed that (1) temporal dynamic aspects were often disregarded, (2) coping and adaptive capacity indicators were frequently ignored, as obtaining these data demand time and effort, and (3) most studies neither applied sensitivity (90.5 %) or uncertainty analyses (96.8 %) nor validated the results (86.3 %). The study highlights the importance of addressing these gaps to produce scientifically rigorous and comparable research.
Daniel F. Balting, Monica Ionita, Martin Wegmann, Gerhard Helle, Gerhard H. Schleser, Norel Rimbu, Mandy B. Freund, Ingo Heinrich, Diana Caldarescu, and Gerrit Lohmann
Clim. Past, 17, 1005–1023, https://doi.org/10.5194/cp-17-1005-2021, https://doi.org/10.5194/cp-17-1005-2021, 2021
Short summary
Short summary
To extend climate information back in time, we investigate the climate sensitivity of a δ18O network from tree rings, consisting of 26 European sites and covering the last 400 years. Our results suggest that the δ18O variability is associated with large-scale anomaly patterns that resemble those observed for the El Niño–Southern Oscillation. We conclude that the investigation of large-scale climate signals far beyond instrumental records can be done with a δ18O network derived from tree rings.
Marc Girons Lopez, Louise Crochemore, and Ilias G. Pechlivanidis
Hydrol. Earth Syst. Sci., 25, 1189–1209, https://doi.org/10.5194/hess-25-1189-2021, https://doi.org/10.5194/hess-25-1189-2021, 2021
Short summary
Short summary
The Swedish hydrological warning service is extending its use of seasonal forecasts, which requires an analysis of the available methods. We evaluate the simple ESP method and find out how and why forecasts vary in time and space. We find that forecasts are useful up to 3 months into the future, especially during winter and in northern Sweden. They tend to be good in slow-reacting catchments and bad in flashy and highly regulated ones. We finally link them with areas of similar behaviour.
Peter Horvath, Hui Tang, Rune Halvorsen, Frode Stordal, Lena Merete Tallaksen, Terje Koren Berntsen, and Anders Bryn
Biogeosciences, 18, 95–112, https://doi.org/10.5194/bg-18-95-2021, https://doi.org/10.5194/bg-18-95-2021, 2021
Short summary
Short summary
We evaluated the performance of three methods for representing vegetation cover. Remote sensing provided the best match to a reference dataset, closely followed by distribution modelling (DM), whereas the dynamic global vegetation model (DGVM) in CLM4.5BGCDV deviated strongly from the reference. Sensitivity tests show that use of threshold values for predictors identified by DM may improve DGVM performance. The results highlight the potential of using DM in the development of DGVMs.
Anne F. Van Loon, Imogen Lester-Moseley, Melanie Rohse, Phil Jones, and Rosie Day
Geosci. Commun., 3, 453–474, https://doi.org/10.5194/gc-3-453-2020, https://doi.org/10.5194/gc-3-453-2020, 2020
Short summary
Short summary
The Global South is vulnerable to natural hazards like floods and droughts, but creativity could support community preparedness. We mapped 267 papers that use a variety of art forms. They aim to raise the public's awareness or instigate adaptation by participants. In our pilot in South Africa, community members developed stories about preparing for future drought. This led to an imagination of future events, conversations about adaptation, intergenerational exchange, and increased awareness.
Matteo Giuliani, Louise Crochemore, Ilias Pechlivanidis, and Andrea Castelletti
Hydrol. Earth Syst. Sci., 24, 5891–5902, https://doi.org/10.5194/hess-24-5891-2020, https://doi.org/10.5194/hess-24-5891-2020, 2020
Short summary
Short summary
This paper aims at quantifying the value of hydroclimatic forecasts in terms of potential economic benefit to end users in the Lake Como basin (Italy), which allows the inference of a relation between gains in forecast skill and gains in end user profit. We also explore the sensitivity of this benefit to both the forecast system setup and end user behavioral factors, showing that the estimated forecast value is potentially undermined by different levels of end user risk aversion.
Carmen-Andreea Bădăluţă, Aurel Perșoiu, Monica Ionita, and Natalia Piotrowska
Clim. Past, 16, 2445–2458, https://doi.org/10.5194/cp-16-2445-2020, https://doi.org/10.5194/cp-16-2445-2020, 2020
Short summary
Short summary
We present a reconstruction of summer temperature for the last millennium in east-central Europe that shows little summer temperature differences between the Medieval Warm Period and the Little Ice Age on centennial scales as well as the fact that well-expressed minima and maxima occurred synchronously with periods of low and high solar activity, respectively. Furthermore, summer temperatures fluctuated with a periodicity similar to that of the Atlantic Multidecadal Oscillation.
Sigrid J. Bakke, Monica Ionita, and Lena M. Tallaksen
Hydrol. Earth Syst. Sci., 24, 5621–5653, https://doi.org/10.5194/hess-24-5621-2020, https://doi.org/10.5194/hess-24-5621-2020, 2020
Short summary
Short summary
This study provides an in-depth analysis of the 2018 northern European drought. Large parts of the region experienced 60-year record-breaking temperatures, linked to high-pressure systems and warm surrounding seas. Meteorological drought developed from May and, depending on local conditions, led to extreme low flows and groundwater drought in the following months. The 2018 event was unique in that it affected most of Fennoscandia as compared to previous droughts.
Maialen Iturbide, José M. Gutiérrez, Lincoln M. Alves, Joaquín Bedia, Ruth Cerezo-Mota, Ezequiel Cimadevilla, Antonio S. Cofiño, Alejandro Di Luca, Sergio Henrique Faria, Irina V. Gorodetskaya, Mathias Hauser, Sixto Herrera, Kevin Hennessy, Helene T. Hewitt, Richard G. Jones, Svitlana Krakovska, Rodrigo Manzanas, Daniel Martínez-Castro, Gemma T. Narisma, Intan S. Nurhati, Izidine Pinto, Sonia I. Seneviratne, Bart van den Hurk, and Carolina S. Vera
Earth Syst. Sci. Data, 12, 2959–2970, https://doi.org/10.5194/essd-12-2959-2020, https://doi.org/10.5194/essd-12-2959-2020, 2020
Short summary
Short summary
We present an update of the IPCC WGI reference regions used in AR5 for the synthesis of climate change information. This revision was guided by the basic principles of climatic consistency and model representativeness (in particular for the new CMIP6 simulations). We also present a new dataset of monthly CMIP5 and CMIP6 spatially aggregated information using the new reference regions and describe a worked example of how to use this dataset to inform regional climate change studies.
Cited articles
Avanzi, F., Munerol, F., Milelli, M., Gabellani, S., Massari, C., Girotto, M., Cremonese, E., Galvagno, M., Bruno, G., Morra di Cella, U., Rossi, L., Altamura, M., and Ferraris, L.: Winter snow deficit was a harbinger of summer 2022 socio-hydrologic drought in the Po Basin, Italy, Communications Earth and Environment, 5, 1–12, https://doi.org/10.1038/s43247-024-01222-z, 2024.
Bakke, S. J., Ionita, M., and Tallaksen, L. M.: The 2018 northern European hydrological drought and its drivers in a historical perspective, Hydrol. Earth Syst. Sci., 24, 5621–5653, https://doi.org/10.5194/hess-24-5621-2020, 2020.
Bakke, S. J., Ionita, M., and Tallaksen, L. M.: Recent European drying and its link to prevailing large-scale atmospheric patterns, Scientific Reports, 13, 1–13, https://doi.org/10.1038/s41598-023-48861-4, 2023.
Barendrecht, M. H., Matanó, A., Mendoza, H., Weesie, R., Rohse, M., Koehler, J., de Ruiter, M., Garcia, M., Mazzoleni, M., Aerts, J. C. J. H., Ward, P. J., Di Baldassarre, G., Day, R., and Van Loon, A. F.: Exploring drought-to-flood interactions and dynamics: A global case review, Wiley Interdisciplinary Reviews: Water, https://doi.org/10.1002/WAT2.1726, 2024.
Bartholomeus, R. P., van der Wiel, K., Van Loon, A. F., van Huijgevoort, M. H. J., van Vliet, M. T. H., Mens, M., Muurling-van Geffen, S., Wanders, N., and Pot, W.: Managing water across the flood-drought spectrum – experiences from and challenges for the Netherlands, Cambridge Prisms: Water, 1, 1–22, https://doi.org/10.1017/WAT.2023.4, 2023.
Bastos, A., Ciais, P., Friedlingstein, P., Sitch, S., Pongratz, J., Fan, L., Wigneron, J. P., Weber, U., Reichstein, M., Fu, Z., Anthoni, P., Arneth, A., Haverd, V., Jain, A. K., Joetzjer, E., Knauer, J., Lienert, S., Loughran, T., McGuire, P. C., and Zaehle, S.: Direct and seasonal legacy effects of the 2018 heat wave and drought on European ecosystem productivity, Science Advances, 6, eaba2724, https://doi.org/10.1126/sciadv.aba2724, 2020.
Biella, R., Mazzoleni, M., Brandimarte, L., and Di Baldassarre, G.: Thinking systemically about climate services: Using archetypes to reveal maladaptation, Climate Services, 34, 100490, https://doi.org/10.1016/J.CLISER.2024.100490, 2024.
Biella, R., Shyrokaya, A., Pechlivanidis, I., Cid, D., Llasat, M. C., Wens, M., Lam, M., Stenfors, E., Sutanto, S., Ridolfi, E., Ceola, S., Alencar, P., Di Baldassarre, G., Ionita, M., de Brito, M. M., McGrane, S. J., Moccia, B., Nagavciuc, V., Russo, F., Krakovska, S., Todorovic, A., Tootoonchi, F., Trambauer, P., Vignola, R., and Teutschbein, C.: The 2022 Drought Shows the Importance of Preparedness in European Drought Risk Management, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2024-2073, 2024.
Blauhut, V., Stoelzle, M., Ahopelto, L., Brunner, M. I., Teutschbein, C., Wendt, D. E., Akstinas, V., Bakke, S. J., Barker, L. J., Bartošová, L., Briede, A., Cammalleri, C., Kalin, K. C., De Stefano, L., Fendeková, M., Finger, D. C., Huysmans, M., Ivanov, M., Jaagus, J., Jakubínský, J., Krakovska, S., Laaha, G., Lakatos, M., Manevski, K., Neumann Andersen, M., Nikolova, N., Osuch, M., van Oel, P., Radeva, K., Romanowicz, R. J., Toth, E., Trnka, M., Urošev, M., Urquijo Reguera, J., Sauquet, E., Stevkov, A., Tallaksen, L. M., Trofimova, I., Van Loon, A. F., van Vliet, M. T. H., Vidal, J.-P., Wanders, N., Werner, M., Willems, P., and Živković, N.: Lessons from the 2018–2019 European droughts: a collective need for unifying drought risk management, Nat. Hazards Earth Syst. Sci., 22, 2201–2217, https://doi.org/10.5194/nhess-22-2201-2022, 2022.
Bokal, S., Grobicki, A., Kindler, J., and Thalmeinerova, D.: From national to regional plans – the Integrated Drought Management Programme of the Global Water Partnership for Central and Eastern Europe, Weather and Climate Extremes, 3, 37–46, https://doi.org/10.1016/j.wace.2014.03.006, 2014.
Bonaldo, D., Bellafiore, D., Ferrarin, C., Ferretti, R., Ricchi, A., Sangelantoni, L., and Vitelletti, M. L.: The summer 2022 drought: a taste of future climate for the Po valley (Italy)?, Regional Environmental Change, 23, 1–6, https://doi.org/10.1007/s10113-022-02004-z, 2023.
Bordalo, P., Gennaioli, N., and Shleifer, A.: Memory, Attention, and Choice, The Quarterly Journal of Economics, 135, 1399–1442, https://doi.org/10.1093/QJE/QJAA007, 2020.
Caloiero, T., Veltri, S., Caloiero, P., and Frustaci, F.: Drought Analysis in Europe and in the Mediterranean Basin Using the Standardized Precipitation Index, Water 2018, 10, 1043, https://doi.org/10.3390/W10081043, 2018.
Camera dei Deputati (C.d.D.): D.L. 39/2023 – Decreto Siccità, https://temi.camera.it/leg19/provvedimento/d-l-39-2023-decreto-siccit.html (last access: 28 October 2025), 2023.
Cammalleri, C., Naumann, G., Mentaschi, L., Bisselink, B., Gelati, E., De Roo, A., and Feyen, L.: Diverging hydrological drought traits over Europe with global warming, Hydrol. Earth Syst. Sci., 24, 5919–5935, https://doi.org/10.5194/hess-24-5919-2020, 2020.
Carrer, M., Dibona, R., Prendin, A. L., and Brunetti, M.: Recent waning snowpack in the Alps is unprecedented in the last six centuries, Nat. Clim. Change, 13, 155–160, https://doi.org/10.1038/s41558-022-01575-3, 2023.
Cavalcante, L., Pot, W., van Oel, P., Kchouk, S., Neto, G. R., and Dewulf, A.: From creeping crisis to policy change: The adoption of drought preparedness policy in Brazil, Water Policy, 25, 949–965, https://doi.org/10.2166/wp.2023.073, 2023.
Copernicus Climate Change Service: Copernicus: Summer 2022 Europe's hottest on record, Copernicus, https://climate.copernicus.eu/copernicus-summer-2022-europes-hottest-record (last access: 28 October 2025), 2022.
Crausbay, S. D., Ramirez, A. R., Carter, S. L., Cross, M. S., Hall, K. R., Bathke, D. J., Betancourt, J. L., Colt, S., Cravens, A. E., Dalton, M. S., Dunham, J. B., Hay, L. E., Hayes, M. J., McEvoy, J., McNutt, C. A., Moritz, M. A., Nislow, K. H., Raheem, N., and Sanford, T.: Defining Ecological Drought for the Twenty-First Century, Bulletin of the American Meteorological Society, 98, 2543–2550, https://doi.org/10.1175/BAMS-D-16-0292.1, 2017.
de Brito, M. M.: Compound and cascading drought impacts do not happen by chance: A proposal to quantify their relationships, Sci. Total Environ., 778, 146236, https://doi.org/10.1016/J.SCITOTENV.2021.146236, 2021.
de Brito, M. M., Sodoge, J., Fekete, A., Hagenlocher, M., Koks, E., Kuhlicke, C., Messori, G., de Ruiter, M., Schweizer, P. J., and Ward, P. J.: Uncovering the Dynamics of Multi-Sector Impacts of Hydrological Extremes: A Methods Overview, Earth's Future, 12, e2023EF003906, https://doi.org/10.1029/2023EF003906, 2024.
Deters, H.: Policy coherence by subterfuge? Arenas and compromise-building in the European Union's energy efficiency policy, Environmental Policy and Governance, 28, 359–368, https://doi.org/10.1002/EET.1822, 2018.
Di Baldassarre, G., Martinez, F., Kalantari, Z., and Viglione, A.: Drought and flood in the Anthropocene: feedback mechanisms in reservoir operation, Earth Syst. Dynam., 8, 225–233, https://doi.org/10.5194/esd-8-225-2017, 2017.
Di Baldassarre, G., Wanders, N., AghaKouchak, A., Kuil, L., Rangecroft, S., Veldkamp, T. I. E., Garcia, M., van Oel, P. R., Breinl, K., and Van Loon, A. F.: Water shortages worsened by reservoir effects, Nature Sustainability, 1, 617–622, https://doi.org/10.1038/s41893-018-0159-0, 2018.
EC (European Commission), Directorate-General for Research and Innovation, Street, R., Parry, M., Scott, J., Jacob, D., and Runge, T.: A European research and innovation roadmap for climate services, Publications Office of the European Union, https://doi.org/10.2777/702151, 2015.
European Committee of the Regions: 2025 Decentralization Index [WWW Document], Div. Powers., https://portal.cor.europa.eu/divisionpowers/Pages/default.aspx, last access: 19 May 2025.
Faranda, D., Pascale, S., and Bulut, B.: Persistent anticyclonic conditions and climate change exacerbated the exceptional 2022 European-Mediterranean drought, Environmental Research Letters, 18, 034030, https://doi.org/10.1088/1748-9326/ACBC37, 2023.
Garcia, M. and Islam, S.: Water stress and water salience: implications for water supply planning, Hydrological Sciences Journal, 66, 919–934, https://doi.org/10.1080/02626667.2021.1903474, 2021.
Garcia, M., Ridolfi, E., and Di Baldassarre, G.: The interplay between reservoir storage and operating rules under evolving conditions, Journal of Hydrology, 590, https://doi.org/10.1016/J.JHYDROL.2020.125270, 2020.
Grobicki, A., MacLeod, F., and Pischke, F.: Integrated policies and practices for flood and drought risk management, Water Policy, 17, 180–194, https://doi.org/10.2166/WP.2015.009, 2015.
Hagenlocher, M., Naumann, G., Meza, I., Blauhut, V., Cotti, D., Döll, P., Ehlert, K., Gaupp, F., Van Loon, A. F., Marengo, J. A., Rossi, L., Sabino Siemons, A. S., Siebert, S., Tsehayu, A. T., Toreti, A., Tsegai, D., Vera, C., Vogt, J., and Wens, M.: Tackling Growing Drought Risks – The Need for a Systemic Perspective, Earth's Future, 11, e2023EF003857, https://doi.org/10.1029/2023EF003857, 2023.
Harris, I., Osborn, T. J., Jones, P., and Lister, D.: Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset, Scientific Data, 7, 1–18, https://doi.org/10.1038/s41597-020-0453-3, 2020.
Herrera-Estrada, J. E., Martinez, J. A., Dominguez, F., Findell, K. L., Wood, E. F., and Sheffield, J.: Reduced moisture transport linked to drought propagation across North America, Geophys. Res. Lett., 46, 5243–5253, https://doi.org/10.1029/2019GL082475, 2019.
Hervás-Gámez, C. and Delgado-Ramos, F.: Drought Management Planning Policy: From Europe to Spain, Sustainability, 11, 1862, https://doi.org/10.3390/SU11071862, 2019.
Ionita, M. and Nagavciuc, V.: Changes in drought features at the European level over the last 120 years, Nat. Hazards Earth Syst. Sci., 21, 1685–1701, https://doi.org/10.5194/nhess-21-1685-2021, 2021.
Ionita, M., Tallaksen, L. M., Kingston, D. G., Stagge, J. H., Laaha, G., Van Lanen, H. A. J., Scholz, P., Chelcea, S. M., and Haslinger, K.: The European 2015 drought from a climatological perspective, Hydrol. Earth Syst. Sci., 21, 1397–1419, https://doi.org/10.5194/hess-21-1397-2017, 2017.
Ionita, M., Nagavciuc, V., Scholz, P., and Dima, M.: Long-term drought intensification over Europe driven by the weakening trend of the Atlantic Meridional Overturning Circulation, Journal of Hydrology: Regional Studies, 42, 101176, https://doi.org/10.1016/J.EJRH.2022.101176, 2022.
IPCC, Chen, D., Rojas, M., Samset, B. H., Cobb, K., Diongue Niang, A., Edwards, P., Emori, S., Faria, S. H., Hawkins, E., Hope, P., Huybrechts, P., Meinshausen, M., Mustafa, S. K., Plattner, G.-K., and Tréguier, A.-M.: Framing, Context, and Methods, in: Climate Change 2021: The Physical Science Basis, Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, editred by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 147–286, https://doi.org/10.1017/9781009157896.003, 2021.
IPCC, Caretta, M. A., Mukherji, A., Arfanuzzaman, M., Betts, R. A., Gelfan, A., Hirabayashi, Y., Lissner, T. K., Liu, J., Lopez Gunn, E., Morgan, R., Mwanga, S., and Supratid, S.: Water, in: Climate Change 2022a: Impacts, Adaptation and Vulnerability, Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Pörtner, H.-O., Roberts, D. C., Tignor, M., Poloczanska, E. S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., Okem, A., and Rama, B., Cambridge University Press, Cambridge, UK and New York, NY, USA, 551–712, https://doi.org/10.1017/9781009325844.006, 2022a.
IPCC, O'Neill, B., van Aalst, M., Zaiton Ibrahim, Z., Berrang Ford, L., Bhadwal, S., Buhaug, H., Diaz, D., Frieler, K., Garschagen, M., Magnan, A., Midgley, G., Mirzabaev, A., Thomas, A., and Warren, R.: Key Risks Across Sectors and Regions, in: Climate Change 2022b: Impacts, Adaptation and Vulnerability, Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Pörtner, H.-O., Roberts, D. C., Tignor, M., Poloczanska, E. S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., Okem, A., and Rama, B., Cambridge University Press, Cambridge, UK and New York, NY, USA, 2411–2538, https://doi.org/10.1017/9781009325844.025, 2022b.
Jaagus, J., Aasa, A., Aniskevich, S., Boincean, B., Bojariu, R., Briede, A., Danilovich, I., Castro, F. D., Dumitrescu, A., Labuda, M., Labudová, L., Lõhmus, K., Melnik, V., Mõisja, K., Pongracz, R., Potopová, V., Řezníčková, L., Rimkus, E., Semenova, I., Stonevičius, E., Štěpánek, P., Trnka, M., Vicente-Serrano, S. M., Wibig, J., and Zahradníček, P.: Long-term changes in drought indices in eastern and central Europe, International Journal of Climatology, https://doi.org/10.1002/joc.7241, 2021.
Kaika, M.: The Water Framework Directive: A New Directive for a Changing Social, Political and Economic European Framework, European Planning Studies, 11, 299–316, https://doi.org/10.1080/09654310303640, 2003.
Kallis, G.: Droughts, Annual Review of Environment and Resources, 33, 85–118, https://doi.org/10.1146/annurev.environ.33.081307.123117, 2008.
Kchouk, S., Neto, G. R., Melsen, L. A., Walker, D. W., Cavalcante, L., Gondim, R., and van Oel, P. R.: Drought-impacted communities in social-ecological systems: Exploration of different system states in Northeast Brazil, International Journal of Disaster Risk Reduction, 97, https://doi.org/10.1016/J.IJDRR.2023.104026, 2023.
Magnan, A. K., Schipper, E. L. F., Burkett, M., Bharwani, S., Burton, I., Eriksen, S., Gemenne, F., Schaar, J., and Ziervogel, G.: Addressing the risk of maladaptation to climate change, WIREs Clim Change, 7, 646–665, https://doi.org/10.1002/wcc.409, 2016.
Markonis, Y., Kumar, R., Hanel, M., Rakovec, O., Máca, P., and Kouchak, A. A.: The rise of compound warm-season droughts in Europe, Science Advances, 7, https://doi.org/10.1126/sciadv.abb9668, 2021.
McKee, T. B., Doesken, N. J., and Kleist, J.: The relationship of drought frequency and duration to time scales, in: Proceedings of the 8th Conference on Applied Climatology, 17, American Meteorological Society Boston, MA, 179–183, https://www.droughtmanagement.info/literature/AMS_Relationship_Drought_Frequency_Duration_Time_Scales_1993.pdf (last access: 28 October 2025), 1993.
McVittie, A., Cole, L., Wreford, A., Sgobbi, A., and Yordi, B.: Ecosystem-based solutions for disaster risk reduction: Lessons from European applications of ecosystem-based adaptation measures, International Journal of Disaster Risk Reduction, 32, 42–54, https://doi.org/10.1016/J.IJDRR.2017.12.014, 2018.
Messori, G., Wu, M., Vico, G., and Galfi, V. M.: Atmospheric jet stream variability reflects vegetation activity in Europe, Agric. For. Meteorol., 322, 109008, https://doi.org/10.1016/j.agrformet.2022.109008, 2022.
Montanari, A., Nguyen, H., Rubinetti, S. Ceola., S., Galelli, S., Rubino, S., and Zanchettin, D.: Why the 2022 Po River drought is the worst in the past two centuries, Science Advances, 9, https://doi.org/10.1126/sciadv.adg8304, 2023.
Monteith, J. L.: Evaporation and environment, The state and movement of water in living organisms, 19th Symposium of the Society for Experimental Biology, 205–234, 1965.
Moravec, V., Markonis, Y., Rakovec, O., Svoboda, M., Trnka, M., Kumar, R., and Hanel, M.: Europe under multi-year droughts: how severe was the 2014–2018 drought period?, Environmental Research Letters, 16, 034062, https://doi.org/10.1088/1748-9326/ABE828, 2021.
Naumann, G., Cammalleri, C., Mentaschi, L., and Feyen, L.: Increased economic drought impacts in Europe with anthropogenic warming, Nat. Clim. Change, 11, 485–491, https://doi.org/10.1038/s41558-021-01044-3, 2021.
Okkan, U., Fistikoglu, O., Ersoy, Z. B., and Noori, A. T.: Investigating adaptive hedging policies for reservoir operation under climate change impacts, Journal of Hydrology, 619, 129286, https://doi.org/10.1016/J.JHYDROL.2023.129286, 2023.
Publications Office of the European Union: Stock-taking analysis and outlook of drought policies, planning and management in EU Member States: final report, Publications Office of the European Union, https://doi.org/10.2779/21928, 2023.
Rakovec, O., Samaniego, L., Hari, V., Markonis, Y., Moravec, V., Thober, S., Hanel, M., and Kumar, R.: The 2018–2020 Multi-Year Drought Sets a New Benchmark in Europe, Earth's Future, 10, e2021EF002394, https://doi.org/10.1029/2021EF002394, 2022.
Reckien, D., Magnan, A. K., Singh, C., Lukas-Sithole, M., Orlove, B., Schipper, E. L. F., and de Perez, E. C.: Navigating the continuum between adaptation and maladaptation, Nat. Clim. Change, 13, 907–918, https://doi.org/10.1038/s41558-023-01774-6, 2023.
Rodrigues, M., Cunill Camprubí, À., Balaguer-Romano, R., Coco Megía, C. J., Castañares, F., Ruffault, J., Fernandes, P. M., and Resco de Dios, V.: Drivers and implications of the extreme 2022 wildfire season in Southwest Europe, Sci. Total Environ., 859, 160320, https://doi.org/10.1016/J.SCITOTENV.2022.160320, 2023.
Rossi, G.: European Union policy for improving drought preparedness and mitigation, Water International, 34, 441–450, https://doi.org/10.1080/02508060903374418, 2009.
Rossi, L., Wens, M., Hans, D. M., Cotti, D., Sabino, S. A.-S., Toreti, A., Maetens, W., Masante, D., Anne, V. L., Hagenlocher, M., Rudari, R., Naumann, G., Meroni, M., Aavanzi, F., Isabellon, M., and Barbosa, P.: European Drought Risk Atlas, Publications Office of the European Union, Luxembourg, https://doi.org/10.2760/608737, 2023.
Rowbottom, J., Graversgaard, M., Wright, I., Dudman, K., Klages, S., Heidecke, C., Surdyk, N., Gourcy, L., Leitão, I. A., Ferreira, A. D., Wuijts, S., Boekhold, S., Doody, D. G., Glavan, M., Cvejić, R., and Velthof, G.: Water governance diversity across Europe: Does legacy generate sticking points in implementing multi-level governance?, J. Environ. Manage., 319, 115598. https://doi.org/10.1016/j.jenvman.2022.115598, 2022.
Savelli, E., Mazzoleni, M., Di Baldassarre, G., Cloke, H., and Rusca, M.: Urban water crises driven by elites' unsustainable consumption, Nature Sustainability, 6, 929–940, https://doi.org/10.1038/s41893-023-01100-0, 2023.
Schumacher, D. L., Zachariah, M., Otto, F., Barnes, C., Philip, S., Kew, S., Vahlberg, M., Singh, R., Heinrich, D., Arrighi, J., van Aalst, M., Hauser, M., Hirschi, M., Bessenbacher, V., Gudmundsson, L., Beaudoing, H. K., Rodell, M., Li, S., Yang, W., Vecchi, G. A., Harrington, L. J., Lehner, F., Balsamo, G., and Seneviratne, S. I.: Detecting the human fingerprint in the summer 2022 western–central European soil drought, Earth Syst. Dynam., 15, 131–154, https://doi.org/10.5194/esd-15-131-2024, 2024.
Semenova, I. and Vicente-Serrano, S. M.: Long-term variability and trends of meteorological droughts in Ukraine, International Journal of Climatology, 44, 1849–1866, https://doi.org/10.1002/joc.8416, 2024.
Shyrokaya, A., Messori, G., Pechlivanidis, I., Pappenberger, F., Cloke, H. L., and Di Baldassarre, G.: Significant relationships between drought indicators and impacts for the 2018–2019 drought in Germany, Environmental Research Letters, 19, https://doi.org/10.1088/1748-9326/AD10D9, 2023.
Shyrokaya, A., Pappenberger, F., Pechlivanidis, I., Messori, G., Khatami, S., Mazzoleni, M., and Di Baldassarre, G.: Advances and gaps in the science and practice of impact-based forecasting of droughts, Wiley Interdisciplinary Reviews: Water, 11, https://doi.org/10.1002/wat2.1698, 2024.
Spinoni, J., Vogt, J. V., Naumann, G., Barbosa, P., and Dosio, A.: Will drought events become more frequent and severe in Europe?, International Journal of Climatology, 38, 1718–1736, https://doi.org/10.1002/JOC.5291, 2018.
Stahl, K., Kohn, I., Blauhut, V., Urquijo, J., De Stefano, L., Acácio, V., Dias, S., Stagge, J. H., Tallaksen, L. M., Kampragou, E., Van Loon, A. F., Barker, L. J., Melsen, L. A., Bifulco, C., Musolino, D., de Carli, A., Massarutto, A., Assimacopoulos, D., and Van Lanen, H. A. J.: Impacts of European drought events: insights from an international database of text-based reports, Nat. Hazards Earth Syst. Sci., 16, 801–819, https://doi.org/10.5194/nhess-16-801-2016, 2016.
Stagge, J. H., Tallaksen, L. M., Gudmundsson, L., Van Loon, A. F., and Stahl, K.: Candidate Distributions for Climatological Drought Indices (SPI and SPEI), International Journal of Climatology, 35, 4027–4040, https://doi.org/10.1002/JOC.4267, 2015.
Stein, U., Özerol, G., Tröltzsch, J., Landgrebe, R., Szendrenyi, A., and Vidaurre, R.: European drought and water scarcity policies, Governance for Drought Resilience: Land and Water Drought Management in Europe, 17–44, https://doi.org/10.1007/978-3-319-29671-5_2, 2016.
Sudmeier-Rieux, K., Arce-Mojica, T., Boehmer, H. J., Doswald, N., Emerton, L., Friess, D. A., Galvin, S., Hagenlocher, M., James, H., Laban, P., Lacambra, C., Lange, W., McAdoo, B. G., Moos, C., Mysiak, J., Narvaez, L., Nehren, U., Peduzzi, P., Renaud, F. G., and Walz, Y.: Scientific evidence for ecosystem-based disaster risk reduction, Nature Sustainability, 4, 803–810, https://doi.org/10.1038/S41893-021-00732-4, 2021.
Sutanto, S. J., van der Weert, M., Wanders, N., Blauhut, V., and Van Lanen, H. A. J.: Moving from drought hazard to impact forecasts, Nature Communications, 10, 4945, https://doi.org/10.1038/s41467-019-12840-z, 2019.
Sutanto, S. J., Vitolo, C., Di Napoli, C., D'Andrea, M., and Van Lanen, H. A. J.: Heatwaves, droughts, and fires: Exploring compound and cascading dry hazards at the pan-European scale, Environmental International, 134, 105276, https://doi.org/10.1016/j.envint.2019.105276, 2020.
Sutanto, S. J., Syaehuddin, W. A., and de Graaf, I.: Hydrological drought forecasts using precipitation data depend on catchment properties and human activities, Communications Earth and Environment, 5, 118, https://doi.org/10.1038/s43247-024-01295-w, 2024.
Tallaksen, L. M. and Van Lanen, H. A. J.: Hydrological drought: Processes and estimation methods for streamflow and groundwater, Elsevier, ISBN 9780323916790, 2004.
Teutschbein, C., Albrecht, F., Blicharska, M., Tootoonchi, F., Stenfors, E., and Grabs, T.: Drought hazards and stakeholder perception: Unraveling the interlinkages between drought severity, perceived impacts, preparedness, and management, Ambio, 52, 1262–1281, https://doi.org/10.1007/S13280-023-01849-w, 2023.
Toreti, A., Bavera, D., Acosta, N. J., Cammalleri, C., De, J. A., Di, C. C., Hrast, E. A., Maetens, W., Magni, D., Masante, D., Mazzechi, M., Niemeyer, S., and Spinoni, J.: Drought in Europe August 2022, 24, https://doi.org/10.2760/264241, 2022a.
Toreti, A., Masante, D., Acosta Navarro, J., Bavera, D., Cammalleri, C., De Felice, M., de Jager, A., Di Ciollo, C., Hrast Essenfelder, A., Maetens, W., Magni, D., Mazzeschi, M., and Spinoni, J.: Drought in Europe July 2022, EUR 31147 EN, Publications Office of the European Union, Luxembourg, ISBN 978-92-76-54953-6 (online), https://publications.jrc.ec.europa.eu/repository/handle/JRC130253 (last access: 28 October 2025), https://doi.org/10.2760/014884, 2022b.
UNDRR (United Nations Office for Disaster Risk Reduction): GAR Special Report on Drought 2021, ISBN 9789212320274, 2021.
van Daalen, K. R., Romanello, M., Rocklöv J., Semenza, J. C., Tonne, C., Markandya, A., Dasandi, N., Jankin, S., Achebak, H., Ballester, J., Bechara, H., Callaghan, M. W., Chambers, J., Dasgupta, S., Drummond, P., Farooq, Z., Gasparyan, O., Gonzalez-Reviriego, N., Hamilton, I., Hänninen R., Kazmierczak, A., Kendrovski, V., Kennard, H., Kiesewetter, G., Lloyd, S. J., Lotto Batista, M., Martinez-Urtaza, J., Milà C., Minx, J. C., Nieuwenhuijsen, M., Palamarchuk, J., Quijal-Zamorano, M., Robinson, E. J. Z., Scamman, D., Schmoll, O., Sewe, M. O., Sjödin H., Sofiev, M., Solaraju-Murali, B., Springmann, M., Triñanes J., Anto, J. M., Nilsson, M., and Lowe, R.: The 2022 Europe report of the Lancet Countdown on health and climate change: towards a climate resilient future, The Lancet Public Health, 7, e942–e965, https://doi.org/10.1016/S2468-2667(22)00197-9, 2022.
Van Loon, A. F., Stahl, K., Di Baldassarre, G., Clark, J., Rangecroft, S., Wanders, N., Gleeson, T., Van Dijk, A. I. J. M., Tallaksen, L. M., Hannaford, J., Uijlenhoet, R., Teuling, A. J., Hannah, D. M., Sheffield, J., Svoboda, M., Verbeiren, B., Wagener, T., and Van Lanen, H. A. J.: Drought in a human-modified world: reframing drought definitions, understanding, and analysis approaches, Hydrol. Earth Syst. Sci., 20, 3631–3650, https://doi.org/10.5194/hess-20-3631-2016, 2016.
Van Loon, A. F., Kchouk, S., Matanó, A., Tootoonchi, F., Alvarez-Garreton, C., Hassaballah, K. E. A., Wu, M., Wens, M. L. K., Shyrokaya, A., Ridolfi, E., Biella, R., Nagavciuc, V., Barendrecht, M. H., Bastos, A., Cavalcante, L., de Vries, F. T., Garcia, M., Mård, J., Streefkerk, I. N., Teutschbein, C., Tootoonchi, R., Weesie, R., Aich, V., Boisier, J. P., Di Baldassarre, G., Du, Y., Galleguillos, M., Garreaud, R., Ionita, M., Khatami, S., Koehler, J. K. L., Luce, C. H., Maskey, S., Mendoza, H. D., Mwangi, M. N., Pechlivanidis, I. G., Ribeiro Neto, G. G., Roy, T., Stefanski, R., Trambauer, P., Koebele, E. A., Vico, G., and Werner, M.: Review article: Drought as a continuum – memory effects in interlinked hydrological, ecological, and social systems, Nat. Hazards Earth Syst. Sci., 24, 3173–3205, https://doi.org/10.5194/nhess-24-3173-2024, 2024.
Vicente-Serrano, S. M., Beguería, S., and López-Moreno, J. I.: A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index, Journal of Climate, 23, 1696–1718, https://doi.org/10.1175/2009JCLI2909.1, 2010.
Vignola, R., Locatelli, B., Martinez, C., and Imbach, P.: Ecosystem-based adaptation to climate change: What role for policy-makers, society and scientists?, Mitigation and Adaptation Strategies for Global Change, 14, 691–696, https://doi.org/10.1007/S11027-009-9193-6, 2009.
Voulvoulis, N., Arpon, K. D., and Giakoumis, T.: The EU Water Framework Directive: From great expectations to problems with implementation, Science of the Total Environment, 575, 358–366, https://doi.org/10.1016/J.SCITOTENV.2016.09.228, 2017.
Walker, D. W., Oliveira, J. L., Cavalcante, L., Kchouk, S., Ribeiro Neto, G., Melsen, L. A., Fernandes, F. B. P., Mitroi, V., Gondim, R. S., Martins, E. S. P. R., and van Oel, P. R.: It's not all about drought: What “drought impacts” monitoring can reveal, International Journal of Disaster Risk Reduction, 103, 104338, https://doi.org/10.1016/J.IJDRR.2024.104338, 2024.
Wendt, D. E., Bloomfield, J. P., Van Loon, A. F., Garcia, M., Heudorfer, B., Larsen, J., and Hannah, D. M.: Evaluating integrated water management strategies to inform hydrological drought mitigation, Nat. Hazards Earth Syst. Sci., 21, 3113–3139, https://doi.org/10.5194/nhess-21-3113-2021, 2021.
Wilhite, D. A.: Integrated drought management: moving from managing disasters to managing risk in the Mediterranean region, Euro-Mediterranean Journal for Environmental Integration, 4, 1–5, https://doi.org/10.1007/S41207-019-0131-z, 2019.
Wilhite, D. A., Hayes, M., Knutson, C. L., and Hayes, M. J.: Drought Preparedness Planning: Building Institutional Capacity, ISBN 9780429120091, https://digitalcommons.unl.edu/droughtfacpub (last access: 28 October 2025), 2005.
World Meteorological Organization (WMO): WMO guidelines on multi-hazard impact-based forecast and warning services, Part II: Putting multi-hazard IBFWS into practice (2021 edition), WMO-No. 1150, ISBN 978-92-63-11150-0, https://library.wmo.int/records/item/54669-wmo-guidelines-on-multi-hazard-impact-based (last access: 28 October 2025), 2021.
World Meteorological Organization (WMO) and Global Water Partnership (GWP): National Drought Management Policy Guidelines: A Template for Action (D. A. Wilhite), Integrated Drought Management Programme (IDMP) Tools and Guidelines Series 1, WMO, Geneva, Switzerland and GWP, Stockholm, Sweden, ISBN 978-92-63-11173-9, 2014.
Wu, M., Manzoni, S., Vico, G., Bastos, A., de Vries, F. T., and Messori, G.: Drought legacy in sub-seasonal vegetation state and sensitivity to climate over the Northern Hemisphere, Geophysical Research Letters, 49, e2022GL098700, https://doi.org/10.1029/2022GL098700, 2012.
Short summary
The DitA (Drought in the Anthropocene) network's study on the 2022 European drought reveals growing risks, varied impacts, and fragmented, short-term management. Based on a survey of water managers, it explores risk, impacts, strategies, and their evolution. While challenges persist, signs of improvement show readiness for change. The authors call for a European Drought Directive to unify and guide future drought risk management.
The DitA (Drought in the Anthropocene) network's study on the 2022 European drought reveals...
Altmetrics
Final-revised paper
Preprint