Articles | Volume 25, issue 10
https://doi.org/10.5194/nhess-25-4203-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-25-4203-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Understanding extreme-wave hazards on high-energy coasts requires a standardised approach to field data collection: analysis and recommendations
Geosciences Department, Williams College, Williamstown MA, USA
School of Natural Sciences, Trinity College, Dublin, Ireland
Mary C. Bourke
School of Natural Sciences, Trinity College, Dublin, Ireland
Max Engel
Institute of Geography, Heidelberg University, Heidelberg, Germany
Andrew B. Kennedy
Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN, USA
Annie Lau
School of the Environment, The University of Queensland, Brisbane, Australia
Serge Suanez
CNRS, LETG UMR 6554, Institut Universitaire Européen de la Mer, Université de Brest, 29280 Plouzané, France
Sarah J. Boulton
School of Geography, Earth and Environmental Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
Maria Alexandra Oliveira
CE3C – Centre for Ecology, Evolution and Environmental Changes & CHANGE – Global Change and Sustainability Institute, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
Raphaël Paris
CNRS, IRD, OPGC, Laboratoire Magmas et Volcans, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
Dimitra Salmanidou
Advanced Research Computing Centre, University College London, London WC1E 6BT, UK
Michaela Spiske
Institut für Geowissenschaften, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
Wayne Stephenson
School of Geography, University of Otago, Dunedin, Aotearoa/New Zealand
Storm Roberts
School of Geography, Earth and Environmental Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
Adam D. Switzer
Earth Observatory of Singapore, Nanyang Technological University, Singapore
Asian School of the Environment, Nanyang Technological University, Singapore
Nadia Mhammdi
GEOPAC Research Center, Geophysics and Natural Hazards Laboratory, Scientific Institute, Mohammed V University in Rabat, Morocco
Niamh D. Cullen
School of History and Geography, Dublin City University, Dublin, Ireland
Masashi Watanabe
School of Ocean and Earth Science, University of Southampton, European Way, Southampton, SO14 3ZH, UK
Related authors
No articles found.
Zhi Yang Koh, Benjamin S. Grandey, Dhrubajyoti Samanta, Adam D. Switzer, Benjamin P. Horton, Justin Dauwels, and Lock Yue Chew
Ocean Sci., 20, 1495–1511, https://doi.org/10.5194/os-20-1495-2024, https://doi.org/10.5194/os-20-1495-2024, 2024
Short summary
Short summary
Identifying tide–surge interaction (TSI) is a complex task. We enhance existing statistical methods with a more-robust test that accounts for complex tides. We also develop a semi-empirical model to investigate the influence of one mechanism of TSI, tidal-phase alteration. We apply these techniques to tide-gauge records from Singapore and the east coast of Peninsular Malaysia. We find TSI at all studied locations: tidal-phase alteration can change the timing of large surges.
Emmie Malika Bonilauri, Catherine Aaron, Matteo Cerminara, Raphaël Paris, Tomaso Esposti Ongaro, Benedetta Calusi, Domenico Mangione, and Andrew John Lang Harris
Nat. Hazards Earth Syst. Sci., 24, 3789–3813, https://doi.org/10.5194/nhess-24-3789-2024, https://doi.org/10.5194/nhess-24-3789-2024, 2024
Short summary
Short summary
Currently on the island of Stromboli, only 4 min of warning time is available for a locally generated tsunami. We combined tsunami simulations and human exposure to complete a risk analysis. We linked the predicted inundation area and the tsunami warning signals to assess the hazard posed by future tsunamis and to design escape routes to reach safe areas and to optimise evacuation times. Such products can be used by civil protection agencies on Stromboli.
Jun Yu Puah, Ivan D. Haigh, David Lallemant, Kyle Morgan, Dongju Peng, Masashi Watanabe, and Adam D. Switzer
Ocean Sci., 20, 1229–1246, https://doi.org/10.5194/os-20-1229-2024, https://doi.org/10.5194/os-20-1229-2024, 2024
Short summary
Short summary
Coastal currents have wide implications for port activities, transport of sediments, and coral reef ecosystems; thus a deeper understanding of their characteristics is needed. We collected data on current velocities for a year using current meters at shallow waters in Singapore. The strength of the currents is primarily affected by tides and winds and generally increases during the monsoon seasons across various frequencies.
Andrea Verolino, Su Fen Wee, Susanna F. Jenkins, Fidel Costa, and Adam D. Switzer
Nat. Hazards Earth Syst. Sci., 24, 1203–1222, https://doi.org/10.5194/nhess-24-1203-2024, https://doi.org/10.5194/nhess-24-1203-2024, 2024
Short summary
Short summary
Submarine volcanic eruptions represent the majority of eruptions taking place on Earth. Still, they are vastly understudied worldwide. Here we compile a new dataset and assess the morphology, depth, and height of submarine volcanoes in Southeast Asia and its surroundings to understand their hazard-exposure potential in the region. This study will serve as a stepping stone for future quantitative hazard assessments from submarine eruptions in Southeast Asia and neighbouring countries.
Hugh Daigle, João C. Duarte, Ake Fagereng, Raphaël Paris, Patricia Persaud, Ángela María Gómez-García, and the Lisbon MagellanPlus Workshop Participants
Sci. Dril., 32, 101–111, https://doi.org/10.5194/sd-32-101-2023, https://doi.org/10.5194/sd-32-101-2023, 2023
Short summary
Short summary
Natural hazards associated with the ocean can have a direct impact on coastal populations and even affect populations located far away from the coast. These hazards may interact, and they include tsunamis that result in major damage and catastrophic loss of life and submarine landslides, which themselves can produce tsunamis and damage subsea infrastructure. We present ideas for investigating these hazards with scientific ocean drilling.
Max Engel, Felix Henselowsky, Fabian Roth, Annette Kadereit, Manuel Herzog, Stefan Hecht, Susanne Lindauer, Olaf Bubenzer, and Gerd Schukraft
E&G Quaternary Sci. J., 71, 213–226, https://doi.org/10.5194/egqsj-71-213-2022, https://doi.org/10.5194/egqsj-71-213-2022, 2022
Short summary
Short summary
The late-glacial Bergstraßenneckar is a former course of the Neckar River in the Upper Rhine Graben of southwest Germany at a time when the confluence with the Rhine river was 50 km further to the north. The former river bends are still visible in topographic maps and satellite imagery. Sediment cores and geophysical measurements from the former river channels let us reconstruct the shift from a running river to silting-up meanders and permit us to date this to ca. 11 000 to 10 500 years ago.
Raquel P. Felix, Judith A. Hubbard, Kyle E. Bradley, Karen H. Lythgoe, Linlin Li, and Adam D. Switzer
Nat. Hazards Earth Syst. Sci., 22, 1665–1682, https://doi.org/10.5194/nhess-22-1665-2022, https://doi.org/10.5194/nhess-22-1665-2022, 2022
Short summary
Short summary
The Flores Thrust lies along the north coasts of Bali and Lombok. We model how an earthquake on this fault could trigger a tsunami that would impact the regional capital cities of Mataram and Denpasar. We show that for 3–5 m of slip on the fault (a Mw 7.5–7.9+ earthquake), the cities would experience a wave ca. 1.6–2.7 and ca. 0.6–1.4 m high, arriving in < 9 and ca. 23–27 min, respectively. They would also experience subsidence of 20–40 cm, resulting in long-term exposure to coastal hazards.
Shuyun Dong, Wayne J. Stephenson, Sarah Wakes, Zhongyuan Chen, and Jianzhong Ge
Nat. Hazards Earth Syst. Sci., 22, 931–945, https://doi.org/10.5194/nhess-22-931-2022, https://doi.org/10.5194/nhess-22-931-2022, 2022
Short summary
Short summary
Mesoscale simulation provides a general approach that could be implemented to fulfill the purpose of planning and has relatively low requirements for computation time and data while still providing reasonable accuracy. The method is generally applicable to all coastal cities around the world for examining the effect of future climate change on typhoon-generated storm surge even where historical observed data are inadequate or not available.
Kai Wan Yuen, Adam D. Switzer, Paul P. S. Teng, and Janice Ser Huay Lee
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-4, https://doi.org/10.5194/nhess-2022-4, 2022
Manuscript not accepted for further review
Short summary
Short summary
Few databases provide standardized reporting of disaster-related agricultural damage and loss. We compiled cyclone-induced rice damage data from 1970–2018 in four countries in Asia (Bangladesh, Myanmar, Philippines and Vietnam). Of the 1,046 cyclone events recorded, 13 % or 138 events were associated with rice damage. Philippines and Vietnam accounted for 128 of these events. While higher cyclone intensity tend to cause most damage, lower intensity events were more frequent.
Dominik Jackisch, Bi Xuan Yeo, Adam D. Switzer, Shaoneng He, Danica Linda M. Cantarero, Fernando P. Siringan, and Nathalie F. Goodkin
Nat. Hazards Earth Syst. Sci., 22, 213–226, https://doi.org/10.5194/nhess-22-213-2022, https://doi.org/10.5194/nhess-22-213-2022, 2022
Short summary
Short summary
The Philippines is a nation very vulnerable to devastating typhoons. We investigate if stable isotopes of precipitation can be used to detect typhoon activities in the Philippines based on daily isotope measurements from Metropolitan Manila. We find that strong typhoons such as Rammasun, which occurred in July 2014, leave detectable isotopic signals in precipitation. Besides other factors, the distance of the typhoon to the sampling site plays a key role in influencing the signal.
Dimitra M. Salmanidou, Joakim Beck, Peter Pazak, and Serge Guillas
Nat. Hazards Earth Syst. Sci., 21, 3789–3807, https://doi.org/10.5194/nhess-21-3789-2021, https://doi.org/10.5194/nhess-21-3789-2021, 2021
Short summary
Short summary
The potential of large-magnitude earthquakes in Cascadia poses a significant threat over a populous region of North America. We use statistical emulation to assess the probabilistic tsunami hazard from such events in the region of the city of Victoria, British Columbia. The emulators are built following a sequential design approach for information gain over the input space. To predict the hazard at coastal locations of the region, two families of potential seabed deformation are considered.
Rajae El Aoula, Gil Mahé, Nadia Mhammdi, Abdellatif Ezzahouani, Ilias Kacimi, and Kenza Khomsi
Proc. IAHS, 384, 163–168, https://doi.org/10.5194/piahs-384-163-2021, https://doi.org/10.5194/piahs-384-163-2021, 2021
Constance Ting Chua, Adam D. Switzer, Anawat Suppasri, Linlin Li, Kwanchai Pakoksung, David Lallemant, Susanna F. Jenkins, Ingrid Charvet, Terence Chua, Amanda Cheong, and Nigel Winspear
Nat. Hazards Earth Syst. Sci., 21, 1887–1908, https://doi.org/10.5194/nhess-21-1887-2021, https://doi.org/10.5194/nhess-21-1887-2021, 2021
Short summary
Short summary
Port industries are extremely vulnerable to coastal hazards such as tsunamis. Despite their pivotal role in local and global economies, there has been little attention paid to tsunami impacts on port industries. For the first time, tsunami damage data are being extensively collected for port structures and catalogued into a database. The study also provides fragility curves which describe the probability of damage exceedance for different port industries given different tsunami intensities.
Kai Wan Yuen, Tang Thi Hanh, Vu Duong Quynh, Adam D. Switzer, Paul Teng, and Janice Ser Huay Lee
Nat. Hazards Earth Syst. Sci., 21, 1473–1493, https://doi.org/10.5194/nhess-21-1473-2021, https://doi.org/10.5194/nhess-21-1473-2021, 2021
Short summary
Short summary
We used flow diagrams to represent the ways in which anthropogenic land use and natural hazards have affected rice production in the two
mega-deltas of Vietnam. Anthropogenic developments meant to improve productivity may create negative feedbacks on rice production and quality. Natural hazards further amplify problems created by human activities. A systems-thinking approach can yield nuanced perspectives for tackling environmental challenges.
Dominik Brill, Simon Matthias May, Nadia Mhammdi, Georgina King, Benjamin Lehmann, Christoph Burow, Dennis Wolf, Anja Zander, and Helmut Brückner
Earth Surf. Dynam., 9, 205–234, https://doi.org/10.5194/esurf-9-205-2021, https://doi.org/10.5194/esurf-9-205-2021, 2021
Short summary
Short summary
Wave-transported boulders are important records for storm and tsunami impact over geological timescales. Their use for hazard assessment requires chronological information. We investigated the potential of a new dating technique, luminescence rock surface exposure dating, for estimating transport ages of wave-emplaced boulders. Our results indicate that the new approach may provide chronological information on decadal to millennial timescales for boulders not datable by any other method so far.
Cited articles
Abad, M., Izquierdo, T., Cáceres, M., Bernárdez, E., and Rodriguez-Vidal, J.: Coastal boulder deposit as evidence of an ocean-wide prehistoric tsunami originated on the Atacama Desert coast (northern Chile), Sedimentology, 67, 1505–1528, https://doi.org/10.1111/sed.12570, 2020.
Andresen, C. G. and Schultz-Fellenz, E. S.: Change Detection Applications in the Earth Sciences Using UAS-Based Sensing: A Review and Future Opportunities, Drones, 7, 258, https://doi.org/10.3390/drones7040258, 2023.
Antonioli, F., Lo Presti, V., Rovere, A., Ferranti, L., Anzidei, M., Furlani, S., Mastronuzzi, G., Orru, P. E., Scicchitano, G., Sannino, G., Spampinato, C. R., Pagliarulo, R., Deiana, G., de Sabata, E., Sansò, P., Vacchi, M., and Vecchio, A.: Tidal notches in Mediterranean Sea: a comprehensive analysis, Quaternary Science Reviews, 119, 66–84, https://doi.org/10.1016/j.quascirev.2015.03.016, 2015.
Araoka, D., Inoue, M., Suzuki, A., Yokoyama, Y., Edwards, R. L., Cheng, H., Matsuzaki, H., Kan, H., Shikazono, N., and Kawahata, H.: Historic 1771 Meiwa tsunami confirmed by high-resolution U/Th dating of massive Porites coral boulders at Ishigaki Island in the Ryukyus, Japan, Geochemistry, Geophysics, Geosystems, 11, https://doi.org/10.1029/2009GC002893, 2010.
Atwater, B. F., ten Brink, U. S., Cescon, A. L., Feuillet, N., Fuentes, Z., Halley, R. B., Nuñez, C., Reinhardt, E. G., Roger, J., Sawai, Y., Spiske, M., Tuttle, M. P., Wei, Y., and Weil-Accardo, J.: Geologic evidence for catastrophic marine inundation in 1200–1480 C.E. near the Puerto Rico Trench at Anegada, British Virgin Islands, Geosphere, 13, 301–368, https://doi.org/10.1130/GES01356.1, 2017.
Autret, R., Dodet, G., Fichaut, B., Suanez, S., David, L., Leckler, F., Ardhuin, F., Ammann, J., Grandjean, P., Allemand, P., and Filipot, J.-F.: A comprehensive hydro-geomorphic study of cliff-top storm deposits on Banneg Island during winter 2013–2014, Marine Geology, 382, 37–55, https://doi.org/10.1016/j.margeo.2016.09.014, 2016.
Autret, R., Dodet, G., Suanez, S., Roudaut, G., and Fichaut, B.: Long–term variability of supratidal coastal boulder activation in Brittany (France), Geomorphology, 304, 184–200, https://doi.org/10.1016/j.geomorph.2017.12.028, 2018.
Autret, R., Didier, D., Suanez, S., Stéphan, P., Ammann, J., Baudry, J., Erlingsson, B., and Sigurðarson, S.: Cliff-top boulder morphodynamics on the high–energy volcanic rocky coast of the Reykjanes Peninsula (SW Iceland), Marine Geology, 456, 106984, https://doi.org/10.1016/j.margeo.2022.106984, 2023.
Bahlburg, H. and Spiske, M.: Styles of early diagenesis and the preservation potential of onshore tsunami deposits–A re-survey of Isla Mocha, Central Chile, 2years after the February 27, 2010, Maule tsunami, Sedimentary Geology, 326, 33–44, https://doi.org/10.1016/j.sedgeo.2015.06.009, 2015.
Barbano, M. S., Pirrotta, C., and Gerardi, F.: Large boulders along the south-eastern Ionian coast of Sicily: Storm or tsunami deposits?, Marine Geology, 275, 140–154, https://doi.org/10.1016/j.margeo.2010.05.005, 2010.
Baselga, S. and Olsen, M. J.: Approximations, Errors, and Misconceptions in the Use of Map Projections, Mathematical Problems in Engineering, 2021, 1094602, https://doi.org/10.1155/2021/1094602, 2021.
Benner, R., Browne, T., Brückner, H., Kelletat, D., and Scheffers, A.: Boulder transport by waves: progress in physical modelling, Zeitschrift für Geomorphologie, 54, 127–146, https://doi.org/10.1127/0372-8854/2010/0054S3-0022, 2010.
Biolchi, S., Furlani, S., Antonioli, F., Baldassini, N., Causon Deguara, J., Devoto, S., Di Stefano, A., Evans, J., Gambin, T., Gauci, R., Mastronuzzi, G., Monaco, C., and Scicchitano, G.: Boulder accumulations related to extreme wave events on the eastern coast of Malta, Nat. Hazards Earth Syst. Sci., 16, 737–756, https://doi.org/10.5194/nhess-16-737-2016, 2016.
Biolchi, S., Furlani, S., Devoto, S., Scicchitano, G., Korbar, T., Vilibić, I., and Šepić, J.: The origin and dynamics of coastal boulders in a semi-enclosed shallow basin: A northern Adriatic case study, Marine Geology, 411, 62–77, https://doi.org/10.1016/j.margeo.2019.01.008, 2019a.
Biolchi, S., Denamiel, C., Devoto, S., Korbar, T., Macovaz, V., Scicchitano, G., Vilibić, I., and Furlani, S.: Impact of the October 2018 Storm Vaia on Coastal Boulders in the Northern Adriatic Sea, Water, 11, 2229, https://doi.org/10.3390/w11112229, 2019b.
Bishop, P. and Hughes, M.: Imbricate and fitted fabrics in coastal boulder deposits on the Australian east coast, Geology, 17, 544–547, https://doi.org/10.1130/0091-7613(1989)017<0544:IAFFIC>2.3.CO;2, 1989.
Blair, T. C. and McPherson, J. G.: Grain-size and textural classification of coarse sedimentary particles, Journal of Sedimentary Research, 69, 6–19, 1999.
Boak, E. H. and Turner, I. L.: Shoreline Definition and Detection: A Review, Journal of Coastal Research, 2005, 688–703, 2005.
Boesl, F., Engel, M., Eco, R. C., Galang, J. B., Gonzalo, L. A., Llanes, F., Quix, E., and Brückner, H.: Digital mapping of coastal boulders – high-resolution data acquisition to infer past and recent transport dynamics, Sedimentology, 67, 1393–1410, https://doi.org/10.1111/sed.12578, 2020.
Booth, D.: Bondi's Big Rock: explanations and representations in coastal geomorphology, Geographical Research, 54, 357–364, https://doi.org/10.1111/1745-5871.12194, 2016.
Boulton, S. J. and Whitworth, M. R. Z.: Block and boulder accumulations on the southern coast of Crete (Greece): evidence for the 365 CE tsunami in the Eastern Mediterranean, Geological Society, London, Special Publications, 456, 105–125, 2017.
Bourgeois, J. and MacInnes, B.: Tsunami boulder transport and other dramatic effects of the 15 November 2006 central Kuril Islands tsunami on the island of Matua, Zeitschrift für Geomorphologie, 54, 175–195, https://doi.org/10.1127/0372-8854/2010/0054S3-0024, 2010.
Bourrouilh-Le Jan, F. G. and Talandier, J.: Sedimentation et fracturation de haute energie en milieu recifal: Tsunamis, ouragans et cyclones et leurs effets sur la sedimentologie et la geomorphologie d'un atoll: Motu et hoa, a rangiroa, Tuamotu, Pacifique SE, Marine Geology, 67, 263–333, https://doi.org/10.1016/0025-3227(85)90095-7, 1985.
Bresnahan, P., Briggs, E., Davis, B., Rodriguez, A. R., Edwards, L., Peach, C., Renner, N., Helling, H., and Merrifield, M.: A low-cost, DIY ultrasonic water level sensor for education, citizen science, and research, Oceanography, 36, 51–58, 2023.
Brill, D., May, S. M., Mhammdi, N., King, G., Lehmann, B., Burow, C., Wolf, D., Zander, A., and Brückner, H.: Evaluating optically stimulated luminescence rock surface exposure dating as a novel approach for reconstructing coastal boulder movement on decadal to centennial timescales, Earth Surf. Dynam., 9, 205–234, https://doi.org/10.5194/esurf-9-205-2021, 2021.
Bryant, E. A. and Nott, J.: Geological Indicators of Large Tsunami in Australia, Natural Hazards, 24, 231–249, https://doi.org/10.1023/A:1012034021063, 2001.
Bujan, N. and Cox, R.: Maximal Heights of Nearshore Storm Waves and Resultant Onshore Flow Velocities, Frontiers in Marine Science, 7, https://doi.org/10.3389/fmars.2020.00309, 2020.
Canavesio, R., Cohen, O., Pons-Branchu, E., and Costa, S.: Atoll islets reshaping processes induced by extreme cyclonic waves and calm weather. Evidence from two centuries of megablocks emergences and coral rubble displacements in Anaa, Rangiroa and Tikehau atolls (western Tuamotu archipelago – French Polynesia), Marine Geology, 464, 107140, https://doi.org/10.1016/j.margeo.2023.107140, 2023.
Carballeira, R., Peña-Monne, J. L., Otero, X. L., Sampietro-Vattuone, M. M., Castro-Correa, C. P., Soto-Bauerle, M. V., and Pérez-Alberti, A.: Paleotsunami evidence in the Bahía Inglesa coast (Atacama, Chile) based on a multi-approach analysis, Environmental Earth Sciences, 81, 153, https://doi.org/10.1007/s12665-022-10259-2, 2022.
Causon Deguara, J. and Gauci, R.: Evidence of extreme wave events from boulder deposits on the south-east coast of Malta (Central Mediterranean), Natural Hazards, 86, 543–568, https://doi.org/10.1007/s11069-016-2525-4, 2017.
Chua, S., Switzer, A. D., Li, T., Chen, H., Christie, M., Shaw, T. A., Khan, N. S., Bird, M. I., and Horton, B. P.: A new Holocene sea-level record for Singapore, The Holocene, 31, 1376–1390, https://doi.org/10.1177/09596836211019096, 2021.
Coe, A. L.: Geological field techniques, John Wiley & Sons, 323 pp., ISBN 978-1-444-33062-5, 2010.
Corradino, M., Faraci, C., Monaco, C., and Pepe, F.: Coastal boulder production controlled by columnar joints of ignimbrite and extreme waves: insights from the high-energy coast of Pantelleria Island (Sicily Channel, Mediterranean Sea), Natural Hazards, 121, 3621–3655, https://doi.org/10.1007/s11069-024-06936-z, 2025.
Costa, P. J. M. and Andrade, C.: Tsunami deposits: Present knowledge and future challenges, Sedimentology, 67, 1189–1206, https://doi.org/10.1111/sed.12724, 2020.
Cox, R. and Pakrashi, V.: Field Studies of Megagravel Transport: Relevance for Coastal Infrastructure Engineering, ce/papers, 6, 768–771, https://doi.org/10.1002/cepa.2211, 2023.
Cox, R., Zentner, D. B., Kirchner, B. J., and Cook, M. S.: Boulder ridges on the Aran Islands (Ireland): Recent movements caused by storm waves, not tsunami, Journal of Geology, 120, 249–272, https://doi.org/10.1086/664787, 2012.
Cox, R., Lopes, W. A., and Jahn, K. L.: Quantitative roundness analysis of coastal boulder deposits, Marine Geology, 396, 114–141, https://doi.org/10.1016/j.margeo.2017.03.003, 2018a.
Cox, R., Jahn, K. L., Watkins, O. G., and Cox, P.: Extraordinary boulder transport by storm waves (west of Ireland, winter 2013–2014), and criteria for analysing coastal boulder deposits, Earth-Science Reviews, 177, 623–636, https://doi.org/10.1016/j.earscirev.2017.12.014, 2018b.
Cox, R., Ardhuin, F., Dias, F., Autret, R., Beisiegel, N., Earlie, C. S., Herterich, J. G., Kennedy, A. B., Raby, A., Schmitt, P., and Weiss, R.: Systematic review shows that work done by storm waves can be mistinterpreted as tsunami-related, because commonly used hydrodynamic equations are flawed, Frontiers in Marine Science, https://doi.org/10.3389/fmars.2020.00004 2020.
Creel, R. C., Austermann, J., Kopp, R. E., Khan, N. S., Albrecht, T., and Kingslake, J.: Global mean sea level likely higher than present during the holocene, Nature Communications, 15, 10731, https://doi.org/10.1038/s41467-024-54535-0, 2024.
Cullen, N. D. and Bourke, M. C.: Clast abrasion of a rock shore platform on the Atlantic coast of Ireland, Earth Surface Processes and Landforms, 43, 2627–2641, https://doi.org/10.1002/esp.4421, 2018.
Di Francesco, P.-M., Bonneau, D. A., and Hutchinson, D. J.: Computational Geometry-Based Surface Reconstruction for Volume Estimation: A Case Study on Magnitude-Frequency Relations for a LiDAR-Derived Rockfall Inventory, ISPRS International Journal of Geo-Information, 10, 157, 2021.
Dodet, G., Leckler, F., Sous, D., Ardhuin, F., Filipot, J. F., and Suanez, S.: Wave runup over steep rocky cliffs, Journal of Geophysical Research: Oceans, 123, 7185–7205, https://doi.org/10.1029/2018JC013967, 2018.
Dunán-Avila, P., Authemayou, C., Jaud, M., Pedoja, K., Jara-Muñoz, J., Bertin, S., Peñalver-Hernández, L., Floc'h, F., Nuñez-Labañino, A., Winckler, P., Pierre-Toledo, J., Benítez-Frometa, P., Ross-Cabrera, H., Letortu, P., Rodríguez-Valdés, A. R., Coutín-Lobaina, N., and Chauveau, D.: Geomorphological signatures of known hurricanes and validation of theoretical emplacement formulations: Coastal boulder deposits on Cuban low-lying marine terraces, Marine Geology, 480, 107438, https://doi.org/10.1016/j.margeo.2024.107438, 2025.
Earlie, C., Masselink, G., and Russell, P.: The role of beach morphology on coastal cliff erosion under extreme waves, Earth Surface Processes and Landforms, 43, 1213–1228, https://doi.org/10.1002/esp.4308, 2018.
Egbert, G. D. and Ray, R. D.: Tidal prediction, Journal of Marine Research, 75, 189–237, https://elischolar.library.yale.edu/journal_of_marine_research/432 (last access: 24 October 2024), 2017.
Engel, M. and May, S. M.: Bonaire's boulder fields revisited: evidence for Holocene tsunami impact on the Leeward Antilles, Quaternary Science Reviews, 54, 126–141, https://doi.org/10.1016/j.quascirev.2011.12.011, 2012.
Engel, M., Oetjen, J., May, S. M., and Brückner, H.: Tsunami deposits of the Caribbean – Towards an improved coastal hazard assessment, Earth-Science Reviews, 163, 260–296, https://doi.org/10.1016/j.earscirev.2016.10.010, 2016.
Etienne, S. and Paris, R.: Boulder accumulations related to storms on the south coast of the Reykjanes Peninsula (Iceland), Geomorphology, 114, 55–70, https://doi.org/10.1016/j.geomorph.2009.02.008, 2010.
Etienne, S., Buckley, M., Paris, R., Nadesna, A. K., Clark, K., Strotz, L., Chagué-Goff, C., Goff, J., and Richmond, B. M.: The use of boulders for characterising past tsunamis: Lessons from the 2004 Indian Ocean and 2009 South Pacific tsunamis, Earth Science Reviews, 107, 76–90, https://doi.org/10.1016/j.earscirev.2010.12.006, 2011.
Evelpidou, N. and Pirazzoli, P. A.: Sea-Level Indicators, in: Environmental Management and Governance: Advances in Coastal and Marine Resources, edited by: Finkl, C. W. and Makowski, C., Springer International Publishing, Cham, 291–311, https://doi.org/10.1007/978-3-319-06305-8_12, 2015.
Evelpidou, N., Zerefos, C., Synolakis, C., Repapis, C., Karkani, A., Polidorou, M., and Saitis, G.: Coastal Boulders on the SE Coasts of Cyprus as Evidence of Palaeo-Tsunami Events, Journal of Marine Science and Engineering, 8, 812, 2020.
Fichaut, B. and Suanez, S.: Quarrying, transport and deposition of cliff-top storm deposits during extreme events: Banneg Island, Brittany, Marine Geology, 283, 36–55, https://doi.org/10.1016/j.margeo.2010.11.003, 2011.
Frohlich, C., Hornbach, M. J., Taylor, F. W., Shen, C.-C., Moala, A., Morton, A. E., and Kruger, J.: Huge erratic boulders in Tonga deposited by a prehistoric tsunami, Geology, 37, 131–134, https://doi.org/10.1130/g25277a.1, 2009.
Froideval, L., Pedoja, K., Garestier, F., Moulon, P., Conessa, C., Pellerin Le Bas, X., Traoré, K., and Benoit, L.: A low-cost open-source workflow to generate georeferenced 3D SfM photogrammetric models of rocky outcrops, The Photogrammetric Record, 34, 365–384, https://doi.org/10.1111/phor.12297, 2019.
Geyman, E. C. and Maloof, A. C.: Deriving Tidal Structure From Satellite Image Time Series, Earth and Space Science, 7, e2019EA000958, https://doi.org/10.1029/2019EA000958, 2020.
Gienko, G. A. and Terry, J. P.: Three-dimensional modeling of coastal boulders using multi-view image measurements, Earth Surface Processes and Landforms, 39, 853–864, https://doi.org/10.1002/esp.3485, 2014.
Gill, S. K. and Schultz, J. R. (Eds.): Tidal datums and their applications, NOAA special publication NOS CO-OPS 1, 132 pp., https://repository.library.noaa.gov/view/noaa/50574 (last access: 17 October 2025), 2001.
Goff, J., Dudley, W. C., deMaintenon, M. J., Cain, G., and Coney, J. P.: The largest local tsunami in 20th century Hawaii, Marine Geology, 226, 65–79, https://doi.org/10.1016/j.margeo.2005.09.017, 2006.
Goto, K., Chavanich, S. A., Imamura, F., Kunthasap, P., Matsui, T., Minoura, K., Sygawara, D., and Yanagisawa, H.: Distribution, origin and transport process of boulders deposited by the 2004 Indian Ocean tsunami at Parakang Cape, Thailand, Sedimentary Geology, 202, 821–837, https://doi.org/10.1016/j.sedgeo.2007.09.004, 2007.
Goto, K., Okada, K., and Imamura, F.: Characteristics and hydrodynamics of boulders transported by storm waves at Kudaka Island, Japan, Marine Geology, 262, 14–24, https://doi.org/10.1016/j.margeo.2009.03.001, 2009.
Goto, K., Miyagi, K., Kawamata, H., and Imamura, F.: Disrimination of boulders deposited by tsunamis and storm waves at Ishigaki Island, Japan, Marine Geology, 269, 34–45, https://doi.org/10.1016/j.margeo.2009.12.004, 2010a.
Goto, K., Shinozaki, T., Minoura, K., Okada, K., Sugawara, D., and Imamura, F.: Distribution of boulders at Miyara Bay of Ishigaki Island, Japan: A flow characteristic indicator of tsunami and storm waves, Island Arc, 19, 412–426, https://doi.org/10.1111/j.1440-1738.2010.00721.x, 2010b.
Goto, K., Miyagi, K., Kanawa, T., Takahashi, J., and Imamura, F.: Emplacement and movement of boulders by known storm waves – Field evidence from the Okinawa Islands, Japan, Marine Geology, 283, 66–78, https://doi.org/10.1016/j.margeo.2010.09.007, 2011.
Goto, K., Sugawara, D., Ikema, S., and Miyagi, T.: Sedimentary processes associated with sand and boulder deposits formed by the 2011 Tohoku-oki tsunami at Sabusawa Island, Japan, Sedimentary Geology, 282, 188–198, https://doi.org/10.1016/j.sedgeo.2012.03.017, 2012.
Gusiakov, V. K.: Meteotsunamis at global scale: problems of event identification, parameterization and cataloguing, Natural Hazards, 106, 1105–1123, https://doi.org/10.1007/s11069-020-04230-2, 2021.
Hall, A. M., Hansom, J. D., Williams, D. M., and Jarvis, J.: Distribution, geomorphology and lithofacies of cliff-top storm deposits: Examples from the high-energy coasts of Scotland and Ireland, Marine Geology, 232, 131–155, https://doi.org/10.1016/j.margeo.2006.06.008, 2006.
Hansom, J. D., Barltrop, N. D. P., and Hall, A. M.: Modelling the processes of cliff-top erosion and deposition under extreme storm waves, Marine Geology, 253, 36–50, https://doi.org/10.1016/j.margeo.2008.02.015, 2008.
Hansom, J. D., Switzer, A. D., and Pile, J.: Extreme Waves: Causes, Characteristics, and Impact on Coastal Environments and Society, in: Coastal and Marine Hazards, Risks, and Disasters, edited by: Shroder, J. F., Ellis, J. T., and Sherman, D. J., Elsevier, Boston, 307–334, https://doi.org/10.1016/B978-0-12-396483-0.00011-X, 2015.
Hart-Davis, M. G., Andersen, O. B., Ray, R. D., Zaron, E. D., Schwatke, C., Arildsen, R. L., Dettmering, D., and Nielsen, K.: Tides in Complex Coastal Regions: Early Case Studies From Wide-Swath SWOT Measurements, Geophysical Research Letters, 51, e2024GL109983, https://doi.org/10.1029/2024GL109983, 2024.
Hastewell, L. J., Schaefer, M., Bray, M., and Inkpen, R.: Intertidal boulder transport: A proposed methodology adopting Radio Frequency Identification (RFID) technology to quantify storm induced boulder mobility, Earth Surface Processes and Landforms, 44, 681–698, https://doi.org/10.1002/esp.4523, 2019.
Hatcher, S. V., Forbes, D. L., and Manson, G. K.: Boulder-strewn flats in a high-latitude macrotidal embayment, Baffin Island: geomorphology, formation, and future stability, Canadian Journal of Earth Sciences, 59, 866–883, https://doi.org/10.1139/cjes-2021-0019, 2022.
Heaton, T. J., Bard, E., Bronk Ramsey, C., Butzin, M., Hatté, C., Hughen, K. A., Köhler, P., and Reimer, P. J.: A response to community questions on the Marine20 radiocarbon age calibration curve: Marine reservoir ages and the calibration of 14C samples from the oceans, Radiocarbon, 65, 247–273, https://doi.org/10.1017/RDC.2022.66, 2023.
Hoffmann, G., Reicherter, K., Wiatr, T., Grützner, C., and Rausch, T.: Block and boulder accumulations along the coastline between Fins and Sur (Sultanate of Oman): tsunamigenic remains?, Natural Hazards 65, 851–873, https://doi.org/10.1007/s11069-012-0399-7, 2013.
Hoffmeister, D.: Mapping of subaerial coarse clasts, in: Geological Records of Tsunamis and Other Extreme Waves, edited by: Engel, M., Pilarczyk, J., May, S. M., Brill, D., and Garrett, E., Elsevier, 169–184, https://doi.org/10.1016/B978-0-12-815686-5.00009-2, 2020.
Hoffmeister, D., Curdt, C., and Bareth, G.: Monitoring the sedimentary budget and dislocated boulders in western Greece – results since 2008, Sedimentology, 67, 1411–1430, https://doi.org/10.1111/sed.12723, 2020.
Huang, C., Zhang, H., and Zhao, J.: High-Efficiency Determination of Coastline by Combination of Tidal Level and Coastal Zone DEM from UAV Tilt Photogrammetry, Remote Sensing, 12, 2189, https://doi.org/10.3390/rs12142189, 2020.
Imamura, F., Goto, K., and Ohkobo, S.: A numerical model for the transport of a boulder by tsunami, Journal of Geophysical Research, 113, https://doi.org/10.1029/2007JC004170, 2008.
Jones, B. and Hunter, I. G.: Very Large Boulders on the Coast of Grand Cayman: The Effects of Giant Waves on Rocky Coastlines, Journal of Coastal Research, 8, 763–774, 1992.
Kato, Y. and Kimura, M.: Age and origin of so-called ”Tsunami-ishi” Ishigaki Island, Okinawa Prefecture, Journal of the Geological Society of Japan, 89, 471–474, https://doi.org/10.5575/geosoc.89.471, 1983.
Kelletat, D., Engel, M., May, S. M., Erdmann, W., Scheffers, A., and Brückner, H.: Erosive impact of tsunami and storm waves on rocky coasts and post-depositional weathering of coarse-clast deposits, in: Geological Records of Tsunamis and Other Extreme Waves, edited by: Engel, M., Pilarczyk, J., May, S. M., Brill, D., and Garrett, E., Elsevier, 561–584, https://doi.org/10.1016/B978-0-12-815686-5.00026-2, 2020.
Kennedy, A., Cox, R., Engel, M., Spreyer, E., Lau, A. Y. A., and Mori, N.: The Inundation Signatures on Rocky Coastlines Global Database for Coastal Boulder Deposits (ISROC-DB), Marine Geology, 487, https://doi.org/10.1016/j.margeo.2025.107581, 2025a.
Kennedy, A., Cox, R., Engel, M., Speyrer, E., Lau, A., Mori, N., and Berke, M.: The Global Database for Coastal Boulder Deposits (ISROC-DB) from Inundation Signature on Rocky Coastlines (ISROC), DesignSafe PRJ-5756 [data set], https://doi.org/10.17603/ds2-nm6q-h553, 2025b.
Kennedy, A. B., Mori, N., Zhang, Y., Yasuda, T., Chen, S.-E., Tajima, Y., Pecor, W., and Toride, K.: Observations and Modeling of Coastal Boulder Transport and Loading During Super Typhoon Haiyan, Coastal Engineering Journal, 58, 1640004-1–1640004-25, https://doi.org/10.1142/s0578563416400040, 2016.
Kennedy, A. B., Mori, N., Yasuda, T., Shimozono, T., Tomiczek, T., Donahue, A., Shimura, T., and Imai, Y.: Extreme block and boulder transport along a cliffed coastline (Calicoan Island, Philippines) during Super Typhoon Haiyan, Marine Geology, 383, 65–77, https://doi.org/10.1016/j.margeo.2016.11.004, 2017.
Kennedy, A. B., Cox, R., and Dias, F.: Storm Waves May Be the Source of Some “Tsunami” Coastal Boulder Deposits, Geophysical Research Letters, 48, e2020GL090775, https://doi.org/10.1029/2020GL090775, 2021.
Kennedy, D. M., Tannock, K. L., Crozier, M. J., and Rieser, U.: Boulders of MIS 5 age deposited by a tsunami on the coast of Otago, New Zealand, Sedimentary Geology, 200, 222–231, https://doi.org/10.1016/j.sedgeo.2007.01.005, 2007.
Khan, N. S., Ashe, E., Shaw, T. A., Vacchi, M., Walker, J., Peltier, W. R., Kopp, R. E., and Horton, B. P.: Holocene Relative Sea-Level Changes from Near-, Intermediate-, and Far-Field Locations, Current Climate Change Reports, 1, 247–262, https://doi.org/10.1007/s40641-015-0029-z, 2015.
Knight, P., Bird, C., Sinclair, A., Higham, J., and Plater, A.: Testing an “IoT” Tide Gauge Network for Coastal Monitoring, IoT, 2, 17–32, 2021.
Łabuz, T. A.: A review of field methods to survey coastal dunes–experience based on research from South Baltic coast, Journal of Coastal Conservation, 20, 175–190, https://doi.org/10.1007/s11852-016-0428-x, 2016.
Lario, J., Spencer, C., and Bardají, T.: Presence of boulders associated with an extreme wave event in the western Mediterranean (Cape Cope, Murcia, Spain): possible evidence of a tsunami, Journal of Iberian Geology, 49, 115–132, https://doi.org/10.1007/s41513-023-00208-8, 2023.
Lau, A. Y. A. and Autret, R.: Spatial patterns of subaerial coarse clasts, in: Geological Records of Tsunamis and Other Extreme Waves, edited by: Engel, M., Pilarczyk, J., May, S. M., Brill, D., and Garrett, E., Elsevier, 513–546, https://doi.org/10.1016/B978-0-12-815686-5.00024-9, 2020.
Lau, A. Y. A., Etienne, S., Terry, J. P., Switzer, A. D., and Lee, Y. S.: A preliminary study of the distribution, sizes and orientations of large reef-top coral boulders deposited by extreme waves at Makemo Atoll, French Polynesia, Journal of Coastal Research, 272–277, https://doi.org/10.2112/SI70-046.1, 2014.
Lau, A. Y. A., Terry, J. P., Ziegler, A. D., Switzer, A. D., Lee, Y., and Etienne, S.: Understanding the history of extreme wave events in the Tuamotu Archipelago of French Polynesia from large carbonate boulders on Makemo Atoll, with implications for future threats in the central South Pacific, Marine Geology, 380, 174–190, https://doi.org/10.1016/j.margeo.2016.04.018, 2016.
Lau, A. Y. A., Terry, J. P., Ziegler, A., Pratap, A., and Harris, D.: Boulder emplacement and remobilisation by cyclone and submarine landslide tsunami waves near Suva City, Fiji, Sedimentary Geology, 364, 242–257, https://doi.org/10.1016/j.sedgeo.2017.12.017, 2018.
Leonard, N. D., Welsh, K. J., Clark, T. R., Feng, Y. X., Pandolfi, J. M., and Zhao, J. X.: New evidence for “far-field” Holocene sea level oscillations and links to global climate records, Earth and Planetary Science Letters, 487, 67–73, https://doi.org/10.1016/j.epsl.2018.02.008, 2018.
Liu, X., Xia, J., Wright, G., and Arnold, L.: A state of the art review on High Water Mark (HWM) determination, Ocean & Coastal Management, 102, 178–190, https://doi.org/10.1016/j.ocecoaman.2014.09.027, 2014.
Lorang, M. S.: A wave-competence approach to distinguish between boulder and megaclast deposits due to storm waves versus tsunamis, Marine Geology, 283, 90–97, https://doi.org/10.1016/j.margeo.2010.10.005, 2011.
Ma, M., Huang, W., Vijayan, L., and Jung, S.: Modeling wave-surge effects on barrier-island breaching in St. Joseph Peninsula during Hurricane Michael, Natural Hazards, 120, 14199–14226, https://doi.org/10.1007/s11069-024-06768-x, 2024.
Madsen, K. S., Høyer, J. L., Fu, W., and Donlon, C.: Blending of satellite and tide gauge sea level observations and its assimilation in a storm surge model of the North Sea and Baltic Sea, Journal of Geophysical Research: Oceans, 120, 6405–6418, https://doi.org/10.1002/2015JC011070, 2015.
Manno, G., Lo Re, C., and Ciraolo, G.: Uncertainties in shoreline position analysis: the role of run-up and tide in a gentle slope beach, Ocean Sci., 13, 661–671, https://doi.org/10.5194/os-13-661-2017, 2017.
Marriner, N., Kaniewski, D., Morhange, C., Flaux, C., Giaime, M., Vacchi, M., and Goff, J.: Tsunamis in the geological record: Making waves with a cautionary tale from the Mediterranean, Science Advances, 3, 2017.
Massel, S. R. and Done, T. J.: Effects of cyclone waves on massive coral assemblages on the Great Barrier Reef: meteorology, hydrodynamics and demography, Coral Reefs, 12, 153–166, https://doi.org/10.1007/BF00334475, 1993.
May, S. M., Engel, M., Brill, D., Cuadra, C., Lagmay, A. M. F., Santiago, J., Suarez, J. K., Reyes, M., and Brückner, H.: Block and boulder transport in Eastern Samar (Philippines) during Supertyphoon Haiyan, Earth Surf. Dynam., 3, 543–558, https://doi.org/10.5194/esurf-3-543-2015, 2015.
McCarthy, D. P.: A simple test of lichenometric dating using bidecadal growth of Rhizocarpon geographicum agg. and structure-from-motion photogrammetry, Geomorphology, 385, 107736, https://doi.org/10.1016/j.geomorph.2021.107736, 2021.
Medina, F., Mhammdi, N., Emran, A., and Hakdaoui, S.: A case of uplift and transport of a large boulder by the recent winter storms at Dahomey beach (Morocco), in: Proceedings of the IX Symposium on the Iberian Atlantic Margin, edited by: P. P. Cunha, J. Dias, H. Veríssimo, L. V. Duarte, P. Dinis, F. C. Lopes, Bessa, A. F., and Carmo, J. A., Coimbra, Portugal, 215–216, ISBN 978-989-98914-2-5, 2018.
Mhammdi, N., Medina, F., Kelletat, D., Ahmamou, M., and Aloussi, L.: Large boulders along the Rabat coast (Morocco); possible emplacement by the November, 1st, 1755 AD tsunami, Science of Tsunami Hazards, 27, 17–30, 2008.
Morton, R. A., Richmond, B. M., Jaffe, B. E., and Gelfenbaum, G.: Reconnaissance investigation of Caribbean extreme wave deposits–Preliminary observations, interpretations, and research directions, U.S. Geological Survey, Open-File Report 2006-1293, https://doi.org/10.3133/ofr20061293, 2006.
Morton, R. A., Richmond, B. M., Jaffe, B. E., and Gelfenbaum, G.: Coarse-clast ridge complexes of the Caribbean: A preliminary basis for distinguishing tsunami and storm-wave origins, Journal of Sedimentary Research, 78, 624–637, https://doi.org/10.2110/jsr.2008.068, 2008.
Mottershead, D. N., Soar, P. J., Bray, M. J., and Hastewell, L. J.: Reconstructing Boulder Deposition Histories: Extreme Wave Signatures on a Complex Rocky Shoreline of Malta, Geosciences, 10, 400, 2020.
Münster, S., Apollonio, F. I., Bluemel, I., Fallavollita, F., Foschi, R., Grellert, M., Ioannides, M., Jahn, P. H., Kurdiovsky, R., Kuroczyński, P., Lutteroth, J.-E., Messemer, H., and Schelbert, G.: Handbook of Digital 3D Reconstruction of Historical Architecture, Chapter 3: 3D Modeling, Springer, 107–128, https://doi.org/10.1007/978-3-031-43363-4_6, 2024.
Nagle-McNaughton, T. P. and Cox, R.: Measuring change using quantitative differencing of repeat structure-from-motion photogrammetry: the effect of storms on coastal boulder deposits Remote Sensing, 12, 42, https://doi.org/10.3390/rs12010042, 2020.
Nakata, K., Yanagisawa, H., and Goto, K.: A new point cloud processing method unveiled hidden coastal boulders from deep vegetation, Scientific Reports, 13, 10918, https://doi.org/10.1038/s41598-023-37985-2, 2023.
Nakata, T. and Kawana, T.: Historical and Prehistorical Large Tsunamis in the Southern Ryukyus, Japan, in: Tsunami: Progress in Prediction, Disaster Prevention and Warning, edited by: Tsuchiya, Y. and Shuto, N., Springer Netherlands, Dordrecht, 211–221, https://doi.org/10.1007/978-94-015-8565-1_15, 1995.
Nandasena, N. A. K., Tanaka, N., Sasaki, Y., and Osada, M.: Boulder transport by the 2011 Great East Japan tsunami: Comprehensive field observations and whither model predictions?, Marine Geology, 346, 292–309, https://doi.org/10.1016/j.margeo.2013.09.015, 2013.
Nandasena, N. A. K., Scicchitano, G., Scardino, G., Milella, M., Piscitelli, A., and Mastronuzzi, G.: Boulder displacements along rocky coasts: A new deterministic and theoretical approach to improve incipient motion formulas, Geomorphology, 407, 108217, https://doi.org/10.1016/j.geomorph.2022.108217, 2022.
Naylor, L. A., Stephenson, W. J., Smith, H. C. M., Way, O., Mendelssohn, J., and Cowley, A.: Geomorphological control on boulder transport and coastal erosion before, during and after an extreme extra-tropical cyclone, Earth Surface Processes and Landforms, 41, 685–700, https://doi.org/10.1002/esp.3900, 2016.
Nehama, F. P. J., Veriua, Z. D. H., Maueua, C., Hibbert, A., Calafat, F., and Cotton, P. D.: Validating Sea-Level Altimetry Data against Tide Gauge for Coastal Risk Analysis in Mozambique, Journal of Marine Science and Engineering, 10, 1597, https://doi.org/10.3390/jmse10111597, 2022.
Nott, J.: Extremely high-energy wave deposits inside the Great Barrier Reef, Australia: determining the cause–tsunami or tropical cyclone, Marine Geology, 141, 193–207, https://doi.org/10.1016/S0025-3227(97)00063-7, 1997.
Nott, J.: Tsunami or storm waves?–Determining the origin of a spectacular field of wave emplaced boulders using numerical storm surge and wave models and hydrodynamic transport equations, Journal of Coastal Research, 19, 348–356, 2003a.
Nott, J.: Waves, coastal boulder deposits and the importance of the pre-transport setting, Earth and Planetary Science Letters, 210, 269–276, https://doi.org/10.1016/S0012-821X(03)00104-3, 2003b.
O'Donovan, J.: Letters containing information relative to the antiquities of the County of Galway, collected during the progress of the Ordnance Survey in 1839, reproduced in 1928 under the direction of Rev. M. O'Flanagan, 233 pp., Bray, 1928.
Oetjen, J., Engel, M., and Schüttrumpf, H.: Experiments on tsunami induced boulder transport – A review, Earth-Science Reviews, 220, 103714, https://doi.org/10.1016/j.earscirev.2021.103714, 2021.
Oliveira, M. A., Scotto, M. G., Barbosa, S., Andrade, C. F. D., and Freitas, M. D. C.: Morphological controls and statistical modelling of boulder transport by extreme storms, Marine Geology, 426, 106216, https://doi.org/10.1016/j.margeo.2020.106216, 2020a.
Oliveira, M. A., Llop, E., Andrade, C., Branquinho, C., Goble, R., Queiroz, S., Freitas, M. C., and Pinho, P.: Estimating the age and mechanism of boulder transport related with extreme waves using lichenometry, Progress in Physical Geography, 44, 870–897, https://doi.org/10.1177/0309133320927629, 2020b.
Oliveira, M. A., Llop, E., Andrade, C., Branquinho, C., Goble, R., Queiroz, S., Freitas, M. C., and Pinho, P.: Estimating the age and mechanism of boulder transport related with extreme waves using lichenometry, Progress in Physical Geography: Earth and Environment, 0309133320927629, https://doi.org/10.1177/0309133320927629, 2020c.
Pajak, M. J. and Leatherman, S.: The High Water Line as Shoreline Indicator, Journal of Coastal Research, 18, 329–337, 2002.
Paris, R., Fournier, J., Poizot, E., Etienne, S., Morin, J., Lavigne, F., and Wassmer, P.: Boulder and fine sediment transport and deposition by the 2004 tsunami in Lhok Nga (western Banda Aceh, Sumatra, Indonesia): A coupled offshore–onshore model, Marine Geology, 268, 43–54, https://doi.org/10.1016/j.margeo.2009.10.011, 2010.
Paris, R., Naylor, L. A., and Stephenson, W. J.: Boulders as signatures of storms on rock coasts, Marine Geology, 283, 1–11, https://doi.org/10.1016/j.margeo.2011.03.016, 2011.
Parker, B. B.: The Difficulties in Measuring a Consistently Defined Shoreline–The Problem of Vertical Referencing, Journal of Coastal Research, 44–56, 2003.
Pedoja, K., Dunán-Avila, P., Jara-Muñoz, J., Authemayou, C., Nuñez-Labañino, A., de Gelder, G., Chauveau, D., Peñalver, L., Frometa, P. D. J. B., Martin-Izquierdo, D., Abella, E. C., Bertin, S., Rodríguez-Valdés, Á. R., Arango-Arias, E. D., Traoré, K., and Regard, V.: On a ∼ 210 t Caribbean coastal boulder: The huracanolito seaward of the ruins of the Bucanero resort, Juragua, Oriente, Cuba, Earth Surface Processes and Landforms, 48, 3074–3090, https://doi.org/10.1002/esp.5682, 2023.
Pepe, F., Corradino, M., Parrino, N., Besio, G., Presti, V. L., Renda, P., Calcagnile, L., Quarta, G., Sulli, A., and Antonioli, F.: Boulder coastal deposits at Favignana Island rocky coast (Sicily, Italy): Litho-structural and hydrodynamic control, Geomorphology, 303, 191–209, https://doi.org/10.1016/j.geomorph.2017.11.017, 2018.
Pignatelli, C., Sansò, P., and Mastronuzzi, G.: Evaluation of tsunami flooding using geomorphologic evidence, Marine Geology, 260, 6–18, https://doi.org/10.1016/j.margeo.2009.01.002, 2009.
Raoult, V., Reid-Anderson, S., Ferri, A., and Williamson, J. E.: How Reliable Is Structure from Motion (SfM) over Time and between Observers? A Case Study Using Coral Reef Bommies, Remote Sensing, 9, 740, https://doi.org/10.3390/rs9070740, 2017.
Ray, R. D., Egbert, G. D., and Erofeeva, S. Y.: Tide Predictions in Shelf and Coastal Waters: Status and Prospects, in: Coastal Altimetry, edited by: Vignudelli, S., Kostianoy, A. G., Cipollini, P., and Benveniste, J., Springer Berlin Heidelberg, Berlin, Heidelberg, 191–216, https://doi.org/10.1007/978-3-642-12796-0_8, 2011.
Regnauld, H., Oszwald, J., Planchon, O., Pignatelli, C., Piscitelli, A., Mastronuzzi, G., Audevard, A., and lien: Polygenetic (tsunami and storm) deposits? A case study from Ushant Island, western France, Zeitschrift für Geomorphologie, 54, 197–217, https://doi.org/10.1127/0372-8854/2010/0054s3-0025, 2010.
Richmond, B. M., Buckley, M., Etienne, S., Chagué-Goff, C., Clark, K., Goff, J., Dominey-Howes, D., and Strotz, L.: Deposits, flow characteristics, and landscape change resulting from the September 2009 South Pacific tsunami in the Samoan islands, Earth-Science Reviews, 107, 38–51, https://doi.org/10.1016/j.earscirev.2011.03.008, 2011.
Rixhon, G., May, S. M., Engel, M., Mechernich, S., Schroeder-Ritzrau, A., Frank, N., Fohlmeister, J., Boulvain, F., Dunai, T., and Brückner, H.: Multiple dating approach (14C, 230Th/U and 36Cl) of tsunami-transported reef-top boulders on Bonaire (Leeward Antilles) – Current achievements and challenges, Marine Geology, 396, 100–113, https://doi.org/10.1016/j.margeo.2017.03.007, 2018.
Roig-Munar, F. X., Gelabert, B., Rodríguez-Perea, A., Martín-Prieto, J. Á., and Vilaplana, J. M.: Storm or tsunamis: Boulder deposits on the rocky coasts of the Balearic Islands (Spain), Marine Geology, 463, 107112, https://doi.org/10.1016/j.margeo.2023.107112, 2023.
Rovere, A., Pappalardo, M., Richiano, S., Ryan, D. D., Rubio-Sandoval, K., Ruiz, P. M., Montes, A., and Gowan, E. J.: Reconstructing past sea-level changes from storm-built beach ridges, Geomorphology, 476, 109659, https://doi.org/10.1016/j.geomorph.2025.109659, 2025.
Salameh, E., Frappart, F., Marieu, V., Spodar, A., Parisot, J.-P., Hanquiez, V., Turki, I., and Laignel, B.: Monitoring Sea Level and Topography of Coastal Lagoons Using Satellite Radar Altimetry: The Example of the Arcachon Bay in the Bay of Biscay, Remote Sensing, 10, 297, https://doi.org/10.3390/rs10020297, 2018.
Sato, T., Sato, M., Yamada, M., Saito, H., Satake, K., Nakamura, N., Goto, K., Miyairi, Y., and Yokoyama, Y.: Two-step movement of tsunami boulders unveiled by modified viscous remanent magnetization and radiocarbon dating, Scientific Reports, 12, 13011, https://doi.org/10.1038/s41598-022-17048-8, 2022.
Scardino, G., Rovere, A., Barile, C., Nandasena, N. A. K., Chauveau, D., Dahm, M., Boyden, P., Bejarano, S., Casella, E., Kelly, H., Mijts, E., and Scicchitano, G.: Coastal boulders emplaced by extreme wave events impacting the ABC islands (Aruba, Bonaire, Curaçao; Leeward Antilles, Caribbean), Quaternary Science Reviews, 349, 109136, https://doi.org/10.1016/j.quascirev.2024.109136, 2025.
Scheffers, A., Scheffers, S., Kelletat, D., and Browne, T.: Wave-Emplaced Coarse Debris and Megaclasts in Ireland and Scotland: Boulder Transport in a High-Energy Littoral Environment, The Journal of Geology, 117, 553–573, https://doi.org/10.1086/600865, 2009.
Scheffers, A., Kelletat, D., Haslett, S. K., Scheffers, S., and Browne, T.: Coastal boulder deposits in Galway Bay and the Aran Islands, western Ireland, Zeitschrif für Geomorphologie, 54, 247–279, https://doi.org/10.1127/0372-8854/2010/0054S3-0027, 2010.
Scheffers, A. M., Engel, M., May, S. M., Scheffers, S. R., Joannes-Boyau, R., Hänssler, E., Kennedy, K., Kelletat, D., Brückner, H., Vött, A., Schellmann, G., Schäbitz, F., Radtke, U., Sommer, B., Willershäuser, T., and Felis, T.: Potential and limits of combining studies of coarse- and fine-grained sediments for the coastal event history of a Caribbean carbonate environment, in: Sedimentary Coastal Zones from High to Low Latitudes: Similarities and Differences, edited by: Martini, I. P. and Wanless, H. R., Geological Society of London, 503–531, https://doi.org/10.1144/sp388.4, 2014.
Schneider, B., Hoffmann, G., Falkenroth, M., and Grade, J.: Tsunami and storm sediments in Oman: Characterizing extreme wave deposits using terrestrial laser scanning, Journal of Coastal Conservation, 23, 801–815, https://doi.org/10.1007/s11852-018-0663-4, 2019.
Scicchitano, G., Monaco, C., and Tortorici, L.: Large boulder deposits by tsunami waves along the Ionian coast of south-eastern Sicily (Italy), Marine Geology, 238, 75–91, https://doi.org/10.1016/j.margeo.2006.12.005, 2007.
Scicchitano, G., Scardino, G., Tarascio, S., Monaco, C., Barracane, G., Locuratolo, G., Milella, M., Piscitelli, A., Mazza, G., and Mastronuzzi, G.: The First Video Witness of Coastal Boulder Displacements Recorded during the Impact of Medicane “Zorbas” on Southeastern Sicily, Water, 12, 1497, https://doi.org/10.3390/w12051497, 2020.
Shah-Hosseini, M., Morhange, C., Naderi Beni, A., Marriner, N., Lahijani, H., Hamzeh, M., and Sabatier, F.: Coastal boulders as evidence for high-energy waves on the Iranian coast of Makran, Marine Geology, 290, 17–28, https://doi.org/10.1016/j.margeo.2011.10.003, 2011.
Shah-Hosseini, M., Saleem, A., Mahmoud, A.-M. A., and Morhange, C.: Coastal boulder deposits attesting to large wave impacts on the Mediterranean coast of Egypt, Natural Hazards, 83, 849–865, https://doi.org/10.1007/s11069-016-2349-2, 2016.
Shepard, F. P., MacDonald, G. A., and Cox, D. C.: The tsunami of April 1, 1946, Bulletin of the Scripps Institution of Oceanography, 5, 6–33, 1949.
Spero, H. R., Bourke, M. C., Westerink, J., and Kennedy, A.: A new method for characterizing coastal boulder deposits using iPhone and open-source software, Coastal Dynamics Proceedings, 2, 11–19, 2025.
Spiske, M. and Bahlburg, H.: A quasi-experimental setting of coarse clast transport by the 2010 Chile tsunami (Bucalemu, Central Chile), Marine Geology, 289, 72–85, https://doi.org/10.1016/j.margeo.2011.09.007, 2011.
Spiske, M., Böröcz, Z., and Bahlburg, H.: The role of porosity in discriminating between tsunami and hurricane emplacement of boulders – A case study from the Lesser Antilles, southern Caribbean, Earth and Planetary Science Letters, 268, 384–396, https://doi.org/10.1016/j.epsl.2008.01.030, 2008.
Steer, J. N., Kimmoun, O., and Dias, F.: Breaking-wave induced pressure and acceleration on a clifftop boulder, Journal of Fluid Mechanics, 929, R1, https://doi.org/10.1017/jfm.2021.841, 2021.
Stevenson, T.: IV.–Account of Experiments upon the Force of the Waves of the Atlantic and German Oceans, Earth and Environmental Science Transactions of The Royal Society of Edinburgh, 16, 23–32, 1845.
Stoddart, D. R.: Coral Reefs and Islands and Catastrophic Storms, in: Applied Coastal Geomorphology, edited by: Steers, J. A., Palgrave Macmillan UK, London, 155–197, https://doi.org/10.1007/978-1-349-15424-1_10, 1971.
Suanez, S., Fichaut, B., and Magne, R.: Cliff-top storm deposits on Banneg Island, Brittany, France: Effects of giant waves in the Eastern Atlantic Ocean, Sedimentary Geology, 220, 12–28, https://doi.org/10.1016/j.sedgeo.2009.06.004, 2009.
Suanez, S., Cox, R., André, G., Leballeur, L., Dodet, G., Ammann, J., Jaud, M., and Mahéo, H.: Long-term monitoring of coastal boulder deposits on Banneg Island: A good proxy for detection of extreme oceanic storms off West Brittany (France), Geomorphology, 492, https://doi.org/10.1016/j.geomorph.2025.110043, 2026.
Sulzer, R., Marlet, R., Vallet, B., and Landrieu, L.: A Survey and Benchmark of Automatic Surface Reconstruction From Point Clouds, IEEE Transactions on Pattern Analysis and Machine Intelligence, 47, 2000–2019, https://doi.org/10.1109/TPAMI.2024.3510932, 2025.
Süssmilch, C. A.: Note on some recent marine erosion at Bondi, Journal and Proceedings of the Royal Society of New South Wales, 46, 155–158, 1912.
Switzer, A. D. and Burston, J. M.: Competing mechanisms for boulder deposition on the southeast Australian coast, Geomorphology, 114, 42–54, https://doi.org/10.1016/j.geomorph.2009.02.009, 2010.
Terry, J. P., Lau, A. Y. A., and Etienne, S.: Reef-Platform Coral Boulders: Evidence for High-Energy Marine Inundation Events on Tropical Coastlines, Springer Singapore, Singapore, 112 pp., https://doi.org/10.1007/978-981-4451-33-8_1, 2013.
Terry, J. P., Oliver, G. J. H., and Friess, D. A.: Ancient high-energy storm boulder deposits on Ko Samui, Thailand, and their significance for identifying coastal hazard risk, Palaeogeography, Palaeoclimatology, Palaeoecology, 454, 282–293, https://doi.org/10.1016/j.palaeo.2016.04.046, 2016.
Terry, J. P., Karoro, R., Gienko, G. A., Wieczorek, M., and Lau, A. Y. A.: Giant palaeotsunami in Kiribati: Converging evidence from geology and oral history, Island Arc, 30, e12417, https://doi.org/10.1111/iar.12417, 2021.
Twigg, D. R.: OSGB36/WGS84 COORDINATE TRANSFORMATIONS, Survey Review, 35, 292–306, https://doi.org/10.1179/sre.2000.35.275.292, 2000.
Udden, J. A.: Mechanical composition of clastic sediments, GSA Bulletin, 25, 655–744, https://doi.org/10.1130/gsab-25-655, 1914.
Vaccher, V., Hastewell, L., Devoto, S., Corradetti, A., Mantovani, M., Korbar, T., and Furlani, S.: The application of UAV-derived SfM-MVS photogrammetry for the investigation of storm wave boulder deposits on a small rocky island in the semi-enclosed Northern Adriatic Sea, Geomatics, Natural Hazards and Risk, 15, 2295817, https://doi.org/10.1080/19475705.2023.2295817, 2024.
Watanabe, M., Goto, K., and Imamura, F.: Reconstruction of transport modes and flow parameters from coastal boulders, in: Geological Records of Tsunamis and Other Extreme Waves, edited by: Engel, M., Pilarczyk, J., May, S. M., Brill, D., and Garrett, E., Elsevier, 617–639, https://doi.org/10.1016/B978-0-12-815686-5.00028-6, 2020.
Weiss, R.: The mystery of boulders moved by tsunamis and storms, Marine Geology, 295–298, 28–33, https://doi.org/10.1016/j.margeo.2011.12.001, 2012.
Weiss, R., Irish, J., and Goodman Tchernov, B.: Boulder Dislodgement During Coastal Storms and Tsunamis: Insights From a New Ensemble Model, Geochemistry, Geophysics, Geosystems, 23, e2021GC010266, https://doi.org/10.1029/2021GC010266, 2022.
Wentworth, C. K.: A Scale of Grade and Class Terms for Clastic Sediments, The Journal of Geology, 30, 377–392, https://doi.org/10.1086/622910, 1922.
Whelan, F. and Kelletat, D.: Boulder deposits on the southern Spanish Atlantic coast: Possible evidence for the 1755 AD Lisbon tsunami?, Science of Tsunami Hazards, 23, 25–38, 2005.
Whittal, J. and Mackie, K.: An experiment in determining the high-water mark, South African Journal of Geomatics, 12, 1–21, 2023.
Williams, D. M. and Hall, A. M.: Cliff-top megaclast deposits of Ireland, a record of extreme waves in the North Atlantic–storms or tsunamis?, Marine Geology, 206, 101–117, https://doi.org/10.1016/j.margeo.2004.02.002, 2004.
Winchester, V.: Lichenometric Dating and Its Limitations and Problems: A Guide for Practitioners, Land, 12, 611, https://doi.org/10.3390/land12030611, 2023.
Woodroffe, S. A. and Barlow, N. L. M.: Reference water level and tidal datum, in: Handbook of Sea-Level Research, 171–180, https://doi.org/10.1002/9781118452547.ch11, 2015.
Yao, Y., Burningham, H., Knight, J., and Griffiths, D.: Monitoring of Coastal Boulder Movements by Storms and Calculating Volumetric Parameters Using the Volume Differential Method Based on Point Cloud Difference, Remote Sensing, 15, 1526, https://doi.org/10.3390/rs15061526, 2023.
Young, R. W., Bryant, E. A., and Price, D. M.: Catastrophic wave (tsunami?) transport of boulders in New South Wales, Australia, Zeitschrif für Geomorphologie, 40, 191–207, 1996.
Yu, K., Zhao, J., Roff, G., Lybolt, M., Feng, Y., Clark, T., and Li, S.: High-precision U-series ages of transported coral blocks on Heron Reef (southern Great Barrier Reef) and storm activity during the past century, Palaeogeography, Palaeoclimatology, Palaeoecology, 337–338, 23–36, https://doi.org/10.1016/j.palaeo.2012.03.023, 2012.
Zhao, J.-X., Neil, D. T., Feng, Y.-X., Yu, K.-F., and Pandolfi, J. M.: High-precision U-series dating of very young cyclone-transported coral reef blocks from Heron and Wistari reefs, southern Great Barrier Reef, Australia, Quaternary International, 195, 122–127, https://doi.org/10.1016/j.quaint.2008.06.004, 2009.
Short summary
Coastal boulder deposits record extreme wave events, both storm and tsunami. Fully understanding hazards as recorded in these deposits requires high-quality data for comparison among sites and over time. We analysed methodologies and constructed a comprehensive set of field measurements to improve data consistency and reproducibility. We aim to help geomorphologists produce of data that can be widely shared and used to build extensive analytic understanding of coastal boulder deposits.
Coastal boulder deposits record extreme wave events, both storm and tsunami. Fully understanding...
Altmetrics
Final-revised paper
Preprint