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Abstract. Coastal boulder deposits provide vital information
on extreme wave events. They are crucial for understanding
storm and tsunami impacts on rocky coasts, and for under-
standing long-term hazard histories. But study of these de-
posits is still a young field, and growth in investigation has
been rapid, without much contact between research groups.
Therefore, inconsistencies in field data collection among dif-
ferent studies hinder cross-site comparisons and limit the ap-
plicability of findings across disciplines. This paper anal-
yses field methodologies for coastal boulder deposit mea-
surement based using an integrated database (ISROC-DB),

and demonstrates inconsistencies in current approaches. We
use the analysis as a basis for outlining protocols to im-
prove data comparability and utility for geoscientists, engi-
neers, and coastal planners. Using standardised and compre-
hensive data reporting with due attention to precision and
reproducibility – including site characteristics, boulder di-
mensions, complete positional data, tide characteristics, and
geodetic and local topographic datum information – will help
ensure complete data retrieval in the field. Applying these
approaches will further ensure that data collected at different
times and/or locations, and by different groups, is useful not
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just for the study being undertaken, but for other researchers
to analyse and reuse. We hope to foster development of the
large, internally consistent datasets that are the basis for fruit-
ful meta-analysis. This is particularly important given in-
creasing focus on long-term monitoring of coastal change.
By recommending a common set of measurements, adapt-
able to available equipment and personnel, this work aims to
support accurate and thorough coastal boulder deposit docu-
mentation, enabling broader applicability and future-proofed
datasets. Field protocols described and recommended here
also apply as best practices for coastal geomorphology field
work in general.

1 Introduction

Coastal boulder deposits (Fig. 1) occur on rocky or coral reef
coasts that are subject to intense ocean forces. Constituent
clasts are moved by waves (in many cases against gravity),
and are stranded in place on rocky coasts (Fig. 1a–e) or reef
flats (Fig. 1f). Coastal boulder deposits thus record extreme
marine inundation, but they are still poorly understood. The
transporting agent may be storm waves or tsunami, and in
some places both may operate at different times; but we
still lack definitive indicators (other than before-and-after im-
agery) to uniquely identify the transporting mechanism from
deposit characteristics. However, coastal boulder deposits are
often the only preserved signatures of high energy inundation
on rocky coastlines, providing direct links to past emplace-
ment and transport conditions. Decoding this record is there-
fore important for long-range coastal risk analysis, with ap-
plications spanning climate reconstruction, seismology, en-
vironmental modelling, coastal engineering, and hazard as-
sessment.

Study of these enigmatic deposits is still in its infancy.
There are some historical accounts of large boulder and
coral-head emplacement by storm waves (e.g. O’Donovan,
1928; Stevenson, 1845; Stoddart, 1971; Süssmilch, 1912)
and by tsunami (e.g. Kato and Kimura, 1983; Nakata and
Kawana, 1995; Shepard et al., 1949), as well as a recognition
that it could be very difficult to determine whether storms or
tsunami were the causative mechanism (Bourrouilh-Le Jan
and Talandier, 1985; Jones and Hunter, 1992). But there was
little systematic study until seminal work in the 1990s and
early 2000s (Bryant and Nott, 2001; Jones and Hunter, 1992;
Nott, 1997, 2003b) started people thinking about the impor-
tance of coastal boulder deposits for understanding extreme
wave hydrodynamics and hazards in the nearshore environ-
ment. This drove rapid growth in the number of publications,
from less than one per year in the 1990s to an average of al-
most 20 per year over the past 10 years (Fig. 2). However,
this is still a small overall number of studies by comparison
with more established areas of inquiry, for example analy-

sis of beaches or coastal dune fields, for which there may be
hundreds of papers published per year.

There is a lack of generally accepted best practices for
coastal boulder deposit data collection and reporting. This
is largely because of the rapid and relatively recent growth
of this field, with a lack of centralised community and little
communication between research groups. This is a problem,
because coastal boulder deposits present many challenges
in field measurement and documentation (which will be de-
scribed below). With a large number of new researchers en-
tering the field (including students embarking on early-career
work and skilled scientists moving into a new arena), many
people measuring coastal boulder deposits are doing it for
the first time. Therefore, without a repository of information
on standardised methodologies, there is a wide variety in the
kinds of measurements collected and (as reported here) sub-
stantial inconsistency among published datasets. This cre-
ates difficulty in comparing datasets from different sites and
work groups (Kennedy et al., 2025a), forming a barrier to ob-
jective, reliable comparative analysis, and an impediment to
growth of synthetic understanding.

To demonstrate the lack of central similarity in coastal
boulder deposit studies, and to quantify and evaluate the
range of approaches taken, we carried out a meta-analysis
of published data. We focused on measurements of individ-
ual boulders rather than broader mapping of boulder accu-
mulations. However, many of the principles and recommen-
dations laid out here apply equally well to documentation of
boulder clusters or ridges, and can be adapted as necessary to
those applications. Our exploration reveals a lot of variabil-
ity in what people measure and how they measure it, and we
use this analysis to make a case for community-wide consis-
tency in data collection and reporting. We propose a set of
core measurements that should accompany any coastal boul-
der deposit study (Table 1).

Our approach emphasises the systematic description, mea-
surement, and characterisation of coastal boulder deposits,
independent of their origin. Figuring out objective measures
for distinguishing the deposits of tsunami from those of ex-
treme storms is perhaps the single most important question in
the coastal boulder deposit field (e.g. Bujan and Cox, 2020;
Costa and Andrade, 2020; Lau and Autret, 2020; Motter-
shead et al., 2020; Oetjen et al., 2021; Weiss et al., 2022,
and many others), but solving that puzzle requires evidence-
based analysis that foregrounds the impartial collection of
data. In this paper therefore we will not discuss different pro-
cesses by which features may have formed, but focus on pre-
cise and accurate characterisation of the deposits, for the pro-
duction of internally consistent datasets that facilitate com-
parison among sites and over time. Although we focus on
coastal boulder deposits, the protocols we outline are appli-
cable to a wide range of coastal geomorphologic settings and
may be considered as general best practices.

Position papers such as this play a crucial role in shaping
methodologies used for data collection, providing a founda-
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Figure 1. Examples of coastal boulder deposits from a variety of locations. Each photo includes a person for scale (indicated with an arrow
where they are difficult to see). (A) Aran Islands, Ireland. Broad boulder ridge (5 m high and 40 m wide) is 20 m above highest tide, and 35 m
from the cliff edge (photo by Peter Cox). (B) Banneg Island, France. Boulder ridge is about 11 m above topographic datum IGN69 and 50 m
inland (photo by Serge Suanez). (C) Aceh, Indonesia. Boulder (6.5 t) transported 132 m inland by 2004 tsunami (photo by Raphaël Paris).
(D) Diplomo Petris, Crete. Boulder clusters in the intertidal zone (photo by Michael Whitworth). (E) Eleuthera, Bahamas. Base of deposit
is 10 m above high water and 13 m inland (photo by Rónadh Cox). (F) Makemo Atoll, French Polynesia. Scattered reef-top boulders in the
intertidal zone (photo by Annie Lau).

tion for standardised practices across diverse research and
applied fields. By outlining best practices, challenges, and
guiding principles, this contribution will facilitate a unified
approach to data collection that enhances comparability, re-
liability, and reproducibility. This work will also contribute
to the broader scientific community by setting a benchmark
for data quality, encouraging transparency, and fostering col-
laboration. We hope this work will encourage both new and
experienced researchers to use a common framework, help-
ing reduce discrepancies and improving the integration of
datasets from multiple sources.

2 Coastal boulder deposits: definitions and background

Coastal boulder deposits take a variety of forms, ranging
from isolated single blocks (Fig. 1c) to extensive boulder
ridges (Fig. 1a, b) (as will be discussed in more detail be-

low). The name highlights the predominance of boulders (i.e.
intermediate axis> 0.25 m: Udden, 1914; Wentworth, 1922)
but coastal boulder deposits can include a broad sweep of
clast sizes. They often include colossal blocks in the mega-
gravel size class (i.e. intermediate axis greater than 4.1 m, as
defined by Blair and McPherson, 1999). Examples include
boulders 15 m× 11 m× 9 m in Tonga (Frohlich et al., 2009),
15 m× 10 m× 5 m in Tuamotu (Bourrouilh-Le Jan and Ta-
landier, 1985), and 11 m× 10 m× 3 m on Ireland’s Aran Is-
lands (Cox et al., 2018b). But many accumulations also in-
corporate much smaller gravel trapped in spaces between
the large framework clasts (e.g. Cox et al., 2012; Paris et
al., 2011; Scheffers et al., 2009). Boulders not emplaced by
waves (e.g. those that fall from cliffs or are brought to the
coast by rivers) are not included in this definition, unless they
are subsequently entrained and re-deposited by wave action.

Because of the amount of energy required to displace
them, coastal boulder deposits may be dormant for extended
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Table 1. Recommended core data for coastal boulder deposit studies. Each property is described in detail in the text. Abbreviations: GPS
= Global Positioning System; GNSS = Global Navigation Satellite System; DGPS or DGNSS = Differential GPS or GNSS; RTK = Real
Time Kinematic; UAV = Uncrewed Aerial Vehicle or drone. A printable formatted version of this table, for use as a field-planning checklist,
is included as a Supplement.

Property What is included How it is measured/recorded

Site characteristics Bedrock geology, topography, etc. Observations, literature, existing maps

General boulder
characteristics

Lithology, source, transport history (where
possible), as well as overall setting; overall
shape and rounding

Field observation comparative analysis over
time, and/or literature review for previously
studied sites

Location Latitude and longitude, Universal Transverse
Mercator, or other coordinate system (with
horizontal geodetic datum)

GPS: hand held or from UAV imagery, or via
RTK or DGPS/DGNSS. Precision must be
reported

Geodetic reference
system

For positional data, the geodetic frame of
reference (e.g. WGS84, ETRS89, etc.)

From GPS settings

Physical properties Density (for mass calculation) Hand sample and Archimedes’ principle

Dimensions Long, intermediate, short axes (XYZ); volume Tape measurement, photogrammetry,
DGPS/DGNSS, LiDAR

Mass Estimate of boulder weight Calculated from volume and density

Alignment Orientation of long axis (azimuth and/or
relative to shoreline or mean wave direction)

RTK GPS, compass, aerial photos

Local datum Some measure of sea level, high water mark, or
other landmark; national geodetic benchmark
or survey datum; define in methods.

Depends on datum (see text). Must include
documentation for reproducibility. Vague
reference to sea level without definition is
difficult to validate

Horizontal distance Distance inland from defined local datum
(usually measured perpendicular to the
shoreline)

RTK GPS or DGPS/DGNSS, laser rangefinder
(with trigonometry if terrain is sloped), maps,
imagery

Elevation Vertical distance above a defined datum RTK GPS or DGPS/DGNSS, laser rangefinder
with trigonometry, digital terrain models

Tide information Local range, local tide corrections (if relevant
for boulder elevation computations)

Local tidal predictions, phone apps (will
usually only have nearest gauge data, not
progressive time-distance correction factors),
or numerical tidal models

periods (multiple years to decades to centuries, depending
on the topography, clast size and wave climate). The pro-
tracted timescales complicate efforts to interpret their hydro-
dynamics and to untangle the relative roles of extreme storms
versus tsunami. Nevertheless, these long-lived deposits pro-
vide what are sometimes the only records of historic and
prehistoric coastal inundation, and therefore reconstructions
have direct application to understanding past and present
conditions, and have predictive value for future inundation
regimes.

The first recorded use of the term “coastal boulder de-
posits” is by Bishop and Hughes (1989). Since then it has
gained progressively more traction and recognition as the for-
mal name for wave-emplaced accumulations of large clasts
that are out of equilibrium with the local wave climate and

require extreme events for their transport. The advantage of
this term is that it is general and non-genetic. This is impor-
tant, as the origin of a majority of coastal boulder deposits re-
mains in question, with relative roles of storm and/or tsunami
still under debate. A unifying term that does not presuppose
deposit origin provides maximum flexibility in description
and analysis.

On that note, the phrase “cliff-top storm deposits” (Autret
et al., 2016; Fichaut and Suanez, 2011; Hall et al., 2006;
Suanez et al., 2009) has sometimes been applied as a
synonym for coastal boulder deposits, but we recommend
against its use because it can be misleading. First, the term
“cliff” is quite loosely defined in geomorphology in both
height and steepness, and thus means different things to
different workers, making its use ambiguous. Second, and
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Figure 2. Increase in coastal boulder deposit studies from the
1990s to present. Data are complete through the end of 2024. Com-
piled from Google Scholar using search string “coastal boulder de-
posit” OR “coastal boulder deposits” OR “megagravel” OR “mega-
clast deposit” OR “megaclast deposits” with “include citations”
unchecked. Search returns were individually scrutinised and veri-
fied. For example, the citations filter was not flawless, so papers on
other topics that simply cited coastal boulder work had to be identi-
fied and removed. Similarly, papers that mentioned coastal boulder
deposits broadly in other contexts but did not study them directly
were likewise excluded.

most importantly, embedding the term “storm” in the deposit
name makes suppositions about the depositional mechanism,
which creates problems for researchers trying to conduct ob-
jective analysis of depositional mechanisms. Whereas this
term – and others such as reef-platform coral boulders (e.g.
Terry et al., 2013) – have been useful for certain sites and
applications, we argue that they should be discontinued in
favour of the more general term “coastal boulder deposits”.

There are two distinct kinds of coastal boulder deposits
– land-derived and reefal – characteristics of which are un-
packed below.

2.1 Land-derived (terrigenous) coastal boulder
deposits

Occurring along rocky coasts exposed to extreme wave en-
ergies, land-derived coastal boulder deposits originate by
wave erosion of local igneous, metamorphic or sedimentary
bedrock, whether from shore platforms, stepped or uneven
exposures, or cliff edges. To be classified as coastal boulder
deposits, howeer, they cannot simply have accumulated in
place via collapse but must have been transported (usually
against gravity) by waves.

They may occur as individual isolated clasts (Fig. 1c),
irregular clusters (Fig. 1d), or highly organised imbricated
boulder ridges (Fig. 1a, b, e) (Cox et al., 2018a; Spiske et al.,
2008). Isolated clasts may form a field of widely-scattered

boulders (Fig. 1f), or there may be just one or a few large
boulders along a stretch of shoreline (Etienne et al., 2011;
Frohlich et al., 2009; Lau and Autret, 2020; May et al.,
2015). Clusters are aggregates of several boulders clumped
together (Fig. 1d), sometimes showing seaward imbrication
and in other cases forming disorganised groups or piles (Bi-
olchi et al., 2019a; Evelpidou et al., 2020; Mhammdi et al.,
2008). Ridges are highly organised coast-parallel features
involving large numbers of clasts (hundreds to thousands),
with an angle-of-repose face dipping steeply seaward and
a more shallowly sloping landward side (Cox et al., 2012;
Nott, 2003b; Suanez et al., 2009; Williams and Hall, 2004).
Whereas clusters are rarely more than one or two clasts high,
boulders in ridges can be stacked several deep, leading to ac-
cumulations that may be several metres tall, 10s of metres in
cross-shore width, and which in some cases can extend for
hundreds of metres along the coast (Cox et al., 2012; Etienne
and Paris, 2010; Hall et al., 2006; Lau and Autret, 2020).
Whereas isolated clasts or clusters might form during a sin-
gle event, extensive ridge systems – sometimes referred to
as ridge complexes (Morton et al., 2006, 2008) or ramparts
(Scheffers et al., 2014) – are interpreted as representing the
cumulative impacts of multiple extreme-wave events.

Placement is as diverse as the geomorphology of the rocky
coasts that host these deposits. Some are found on cliff tops
that may be several metres or even several tens of metres
high (the highest known coastal boulder deposits occur about
50 m above sea level: Hall et al., 2006). Others occur at the
inland edges of low-elevation shore platforms, up to several
hundred metres inland (Cox et al., 2018b). On irregularly-
stepped coasts, deposits can occur at multiple levels, often
nucleating at bedrock steps or other obstacles that provide a
backstop (Autret et al., 2023; Lau and Autret, 2020).

Location relative to water level is also varied. Many oc-
cur above the high-water level (not reached by the tide or
by fairweather waves). Generally these supratidal deposits
are found along bedrock coasts where wave energy is persis-
tently high and the coastline is predominantly erosional, with
negative sediment budgets. These high-and-dry boulders are
therefore separated from the ocean by a bare bedrock sur-
face swept clean of sand and fine gravel (Autret et al., 2023;
Biolchi et al., 2019a; Engel and May, 2012; Hansom et al.,
2008; Williams and Hall, 2004). At other sites, where back-
gound wave energy levels are lower, deposits may be found
on beaches or in the intertidal zone (Abad et al., 2020; Engel
et al., 2016; Whelan and Kelletat, 2005). And in some cases
boulders can be cast far inland and may be found among veg-
etation (e.g. Atwater et al., 2017; Dunán-Avila et al., 2025;
Goto et al., 2012; Jones and Hunter, 1992; Kennedy et al.,
2017; Paris et al., 2010).

The size and shape of constituent boulders is controlled
by lithology and planes of weakness (including joints, frac-
tures, and bedding planes), which control the size and shape
of boulders released from bedrock. Once formed, their trans-
port history and locus of deposition are a complex function
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of wave energy and coastal topography. The largest blocks
tend to be found at lower elevations near the coastline, with
deposits at higher elevation and further inland generally be-
ing formed from smaller boulders, and as a general rule of
thumb, the higher the elevation and/or the steeper the coast
the smaller the maximum clast size; but datasets show that
these trends are often noisy (Boesl et al., 2020; Cox et al.,
2018a; Kennedy et al., 2021).

Boulders show variable amounts of transport-based break-
age and rounding. This can be conrolled by lithology, joint-
ing, and fracture mechanics; but also depends on how fre-
quently they are moved around, which varies with boulder
size, elevation, and distance inland (Biolchi et al., 2016; Cox
et al., 2018a). Static boulders can also experience physi-
cal and chemical weathering in situ over long time peri-
ods, which may be mediated or accelerated by vegetation,
cyanobacteria, lichens, intertidal organisms, or orther bio-
geochemical agents (e.g. Bahlburg and Spiske, 2015; Kelletat
et al., 2020; Oliveira et al., 2020b).

2.2 Reefal coastal boulder deposits

Tropical settings with fringing reefs provide a special cate-
gory of rocky coastline on which blocks excavated from the
reef may be deposited by high-energy waves. This subset of
coastal boulder deposits has distinct characteristics that differ
from land-derived examples. First, boulders are sourced from
modern reefs rather than lithified bedrock, which means that
they are generally highly porous and less dense than bedrock-
sourced boulders. Second, they often become grounded on
reef flats that are submerged at high tide (e.g. Boesl et al.,
2020; Etienne et al., 2011; Goto et al., 2007; Lau et al., 2014),
which means that this category of coastal boulder deposits is
commonly found within the intertidal zone (although some
boulders may be transported onto the shores of adjacent is-
lands and elevated substantially above the high water mark:
Atwater et al., 2017; Bourrouilh-Le Jan and Talandier, 1985;
Dunán-Avila et al., 2025; Nakata et al., 2023; Terry et al.,
2013). Third, deposits on reef flats occur only as isolated
blocks and/or small clusters. Organised shore-parallel boul-
der ridges are not found on the fringing reefs themselves,
although reef-derived boulders that have been transported
ashore may pile up (Lau and Autret, 2020). Finally, reefal
boulders often have rounded shapes that are due to growth
forms of the coral source material rather than abrasion dur-
ing transport (Goto et al., 2010a; Lau et al., 2016). For exam-
ple some coral species form almost spherical colonies that
are transported more easily and farther inland than angu-
lar boulders of the same size (Massel and Done, 1993). As
with terrestrial coastal boulder deposits, they may be created
and/or modified by storm waves or by tsunami (e.g. Goto et
al., 2010b; Lau et al., 2018). Reactivation and repositioning
are similarly rare because of the intense energy required to
move them (Terry et al., 2013)

3 Coastal boulder deposits as records of extreme
marine inundation (storms vs. tsunami): the need for
standardised approaches in field data collection

Coastal boulder deposits serve as enduring indicators of both
the impacts of marine hazards and the magnitude of inun-
dation events. Each boulder pinpoints a minimum force ex-
erted at some point in time to transport that mass to that loca-
tion. This in itself is valuable information in terms of tracking
coastal hazards; but to fully analyse long-term risk, we need
to determine whether the inundation forces are due to storm
waves or tsunami.

Early studies used boulder mass as the primary deter-
minant of emplacement mechanism, contending that only
tsunami were capable of moving the largest clasts (e.g.
Scheffers et al., 2009; Young et al., 1996). This line of rea-
soning was based on a premise that the sustained force ex-
erted by tsunami permitted them to move enormous masses
despite relatively small wave heights, while for storm waves
to move comparably large masses would require heights that
were dynamically improbable. Some studies cited a lack
of first-hand records showing storm-wave transport of very
large boulders, especially at elevation or far inland (e.g.
Scheffers et al., 2009) but most relied on hydrodynamic
equations that purported to relate boulder transport to wave
height as a determinant of whether storm waves could or
could not move a given boulder (Barbano et al., 2010; Benner
et al., 2010; Nott, 1997, 2003b; Pignatelli et al., 2009).

But this rationale fell apart in recent years, when pre- and
post-event measurements at several different locations re-
vealed storm-wave movement of blocks weighing hundreds
of tonnes close to shorelines, as well as multi-tonne rocks
deposited at tens of metres elevation or at inland distances
up to a quarter kilometre (Biolchi et al., 2019b; Cox et al.,
2018b; Kennedy et al., 2017; e.g. May et al., 2015; Med-
ina et al., 2018). These observations of storm wave coastal
boulder deposit transport led to greater scrutiny of widely
used hydrodynamic equations relating transported masses to
wave heights. The equations were shown to be based on as-
sumptions that the physics of storm wave runup were funda-
mentally different from those of tsunami (in particular, that
storm-generated bores could not achieve supercritical flow),
but review of advances in wave dynamics (that had occurred
in the decades after the equations were developed) showed
that in fact those assumptions were not supported by data
(Cox et al., 2020; Oetjen et al., 2021). Additional work on
wave flow velocities required to initiate boulder movement
(e.g. Nandasena et al., 2022) has further refined our under-
standing of how wave energy translates to boulder motions,
providing tools to calculate realistic incipient motion veloci-
ties.

The upshot is that work in the past decade has confirmed a
substantial overlap in the power of storm waves and tsunami.
Storm-wave flows can be supercritical (Froude number > 1)
and exert tremendous forces (Bujan and Cox, 2020; Ma et
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al., 2024; Steer et al., 2021). This is exciting, and opens
new avenues for investigation and understanding of extreme
wave behaviour. But it is also frustrating because – with the
sole exception of certain phenomenally large boulders, and
those deposited at kilometre-scale distances from the shore-
line (Goto et al., 2011; Terry et al., 2021) – it torpedoes any
hope of distinguishing storm from tsunami deposits based on
boulder size alone. Aseismic tsunami sources provide an ad-
ditional complication because whereas earthquake-induced
tsunami or large landslides create seismic events that can
be detected geophysically, meteotsunami are harder to de-
tect, and could go unnoticed (Gusiakov, 2021; Hansom et al.,
2015).

Consequently, it has become increasingly clear that distin-
guishing storm from tsunami transport is a challenging and
unsolved problem (e.g. Barbano et al., 2010; Costa and An-
drade, 2020; Lau and Autret, 2020; Lorang, 2011; Marriner
et al., 2017; Scardino et al., 2025; Weiss, 2012). An grow-
ing number of studies report primary observations that many
coastal boulder deposits are generated and activated by storm
waves (Autret et al., 2016; Biolchi et al., 2019b; Cox et al.,
2018b; Goto et al., 2009; Kennedy et al., 2017; e.g. May et
al., 2015; Medina et al., 2018; Naylor et al., 2016; Oliveira et
al., 2020a; Scicchitano et al., 2020) and that for others trans-
port and deposition are unequivocally due to tsunami (Bour-
geois and MacInnes, 2010; Etienne et al., 2011; e.g. Goff et
al., 2006; Goto et al., 2007; Nandasena et al., 2013).

Some characteristics do appear linked to wave type. For
example, tsunami are not known to create organised boulder
ridges (Etienne et al., 2011), but they can shift megagravel
over extreme distances (> 1 km) inland (Goto et al., 2010a);
and storm-dominated boulder fields often show inland fining
(Goto et al., 2009; Lau et al., 2014), compared to more ran-
dom patterns in tsunami boulders (Boulton and Whitworth,
2017; Goto et al., 2012). However, none yet have been defini-
tively proven to be unique markers.

Currently, the only way to make a fully confident deter-
mination is to have a smoking gun, whether from historical
records (which are rare) or by capturing proof of the move-
ment (using before-and-after imagery for extreme events).
However, for the majority of coastal boulder deposits these
data are not available, which means that researchers must
weigh various other kinds of evidence (including local wave
climate, regional tsunami histories, and hydrodynamic prin-
ciples) to attempt to make a determination of the boulder
transport mechanism (Goto et al., 2010a; Morton et al., 2008;
e.g. Nott, 2003a; Regnauld et al., 2010; Roig-Munar et al.,
2023; Williams and Hall, 2004). Ideally we would hope to
develop a general predictive solution or set of criteria that
could be applied to any coastal boulder deposit to uniquely
determine whether they are of storm or tsunami origin. Ef-
forts are ongoing (Costa and Andrade, 2020; Cox et al., 2020;
Kennedy et al., 2021; Watanabe et al., 2020; Weiss et al.,
2022), although the solution remains elusive.

Of critical importance are field and remote-sensing data
from coastal boulder deposits, both to characterise deposits
thoroughly and to serve as a baseline against which future
changes can be measured. To that end, it is important to
maximise the broad comparability of data collected by dif-
ferent groups in different areas. But there is a wide range
of approaches to coastal boulder deposit measurement, and
a lack of consensus on what parameters should be measured
and recorded. This limits progress, but can be easily recti-
fied by adoption of standardised systematic data collection
protocols.

4 Toward a standard set of field measurements and
reporting protocols

Beyond their application to any given local study, data from
coastal boulder deposits are valuable to the wider research
community for comparative analysis. There is broad bene-
fit therefore in adopting field techniques and data reporting
practices that may be clearly interpreted by readers. This will
help individual workers incorporate data from the work of
others into their own analysis and will also ensure that study
data are accessible to the extended network. But the current
lack of a central reference framework means that individual
groups develop their own approaches, which may or may not
be fully documented in subsequent publications. In addition,
groups may use different datums or measurement platforms,
which may lead to incompatibilities between studies if the
specifics are not clearly defined and reported. Adherence to
clear reporting and standard practices facilitates useful com-
parison of data between different areas and over time.

We used ISROC-DB (V1p0: 2025a; Kennedy et al.,
2025b) as our data source to analyse methods and approaches
currently in use. ISROC-DB is a freely accessible standard-
ised database of coastal boulder deposit measurements com-
piled from pre-existing studies, as a product of the NSF-
funded ISROC (Inundation Signatures on Rocky Coastlines)
project. In addition to boulder and site topographic mea-
surements, ISROC-DB tracks other key information such as
geospatial parameters applied and datums used. It has the
explicit aim of facilitating meta-analyses and comparisons
among coastal boulder deposits. We supplemented analysis
of the datasets in ISROC-DB with close reading of the de-
scriptive methodology in the source publications. This al-
lowed us to contextualise the database information.

ISROC-DB (V1p0: 2025a; Kennedy et al., 2025b) can
be accessed at https://www.designsafe-ci.org/data/browser/
public/designsafe.storage.published/PRJ-5756 (last access:
17 October 2025). To date, it includes data from 36 stud-
ies published between 2007 and 2023. Constituent datasets
range from fewer than ten boulders to more than a thou-
sand, covering sites in 23 countries worldwide (Fig. 3). In ag-
gregate, ISROC-DB provides a cross-section of approaches
by active coastal boulder deposit research groups (including
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Figure 3. Locations of coastal boulder deposit datasets recorded in ISROC-DB V1p0 (Kennedy et al., 2025b).

about half the co-authors of this paper). ISROC-DB does not
include the entirety of available coastal boulder deposit mea-
surements, although it is expected to grow, as there is an open
invitation to workers to submit their data (2025a; Kennedy et
al., 2025b). But it provides a wide-ranging and representative
overview of data collection approaches in coastal boulder de-
posit studies over the past two decades.

4.1 Site characteristics: setting the scene

Basic information about the site and the boulders under study
is an important component of field information. A descrip-
tion of the location including bedrock geology, topography,
surface roughness, and other distinguishing features should
be provided, based on site observations, literature analysis,
and/or existing maps.

Boulder lithology should be recorded. Especially for
newly-created or recently moved boulders, sites of origin
are important (if they can be determined). The study should
distinguish between the original bedrock source and pre-
transport location of an already-existing boulder when possi-
ble. For example, a boulder might fall from a cliff originally,
but subsequently be moved against gravity along a shore plat-
form (Cox et al., 2018b; May et al., 2015). Boulder trans-
port direction is likewise important: where possible, workers
should determine whether transport is uphill (against grav-
ity), horizontal (i.e. lateral movement on a level or near-level
surface), or with gravity (sliding seaward on a platform, or
falling/rolling down a cliff or slope). The orientation of the
long axis is an important characteristic in this context, as (in
the case of elongate clasts) this will tend to be oriented per-
pendicular to the direction of transport (Imamura et al., 2008;
Spiske and Bahlburg, 2011) and hence says something about

flow direction. And care must be taken in designing the mea-
surement campaign to avoid selection biases in data collec-
tion, as these can affect any statistical analysis of the data.

4.2 Local knowledge is valuable

People living near a study site, especially those who spend
a lot of time near the coast (e.g. fishing, maintenance, etc.),
may have eye-witness information about boulder movements
or changes in boulder configurations. Large blocks attract
the climbing community, who take photos of that are often
posted to social media, and which may provide documen-
tation of boulder locations at specific times (e.g. pre-storm
locations of two very large transported boulders in Cox et
al., 2018a were determined from photographs provided by
climbers). As Booth (2016) shows in his analysis of the “Big
Rock” in Bondi (Australia), scientific interpretations may
sometimes conflict with local knowledge or memory. While
physical measurements and transport models are critical for
analysis, they are not infallible, and it is wise to consult lo-
cal residents for oral history or photographs that may provide
critical documentation. Scientific interpretations that may not
fully resolve the “messy realities” of dynamic coastal envi-
ronments. Reaching out to locals can also be a way to engage
them as citizen scientists, making them aware of the impor-
tance of coastal boulder deposits, and motivating them to take
photos that may be useful for longitudinal comparisons.

4.3 Boulder dimensions: how big?

Clast sizes are at the heart of almost every coastal boulder
project, whether measured by hand with a tape or digitally
via photogrammetry (whether via drone, phone, or other im-
age capture technology). In most cases, dimensions are used
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to derive volume (usually as a precursor to determining boul-
der mass). It is unsurprising therefore that all 36 studies in
ISROC-DB measured the three principal axes (longest, inter-
mediate, and shortest, referred to as X, Y , Z or a, b, c) of
their target boulders, and all also computed volumes. How-
ever, not all studes tabulated the data: four did not provide
individual boulder measurements, and an additional three re-
ported only a subset. A full inventory of boulder locations
and sizes should be a fundamental component of published
work (whether as a Supplement table, or in a separate digital
archive).

4.3.1 Axis measurements: harder than you think

Even in the current era of 3D imaging using drone-based
structure-from-motion (SfM), and cell phones with LiDAR
capability, simple linear measurement of the three principal
axes remains the customary way of recording boulder dimen-
sions. Hand-held tape measurements in the field are by far
the most common (Fig. 4a), although the popularity of pho-
togrammetric measurements is increasing (as shown by four
of the 36 datasets in the database, all from studies published
since 2019). Aerial maps of entire deposits provide a mech-
anism for collecting dimensions quite rapidly by measure-
ment on either an orthoimage or 3D model. In some cases
people have used a hybrid approach, measuring length and
width (usually X and Y ) from the aerial imagery and collect-
ing height (usually Z) on the ground with a tape.

For rounded or tapered boulders, workers should take care
to ensure that tapes are held taut so that they measure the
straight line between end points. If they are draped across the
boulder surface they will measure a partial circumference,
which will be a longer distance than the desired axis. This can
be prevented by projecting the boulder end points outward
(using a clipboard or other straight rigid object), providing
a measurement target for the tape. In many cases, especially
with large boulders, this is a two-person operation.

Where boulders are not orthogonal, reporting the maxi-
mum axis lengths will result in misleading dimensions, and
so some more representative intermediate or average value
should be determined. It’s even more complicated for highly
irregular shapes such are common in reef environments or
young carbonate rocks, where boulders may have pits, pin-
nacles, and non-rectilinear shapes (e.g. Fig. 4a). In these
cases, axis measurements should be treated (and reported) as
rough approximations only. If the boulders in question will
be used to constrain transport hydrodynamics, photogram-
metric models are strongly recommended.

4.3.2 Volume computations and their complexities

Axis dimensions are generally the basis for volume (and
hence mass) determinations, which are the primary way of
comparing among sites and events in terms of transport and

depositional forces. Every study in ISROC-DB included vol-
ume calculations.

The approach (and the reliability of the result) will vary
depending on boulder shape. For very regular boulders (e.g.
from bedded sequences with orthogonal joint systems) the
product of the three measured axes can provide reasonable
first-order volume estimates (Cox et al., 2012). However, this
is rarely the case, as most boulders have some degree of irreg-
ularity. The inaccuracy (overestimation) of volume based on
triaxial measurements of non-geometric boulders is well doc-
umented, with errors exceeding 50 % or greater than 100 %
in some cases (Boesl et al., 2020; Dunán-Avila et al., 2025;
Engel and May, 2012; Hoffmeister et al., 2020; Lario et al.,
2023; Yao et al., 2023). More irregular (but still fairly recti-
linear) shapes require a more nuanced approach, and in some
cases it may be appropriate to mentally subdivide the boul-
der into smaller components for which volumes are calcu-
lated separately and then summed. The volume of rounded
boulders should be computed based on ellipsoidal geome-
try, where the product of the axes is multiplied by 4/3π . For
highly irregular boulders it is impossible to determine vol-
ume from triaxial measurements alone.

Photogrammetric analysis can cut through these difficul-
ties. Reliable volumes can be obtained from high-resolution
3D models (see for example Canavesio et al., 2023; Dunán-
Avila et al., 2025; Scardino et al., 2025), as long as the boul-
der is fully and carefully imaged. Coverage should include
not only of top and sides, but also the base (particularly for
irregular boulders with rough and karsted surfaces) to ensure
that the final enclosed shape is fully representative. Proper
scaling is also critical. Relying on built-in camera GPS po-
sitioning may result in decimetre or even metre-scale errors
in model dimensions, and so image collection should include
an object of known proportions that can be used to check
and adjust the model (e.g. Causon Deguara and Gauci, 2017;
Froideval et al., 2019; Gienko and Terry, 2014; Pedoja et al.,
2023).

Only a few of the studies in ISROC-DB used 3D models
to obtain boulder volumes; and of those most used it only
for a few boulders, as a Supplement to simple axis data col-
lected for the bulk of the clast population. This is not too
surprising, because although photogrammetry is a reliable
(and increasingly accessible) way to determine dimensions
and derived properties of complex three-dimensional objects
(Pedoja et al., 2023; Raoult et al., 2017; Yao et al., 2023),
there are snags that often make it impractical for surveying
large numbers of boulders. For example, it is generally diffi-
cult or impossible to image the lower surfaces of boulders or
the sides of boulders in multi-boulder accumulations, which
limits model accuracy.

In addition, volume computations require a closed (“wa-
tertight”) 3D model, necessitating interpolation across unim-
aged portions. This can be onerous, particularly in the case
of very irregularly shaped boulders, or those with vegetation
cover (Di Francesco et al., 2021; Nakata et al., 2023; Schnei-
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Figure 4. Some field method techniques. (A) tape measurement of boulder axes; the irregularity of this boulder means that volume or
mass estimates from tape dimensions are approximation only. (B) Siting a photogrammetric ground control point using RTK GPS. (C) Site
surveying for elevation measurements using a transit compass (Brunton), which in combination with tape or laser rangefinder distance
measurements can be used to derive vertical and/or horizontal distance using trigonometry. (D) measuring boulder distance from a shoreline
marker using a laser rangefinder (Photo A by Annie Lau, B–D by Rónadh Cox,).

der et al., 2019). For example, if the software fails to properly
interpolate across the open surface, some edges or mesh ver-
tices may not connect properly, and the resulting mathemat-
ical inconsistencies may make the model difficult to process

accurately: residual holes or gaps prevent creation of a wa-
tertight surface, leading to problems. Other pitfalls include
inverted normals, where some surface elements face inward
rather than outward and misrepresent the boulder’s shape; or
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self-intersections, where parts of the model fold over them-
selves, generating unrealistic overlaps or non-manifold ge-
ometries. These, if internal to the model’s outer surface, may
go undetected and inflate volume estimates (Münster et al.,
2024; Sulzer et al., 2025).

All of these problems are very solvable, but they do re-
quire hands-on manipulation of the model and can be time
intensive. In contrast to axis measurements which, once col-
lected in the field, can be loaded into a spreadsheet and put
through batch calculations that rapidly process many hun-
dreds of measurements, each digital boulder scan must be
processed and/or checked individually. And although phone-
based scanning software means that field collection of model
data is quite rapid and straightforward, it still takes several
times longer for image acquisition, model generation and on-
site checking (to ensure that the boulder was adequately cov-
ered) than simply measuring boulder dimensions with a tape.
Practitioners of digital volume calculations recommend inte-
gration alongside traditional field data collection techniques,
not – at least at this stage – as a replacement (e.g. Boesl et
al., 2020; Nakata et al., 2023; Spero et al., 2025).

Collecting a number of 3D boulder models will always en-
rich a coastal boulder deposit dataset. A suite of 3D models
can provide validation and/or conversion factors for a larger
set of field measurements of boulder dimensions, as well as a
high-resolution data subset for the largest or otherwise most
significant boulders in a dataset.

4.3.3 Estimating mass

Volume calculations are the basis for estimating boulder
mass, which also requires rock density. Fourteen of the 36
studies in ISROC-DB reported a measured density; two used
generalised values for the lithologies of interest, several gave
a value but did not say where it had come from, and others
provided mass estimates without indicating what density had
been used.

To optimise mass estimates, we recommend that density
measurements of the study boulders be included as part of
the data collection and reporting. These are straightforward
to acquire, needing only a small sample of the rock (or a
few small samples so that the range of variability can be es-
tablished). These are simply weighed, and volume measured
by displacement in water, using Archimedes’ principle (Cor-
radino et al., 2025; Hoffmann et al., 2013; Hoffmeister et al.,
2020). This is particularly important in the case of reef corals
or young carbonate rock, which have high and non-uniform
porosity, leading to variable bulk rock density values (Spiske
et al., 2008).

4.4 Boulder locations

Long-term evolution of coastal boulder deposits will be key
to an ultimate understanding of these dynamic environments,
so locations of individual boulders are key data points. We

found a range of practices relating to collection and report-
ing of positional data. Some studies provide general informa-
tion (e.g. site name and/or coordinates), and in most cases a
map or diagram showing boulder positions at the site. Others
provide GPS coordinates for individual boulders. Whereas
the former approach allows people to find the site, the lat-
ter method means that individual boulder information can be
imported into GIS and other geospatial analytical systems,
facilitating data compilation and meta-analysis. This is par-
ticularly important for longitudinal analysis, allowing repeat
visits and the ability to track boulder movements (or stasis)
over time. We therefore urge researchers to collect and report
positional data for individual measured boulders.

Only two-thirds of the datasets in ISROC-DB (22 of 36)
stated that they recorded GPS positions for individual mea-
sured boulders, and of those, just over half (12 of 22) tab-
ulated those locations. There is a time component to these
trends – only eight of 19 studies between 2007 and 2017
used GPS, compared with 14 of the 17 studies 2018–2023 –
but of the 14 GPS-enabled studies in the more recent group,
six (almost half) did not provide those data in the publication
(either within the main text or in supplementary data). And
although most of the non-reporting studies did show boulder
positions on maps or orthoimages, in most cases those fig-
ures were too small to provide a useful source from which
precise locations could be extracted, and boulder location
markers were often overlapping at the scale of the diagrams.
Nor could mapped locations be connected to specific boulder
measurements. In sum: a large proportion of coastal boulder
deposit studies either fail to collect or decline to report the
positions of the rocks they measure. This limits the usability
of published data for detailed longitudinal analysis of coastal
boulder deposits.

How precise does location information need to be? Posi-
tions can be determined with centimetre-scale accuracy us-
ing Differential GPS (DGPS) or Real-Time Kinematic (RTK)
GPS (Fig. 4b), and if available this is the most accurate way
to map boulder placements (Andresen and Schultz-Fellenz,
2023; Hoffmeister, 2020). However, research groups may not
have access to the necessary equipment and/or students may
not be trained in its use; and it is important to bear in mind
that such high precision is not always necessary. Data col-
lected with hand-held GPS units can be perfectly adequate
for purpose, especially those that support satellite-based sig-
nal augmentation systems such as WAAS (in the Americas),
EGNOS (Europe), MSAS (Japan) (and similar systems for
other regions). The 1–3 m positional accuracy such devices
can achieve serve very well in mapping boulder locations,
especially if combined with field photos that record boulder
features and locational context. These can be sufficient for re-
finding locations and determining whether or not individual
boulders have been transported over time. Some researchers
also use electronic tagging devices in highly dynamic loca-
tions to help locate transported boulders (Hastewell et al.,
2019; Naylor et al., 2016).
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Drone photogrammetry of entire locations produces high-
precision mapping of deposits, as well as the possibility of
quantitative reanalysis year-on-year (e.g. Autret et al., 2018;
Nagle-McNaughton and Cox, 2020; Suanez et al., 2026; Vac-
cher et al., 2024; Yao et al., 2023), and is excellent for overall
site characterisation. However, aerial imaging alone may not
produce accurate 3D rendition of individual clasts, particu-
larly if they are obscured or partially buried in ridges or clus-
ters. Work that depends on characteristics of individual clasts
should therefore include clast-specific positional data and
measurements, which are best collected on the ground (or
for very large boulders, with very low-altitude drone flights
that target the individual boulder).

4.5 Horizontal distance

Most studies document how far individual boulders are from
some marker, whether that is a shoreline, a cliff edge, or
a reef front. In cases where the boulder is known to have
moved, this may include a transportation distance. These
measurements provide context on the separation between
boulder location and the source of transportation energy, with
longer distances generally representing more extreme wave
events. Horizontal distance was included in 31 of the 36
datasets in ISROC-DB.

However, of those 31, twelve (more than a third) did not
tabulate the data. Although some represented boulder loca-
tions on maps or orthophotos from which approximate posi-
tions could be extracted, this makes the data less accessible
(requires manual extraction from the figure). Furthermore,
the link between specific boulder measurements (axes, mass)
and their distance inland is lost.

We recommend that workers tabulate distance values
along with the boulder dimensions and positional data, for
maximum long-term relevance and usability of the data.
This can be done in GIS (horizontal distance between two
points established using GPS, or measurement from aerial
imagery), or it can be measured in the field using tapes or
a laser rangefinder (Fig. 4d). These measurements are often
not very precise, both because the baseline or datum may
be hard to fix accurately (which will be discussed further
below) or there may be variation in what part of the boul-
der (edge, centre of mass, etc.) is represented. The latter
can introduce significant imprecision for large boulders and
megagravel. However, high levels of precision are (in many
cases) not necessary in the overall context of mapping boul-
der distributions: It would be valuable to know whether a
boulder was 10 or 50 m form a baseline marker, but the dif-
ference between 10 and 12 m might not be significant (par-
ticularly when taking into account variations in water level
due to tides, storm surge, infragravity waves, etc.). Therefore,
recording those values (being careful to also report specifics
of the methodology and associated precision) adds substan-
tial value to coastal boulder datasets.

4.6 Elevation

Boulder elevation is a key attribute in datasets, because quan-
tifying work done against gravity is fundamental for un-
derstanding hydrodynamics of dislodgement, transport and
emplacement. However, it can be a difficult measurement
to make, and often represents the greatest source of uncer-
tainty and ambiguity in coastal boulder deposit studies. Of
the 36 datasets in ISROC-DB, 15 (more than 40 %) provided
no record of elevation for their measured boulders (some
reported having made the measurement, but it did not ap-
pear in the tabulated data). Nine studies provided average
elevations for suites of boulders, or had figures showing to-
pographic profiles on which approximate boulder locations
were shown; but only 11 (less than a third) tabulated eleva-
tion data along with boulder measurements. Recent papers
were more likely than older ones to include elevation in their
study design and reporting: almost half the studies published
since 2018 included elevation data, compared with only a
quarter of those published 2007–2017.

We recommend the routine collection of elevation in as-
sociation with boulder measurements, to maximise their use-
fulness in terms of broad understanding of coastal boulder
deposits. In some cases, elevation range may be very small
(e.g. reef-flat boulders, or accumulations on very shallowly-
sloping platforms or flat cliff tops) and a single surveyed
value may appropriately represent the entire deposit. But for
most deposits, elevation is variable and important.

Elevation can be a time-consuming measurement to make.
Hand-held GPS is effectively useless, as the vertical accu-
racy is typically 2–3 times less than horizontal accuracy, pro-
ducing elevation errors up to several tens of metres. DGPS
or RTK GPS can solve the problem if available. Elevations
can also be obtained from a Digital Surface Model (DSM)
or topographic map, but it may be tedious and difficult to
relate those elevations to field measurements for individ-
ual boulders. However, it is possible to measure elevation
above some given marker using classical tape-and-compass
or laser-rangefinder approaches (Coe, 2010; Łabuz, 2016)
(Fig. 4c, d). If you can measure distance, and the angle from
the horizontal, you can calculate the height difference using
trigonometry (Cox et al., 2018b; Richmond et al., 2011); and
if the marker is of known elevation, or is surveyed in, this can
be translated to absolute elevation.

Accurate elevation data relative to a well-defined datum
is essential for inter-site comparisons. We recommend using
established local or national datum references where possi-
ble. Some countries publish the locations of geodetic refer-
ence points on open-access websites, which can be helpful
for ensuring proper GPS calibration when available. How-
ever, these may be hard to find, or may be located distant
from the field site. In such cases, local landmarks or ecolog-
ical zonation may be surveyed in to provide a benchmark.
Consistency in elevation measurement, including specifying
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datum and tidal conditions (as will be discussed further be-
low), is necessary to avoid discrepancies.

5 The Importance of geospatial context

Our analysis revealed that many studies neglect to report
key geospatial information such as which geodetic system
was used for positional information, the specifics of local
sea-level for elevation and inland distance, and/or informa-
tion about the local tide regime. Among the 36 ISROC-DB
datasets, only three provided complete and clear descriptions
of how baselines were established, which datums were used,
and how those were locally determined and documented. We
expect that other studies used careful procedures for setting
the geospatial parameters of their measurements, but did not
include the specifics in the published work. However, these
details are not trivial in the context of broader data usability
and longevity. Clear documentation of the frames of refer-
ence is a key aspect of geospatial data reporting to ensure
usability, and minimising errors in both longitudinal analy-
sis and inter-site comparison. We recommend that all studies
carefully document the geodetic framework of their analysis,
either in methods or as a Supplement.

5.1 For positional data, the geodetic reference system
must be specified

GPS surveys provide positions calculated by the GPS re-
ceiver using a geodetic reference ellipsoid, which is a math-
ematically smoothed model of the Earth’s shape that allows
XY coordinates to be precisely located on the Earth’s curved
surface. However, there are a number of different ellipsoid
models, and it is important to know and report the underly-
ing reference system being used during data collection. There
may be considerable error if location coordinates collected
in one geodetic system are projected using another, with-
out the requisite transformation. As one illustration of this,
the US Global Positioning System satellites use WGS 84 as
their underlying reference system for positional determina-
tions, while the European Galileo satellite constellation uses
ETRS89. Both were aligned in 1989, but ETRS89 is fixed
to the stable Eurasian plate whereas WGS84 is referenced to
the Earth’s centre of mass. As a result, they have drifted due
to plate tectonic motions at an average rate of 2.5 cm yr−1,
meaning that currently there may almost a metre difference
to be reconciled in converting one to the other (Baselga and
Olsen, 2021; Twigg, 2000), and this dofference will increase
as time goes on. Discrepancies with respect to other com-
monly used systems, such as NAD883 or local state planes,
can be up to several meters.

Whereas GPS receivers and GIS programs can make those
transformations easily, they require that users input the el-
lipsoid information; but this is commonly not provided in
positional datasets. Many users do not interrogate the de-

tails that underpin the GPS data and therefore also do not
report them, rendering their data ambiguous within the range
of possible values for different models applied at that study
site. Users should bear in mind that the information is given
in the settings of GPS receivers, and included in metadata of
downloaded readings. It is simply a matter of remembering
to add that information into data tables and/or methods in
manuscripts for publication.

5.2 Vertical and horizontal distance relative to what?
The dastardly datum

Data collected with RTK or DGPS systems incorporate
a geodetic datum that – as long as the reference system
is known and incorporated into mapping transformations,
as discussed above – provides reliable positional informa-
tion. These can be international systems such as WGS84
or ETRS89 discussed above, or a national vertical datum
can be applied (examples include the Australian Height Da-
tum AHD, New Zealand Vertical Datum NZVD, Nivellement
Général de la France IGN69, and many others).

But many studies use direct measurement to record ele-
vation or inland distance. And at the coast this becomes a
thorny problem, because we are usually interested in how po-
sitions relate to the shoreline, which is not a fixed marker. We
found this to be the most poorly standardised measurement in
published work. Among the 36 studies in ISROC-DB, there
was tremendous inconsistency in handling the reference da-
tum for elevation and/or distance.

Some workers tie measurements to a recognisable physi-
cal reference. The local high-water mark is one such indica-
tor, used by several papers in our reference group. Of these,
one used the high-water datum of the study area’s national
hydrographic service; others used visual determinations (e.g.
height of barnacle encrustations, or rock discolouration due
to splash-zone cyanobacteria). Another study used locally
developed wave cut notches as the pinning point. These ap-
proaches provide a straightforward and repeatable pinning
point for repeat studies in the same location (with due atten-
tion to potential changes due to rising sea level).

But the problem is that the bulk of studies provide only
vague indications of what datum was used. Some, for ex-
ample, say simply shoreline, or water’s edge, with no ref-
erence to tidal variation (an important variable in its own
right, which we will discuss more specifically below). Oth-
ers mention mean sea level, without indication of how that
was determined on site in the context of field measurements.
And whereas microtidal environments might see only several
cm vertical water change (which would have minimal influ-
ence on elevation measurements), that same tide range might
cause a few metres horizontal change on a flat shore platform
– which would have a substantial impact on measurements of
inland distance.

Reporting clearly and in detail how the measurement da-
tum was established in a study is important for comparisons:
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in trying to understand, for example, whether local coastal
configuration affects the elevations at which different wave
heights can act, it is important to be able to compare apples
with apples, and know that boulders reported as e.g. 10 m el-
evation are all in fact at the same elevation. A boulder 10 m
above water level at low tide may be only 5 m above high
tide, or 7 m above mean sea level, and these differences mat-
ter, not only for site-to-site comparisons, but also for com-
parisons between different times at the same site.

5.3 Sea level: it’s hard to measure

Important as it is to establish a local measurement datum,
it can be very tricky to do. The most commonly invoked
reference point is sea level, sometimes referred to as mean
sea level, or given simply as “above sea level”. However,
many studies neglect to specify what specific version of sea
level was used, and/or how it was measured or recognized
at the study location. This reflects the fundamental problem
that “sea level” does not have a unique definition (Huang et
al., 2020). And although centuries of water level measure-
ments have produced precise definitions of tidal variations
and mean sea levels(Gill and Schultz, 2001), on site these
can be difficult to relate to boulder positions.

As examples of how this plays out in practice, seven stud-
ies in ISROC-DB referred simply to “sea level” and an ad-
ditional two referred to the “shoreline”, with no details pro-
vided as to how those terms were defined for the study, and/or
whether local tide variation had been factored in. In some
cases terminology changed throughout the paper, with refer-
ences to distance from shoreline in one part, and sea level in
another. Another six referred to “mean sea level” or “MSL”,
suggesting implementation of a global datum, but without
providing the basis. In our set of 36 studies, only a handful
provided clear information or related their datum to verifiable
hydrographic surveys or markers.

However, as pointed out by Woodroffe and Barlow (2015),
mean sea level provides no accumulations or proxies that
would be evident on a map, which means that measurements
need to be locally referenced to some local datum or indica-
tor. But in very few cases did the writers indicate how they
identified a fixed physical reference point in the field and/or
in aerial imagery when making their measurements. The bot-
tom line is that because the position of sea level is (literally)
a moving target – not only because of tides, but because sea
level itself varies across the geoid – it requires thought and
proper documentation in field studies (Liu et al., 2014; Pajak
and Leatherman, 2002; Parker, 2003; Woodroffe and Barlow,
2015).

5.4 The high-water mark: a useful workaround

Ecological markers provide a physical expression of the
highest tide line, so it is feasible to make measurements rel-
ative to the barnacle line (for example), or the upper limit of

the black cyanobacteria splash zone. Some places may have
a distinct erosional feature such as a tidal notch that may
function as a reference point (Antonioli et al., 2015; Evelpi-
dou and Pirazzoli, 2015). However, these features all vary
with bedrock locality, type and recent wave activity (Whittal
and Mackie, 2023). On steeper coasts they commonly form
a sharp line that is easy to identify; but on very shallowly-
sloping platforms are likely to be much more diffuse and
unlikely to provide a repeatable marker (Boak and Turner,
2005; Manno et al., 2017).

Although these physical reference frames can be very use-
ful for repeatable local measurements, they lack generality,
which means that comparisons with other areas may require
assumptions about tide levels. And although they have the
benefit of being reproducible in the short to medium term,
they become less reliable on longer timescales in the con-
text of sea level rise (or other shoreline-altering phenomena,
including subsidence, tectonic processes and erosion).

5.5 Tides: an additional wrinkle

Tides are a further complication in trying to constrain sea
level as a reference during field measurements. Some envi-
ronments with small tides may see only slight changes (cm
to 10s of cm), but tide range at many places is measured in
metres, on both daily and neap-spring cycles. In such cases
it is important to establish whether elevation and distance are
given with respect to water level at the time of measurement
(in which case the time and date should be given as part of the
data), or whether they have been corrected for tide (in which
case the correction calculation should be outlined, and the
reference datum provided). This should include information
about the tide gauge or tide tables that were used to establish
tide information.

However, getting reliable local tide data is often difficult.
Tide gauges are thinly spread in general; and because timing
and magnitude are not uniform along coastlines, it is neces-
sary to apply progressive extrapolations to peripheral sites.
These are not always available in published tide tables, and
in any event their reliability drops off with distance from the
gauge (Egbert and Ray, 2017; Geyman and Maloof, 2020;
Ray et al., 2011). As many coastal boulder deposits are re-
mote from population centres and therefore may not have
nearby gauges, this can be a substantial problem, undermin-
ing our ability to accurately know either the timing or mag-
nitude of local tides.

Ocean tide models derived from satellite altimetry data
may be applied, although their precision and accuracy vary
based on location and model choice. Satellite data typi-
cally provide coarser spatial resolution than tide gauge data,
which can make predictions less accurate at localised scale.
Shallow-water effects can further reduce the accuracy of
models in representing the interaction of tides with local
bathymetry and shoreline features (Hart-Davis et al., 2024;
Madsen et al., 2015; Nehama et al., 2022; Salameh et al.,
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2018). In addition, these products are not yet at the “plug-
and-play” development stage, and require considerable ex-
pertise to implement at site-specific scale.

A more tractable approach can be to purchase off-the-shelf
equipment to deploy on site (Bresnahan et al., 2023; Knight
et al., 2021). This can be a useful strategy, particularly in
areas targeted for repeat monitoring over multiple seasons or
years. The locally-collected data can also be used longer term
to calibrate or correct records from the closest permanent ref-
erence tide gauge (e.g. Dodet et al., 2018; Earlie et al., 2018;
Hatcher et al., 2022).

5.6 And of course: sea level changes over time

Although this discussion is framed largely in the context
of coastal boulder deposits in equilibrium with modern sea
level, some accumulations were deposited thousands or even
hundreds of thousands of years in the past (e.g. Carballeira
et al., 2022; Kennedy et al., 2007). Failing to account for sea
level difference in these cases could lead to misinterpretation
of depositional elevation and transport forces. This can be
true even for relatively young deposits (a few thousand years
old), for which sea level may have been lower or higher than
present: post-glacial sea level patters are complex, and in-
clude mid-Holocene highstands in some areas (Chua et al.,
2021; Creel et al., 2024; Khan et al., 2015; Leonard et al.,
2018). For deposits dating to the last inter-glacial there is
even greater uncertainty linking boulder elevation to sea level
(Rovere et al., 2025). Furthermore, tectonics can alter the rel-
ative position of sea level and coasts over Holocene or longer
timescales and so must also be considered where relevant
(e.g. Carballeira et al., 2022).

In sum: the difficulties attending the definition and mea-
surement of “sea level” should be acknowledged, and not
glossed over in study design or reporting. The reference
frame for measurements should be clearly described, whether
that relies on a local physical indicator or the geoid model
underpinning a GPS survey. Clear statements should also be
made about local tide regime, and in cases where tidal range
is sufficient to impact the repeatability of distance or eleva-
tion measurements, tidal stage and height should be reported
(as closely as possible).

6 Dating coastal boulder deposits

Determining emplacement age(s) of coastal boulder deposits,
and (for ancient example) establishing chronological con-
straints on the landscape at the time of boulder displace-
ment are very desirable goals. Such data permit construc-
tion of event chronologies, and by comparison with other
archives such as wave climate or earthquake records, can
help distinguish between storm and tsunami deposits. Fur-
thermore, landscape palaeoreconstruction permits estimation
of sea level and coastline position at the time of displace-

ment, which is important for calculation of forces required
for transport. But these tasks are difficult at best and in many
cases (at the present time) impossible.

Some boulders with preserved calcareous marine epifauna
or infauna may yield radiocarbon ages recording the death
time of the organism (hence presumably the time at which
the boulder was removed from a subtidal or intertidal loca-
tion, depending on the organism). This has provided valuable
insights into multi-centennial history of deposits in some lo-
cations (Boulton and Whitworth, 2017; Cox et al., 2012;
e.g. Scheffers et al., 2010; Scicchitano et al., 2007; Shah-
Hosseini et al., 2011), but can be used only in suitable
lithologies (primarily carbonates), requires a sub- or inter-
tidal origin for the boulders (whereas many coastal boulder
deposits consist of clasts torn from supratidal platforms or
cliff edges), and can be complicated if the local marine 14C
reservoir age is not well constrained (Atwater et al., 2017;
Heaton et al., 2023) or due to diagenetic effects and the in-
corporation of old carbon from the parent rock (Rixhon et al.,
2018).

Several other geochronometers have also been applied
to coastal boulder deposits, with mixed or limited results
to date. Other radioisotopes (particularly Uranium series
230Th/U) have been applied to reef-derived coral boulders
with some success (Araoka et al., 2010; Lau et al., 2016; Rix-
hon et al., 2018; Terry et al., 2016; Yu et al., 2012; Zhao et
al., 2009), although the uncertainties can be substantial (Rix-
hon et al., 2018), and again there are lithologic limitations.
Innovative application of viscous remanent magnetism (Sato
et al., 2022) at present is beset with uncertainties. Lichenom-
etry has been attempted in some locations (Hall et al., 2006;
Oliveira et al., 2020c), and although it may produce useful
results in areas that are well characterised (McCarthy, 2021),
the range of variability in growth rates (seasonally, annually,
and in different locations), as well as uncertainty in coloniza-
tion rates on fresh surfaces, mean that this is an imprecise
technique that is primarily useful for relative dating (Winch-
ester, 2023). The application of surface exposure dating using
cosmogenic nuclides (Rixhon et al., 2018) or optically stim-
ulated luminescence (Brill et al., 2021) is in its infancy and
still associated with large uncertainties.

Whereas it may not be possible to date deposits, we en-
courage workers to investigate possible geochronology op-
tions, and where possible to use more than one, to provide in-
ternal validation and error checking. This field is constantly
evolving, and we anticipate that the ability to date deposits
and/or paleosurfaces will improve rapidly.

7 Data reporting

Many studies generate 100s or even 1000s of measurements
and cannot be reported as simple tables within manuscripts.
They can be provided in supplemental tables, or may be up-
loaded to a repository that can be cited and linked in the
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paper. Tabulated data are simplest for ingesting into larger
databases, but GIS shapefiles or KML files work too. There
are several general-purpose data repositories (e.g. FigShare,
or OpenAIRE’s Zenodo) that are both free and open-access,
as well as numerous options that may be either discipline
or country specific (too numerous to list here). The ISROC-
DB database used for this analysis network is a Design-
Safe data archive specific to coastal boulder deposits (2025a;
Kennedy et al., 2025b). Researchers wishing to submit data
for future updates to ISROC-DB can send an email to is-
roc.network@gmail.com. Making full datasets available on-
line helps ensure long-term usability and relevance of the
study. Whichever is chosen, the location and access infor-
mation should be included with the published paper.

8 Discussion and conclusions

Individual studies of coastal boulder deposits may have a
range of objectives, whether characterising deposit geomor-
phology and sedimentology (Bishop and Hughes, 1989; Cox
et al., 2018a; Goto et al., 2012; Lau et al., 2014; Lau and
Autret, 2020); documenting changes in response to events
(Autret et al., 2018; Goto et al., 2011; Kennedy et al., 2016;
Nagle-McNaughton and Cox, 2020; Naylor et al., 2016); us-
ing boulder characteristics to deduce hydrodynamics (e.g.
initiation of motion criteria and bore velocity) (Nott, 2003b;
Pepe et al., 2018; Shah-Hosseini et al., 2016), and attempting
to determine whether the emplacing forces were from storm
waves or tsunami (Biolchi et al., 2019a; Causon Deguara and
Gauci, 2017; Switzer and Burston, 2010). The cited studies
are examples, and of course most studies have multiple aims.
All however share the fundamental goal of trying to better
understand coastal boulder deposits overall, whether in the
local context or more broadly. Therefore, data collected by
one set of researchers may also be valuable to others making
comparative analyses – or to the same research group coming
back to sites later in time.

Coastal geomorphology research may inform critical de-
cisions on climate change, natural resource management and
hazard mitigation. Thus, standardised methodologies are es-
sential for consistent, high-quality datasets that can be confi-
dently interpreted and applied across regions and disciplines.
Reliable comparisons allow researchers to generalize find-
ings on wave energy, boulder transport mechanisms, and de-
posit persistence. This knowledge informs models predicting
future storm impacts and supports coastal defence planning,
which may integrate coastal boulder deposits insights into
structural design (Cox and Pakrashi, 2023).

Although our discussion is specific to coastal boulder de-
posits, many of the methods and approaches that we describe
would be best practices for studies of other kinds of coastal
sites, including shore platforms, cliffs, and other energetic
and geomorphologically dynamic environments.

8.1 Good data collection does not necessarily require
expensive equipment

Tools such as drone photogrammetry and laser rangefind-
ers are increasingly common and can certainly simplify field
work, but we are keenly aware that such equipment is not
available to all researchers. We want to ensure that the recom-
mended best practices do not erect barriers to participation in
the coastal boulder deposit community. Classical, low-tech
field methods are very valuable, offering high precision, and
for many applications are just as good as electronic or digital
options.

By the same token, workers should bear in mind that
whereas ultra-high-precision measurements may be neces-
sary for some applications (e.g. measuring fine-scale plat-
form erosion: Cullen and Bourke, 2018), in other instances
they may exceed the requirements of the questions being
asked, as discussed above. The stochastic nature of coastal
systems makes many measurements inherently approximate,
and high precision data readouts may give a false sense of ac-
curacy in the context of the messy real world. For example,
given the non-linearity of wave behaviour, and the numer-
ous factors that influence bore velocity or initiation of boul-
der motion, it is usually sufficient to know boulder masses
to within ∼ 10%, and topographic dimensions to the nearest
half-metre or so.

8.2 “Future-proofing” the data is important

The coastal research community is diverse, including geolo-
gists, geomorphologists, engineers, applied mathematicians,
and wave physicists (among others), with a wide range of
different backgrounds. Storm inundation and wave modelers
need and want the kind of data that field geoscientists can
provide. Civil engineers may be interested in coastal boul-
ders as riprap or seawall analogues, and a kind of natural ex-
periment in wave-infrastructure interactions as they simulate
real-world wave-structure interactions, informing designs for
riprap and seawalls (Cox and Pakrashi, 2023). Communities
and schools may want to incorporate data into projects, or to
use them in environmental planning. So in collecting data,
we urge coastal boulder deposit researchers to remember the
range of ways in which it is likely to be used, and make the
information as usable as possible.

Data availability. Data used for this analysis are from the Global
Database for Coastal Boulder Deposits (ISROC-DB) from Inun-
dation Signature on Rocky Coastlines (ISROC), available from
the NSF NHERI DesignSafe archive (Kennedy et al., 2025b;
https://doi.org/10.17603/ds2-nm6q-h553).

Supplement. The supplement related to this article is available on-
line at https://doi.org/10.5194/nhess-25-4203-2025-supplement.
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ics of coastal boulders in a semi-enclosed shallow basin: A
northern Adriatic case study, Marine Geology, 411, 62–77,
https://doi.org/10.1016/j.margeo.2019.01.008, 2019a.

https://doi.org/10.5194/nhess-25-4203-2025 Nat. Hazards Earth Syst. Sci., 25, 4203–4226, 2025

https://doi.org/10.1111/sed.12570
https://doi.org/10.3390/drones7040258
https://doi.org/10.1016/j.quascirev.2015.03.016
https://doi.org/10.1029/2009GC002893
https://doi.org/10.1130/GES01356.1
https://doi.org/10.1016/j.margeo.2016.09.014
https://doi.org/10.1016/j.geomorph.2017.12.028
https://doi.org/10.1016/j.margeo.2022.106984
https://doi.org/10.1016/j.sedgeo.2015.06.009
https://doi.org/10.1016/j.margeo.2010.05.005
https://doi.org/10.1155/2021/1094602
https://doi.org/10.1127/0372-8854/2010/0054S3-0022
https://doi.org/10.5194/nhess-16-737-2016
https://doi.org/10.1016/j.margeo.2019.01.008


4220 R. Cox et al.: Understanding extreme-wave hazards on high-energy coasts

Biolchi, S., Denamiel, C., Devoto, S., Korbar, T., Macovaz, V., Sci-
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