Articles | Volume 24, issue 11
https://doi.org/10.5194/nhess-24-3789-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-24-3789-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Inundation and evacuation of shoreline populations during landslide-triggered tsunamis: an integrated numerical and statistical hazard assessment
Emmie Malika Bonilauri
CORRESPONDING AUTHOR
Laboratoire Magmas et Volcans, OPGC, IRD, CNRS, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
Catherine Aaron
Laboratoire de Mathématiques Blaise Pascal, CNRS, Université Clermont Auvergne, 63170 Clermont-Ferrand, France
Matteo Cerminara
Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione di Pisa, 56125 Pisa, Italy
Raphaël Paris
Laboratoire Magmas et Volcans, OPGC, IRD, CNRS, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
Tomaso Esposti Ongaro
Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione di Pisa, 56125 Pisa, Italy
Benedetta Calusi
Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione di Pisa, 56125 Pisa, Italy
Dipartimento di Matematica e Informatica “Ulisse Dini”, Università degli Studi di Firenze, 50134 Florence, Italy
Domenico Mangione
Dipartimento della Protezione Civile, 00189 Rome, Italy
Andrew John Lang Harris
Laboratoire Magmas et Volcans, OPGC, IRD, CNRS, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
Related authors
No articles found.
Matteo Trolese, Alessandro Tadini, Laura Pieretti, Damiano Biagini, Spina Cianetti, Simone Colucci, Matteo Cerminara, Claudia D'Oriano, Chiara Montagna, Michele D'Ambrosio, Raffaello Pegna, Giuseppe Re, Francesco Sanseverino, Carlo Giunchi, Carlo Meletti, and Tomaso Esposti Ongaro
EGUsphere, https://doi.org/10.5194/egusphere-2025-3026, https://doi.org/10.5194/egusphere-2025-3026, 2025
This preprint is open for discussion and under review for Geoscience Communication (GC).
Short summary
Short summary
This study describes two hands-on outreach events: an interactive lesson for high-school students during European Researchers’ Night and a tsunami experiment at Lucca Comics & Games. Surveys showed both groups enjoyed the activities, boosted their grasp of geoscience ideas and grew more positive about science. The work emphasizes the effectiveness of quantitative experiment demonstrations and the need to adapt them to the audience, time available and clear educator coordination.
Rónadh Cox, Mary C. Bourke, Max Engel, Andrew B. Kennedy, Annie Lau, Serge Suanez, Sarah J. Boulton, Maria Alexandra Oliveira, Raphaël Paris, Dimitra Salmanidou, Michaela Spiske, Wayne Stephenson, Storm Roberts, Adam D. Switzer, Nadia Mhammdi, Niamh D. Cullen, and Masashi Watanabe
EGUsphere, https://doi.org/10.5194/egusphere-2025-1913, https://doi.org/10.5194/egusphere-2025-1913, 2025
Short summary
Short summary
Coastal boulder deposits record extreme wave events, both storm and tsunami. Fully understanding hazards as recorded in these deposits requires high-quality data for comparison among sites and over time. We analysed methodologies and constructed a comprehensive set of field measurements to improve data consistency and reproducibility. We aim to help geomorphologists produce of data that can be widely shared and used to build extensive analytic understanding of coastal boulder deposits.
Mattia de' Michieli Vitturi, Tomaso Esposti Ongaro, and Samantha Engwell
Geosci. Model Dev., 16, 6309–6336, https://doi.org/10.5194/gmd-16-6309-2023, https://doi.org/10.5194/gmd-16-6309-2023, 2023
Short summary
Short summary
We present version 2 of the numerical code IMEX-SfloW2D. With this version it is possible to simulate a wide range of volcanic mass flows (pyroclastic avalanches, lahars, pyroclastic surges), and here we present its application to transient dilute pyroclastic density currents (PDCs). A simulation of the 1883 Krakatau eruption demonstrates the capability of the numerical model to face a complex natural case involving the propagation of PDCs over the sea surface and across topographic obstacles.
Hugh Daigle, João C. Duarte, Ake Fagereng, Raphaël Paris, Patricia Persaud, Ángela María Gómez-García, and the Lisbon MagellanPlus Workshop Participants
Sci. Dril., 32, 101–111, https://doi.org/10.5194/sd-32-101-2023, https://doi.org/10.5194/sd-32-101-2023, 2023
Short summary
Short summary
Natural hazards associated with the ocean can have a direct impact on coastal populations and even affect populations located far away from the coast. These hazards may interact, and they include tsunamis that result in major damage and catastrophic loss of life and submarine landslides, which themselves can produce tsunamis and damage subsea infrastructure. We present ideas for investigating these hazards with scientific ocean drilling.
Magdalena Oryaëlle Chevrel, Massimiliano Favalli, Nicolas Villeneuve, Andrew J. L. Harris, Alessandro Fornaciai, Nicole Richter, Allan Derrien, Patrice Boissier, Andrea Di Muro, and Aline Peltier
Nat. Hazards Earth Syst. Sci., 21, 2355–2377, https://doi.org/10.5194/nhess-21-2355-2021, https://doi.org/10.5194/nhess-21-2355-2021, 2021
Short summary
Short summary
At Piton de la Fournaise, eruptions are typically fissure-fed and form extensive lava flow fields. Most historical events have occurred inside an uninhabited caldera, but rarely has lava flowed where population and infrastructure might be at risk. We present an up-to-date lava flow hazard map to visualize the probability of inundation by a lava flow per unit area that is an essential tool for hazard mitigation and guiding crises response management.
Alessandro Tadini, Andrea Bevilacqua, Augusto Neri, Raffaello Cioni, Giovanni Biagioli, Mattia de'Michieli Vitturi, and Tomaso Esposti Ongaro
Solid Earth, 12, 119–139, https://doi.org/10.5194/se-12-119-2021, https://doi.org/10.5194/se-12-119-2021, 2021
Short summary
Short summary
In this paper we test a simplified numerical model for pyroclastic density currents or PDCs (mixtures of hot gas, lapilli and ash moving across the landscape under the effect of gravity). The aim is quantifying the differences between real and modelled deposits of some PDCs of the 79 CE eruption of Vesuvius, Italy. This step is important because in the paper it is demonstrated that this simplified model is useful for constraining input parameters for more computationally expensive models.
Cited articles
Acocella, V., Neri, M., and Scarlato, P.: Understanding shallow magma emplacement at volcanoes: Orthogonal feeder dikes during the 2002–2003 Stromboli (Italy) eruption, Geophys. Res. Lett., 33, L17310, https://doi.org/10.1029/2006GL026862, 2006.
Boldini, D., Wang, F., Sassa, K., and Tommasi, P.: Mechanism of Landslide Causing the December 2002 Tsunami at Stromboli Volcano (Italy), in: Landslides: Risk Analysis and Sustainable Disaster Management, edited by: Sassa, K., Fukuoka, H., Wang, F., and Wang, G., Springer, Berlin, Heidelberg, 173–180, https://doi.org/10.1007/3-540-28680-2_21, 2005.
Bonaccorso, A., Calvari, S., Garfì, G., Lodato, L., and Patanè, D.: Dynamics of the December 2002 flank failure and tsunami at Stromboli volcano inferred by volcanological and geophysical observations, Geophys. Res. Lett., 30, 1941, https://doi.org/10.1029/2003GL017702, 2003.
Bonilauri, E. M., Harris, A. J. L., Morin, J., Ripepe, M., Mangione, D., Lacanna, G., Ciolli, S., Cusolito, M., and Deguy, P.: Tsunami evacuation times and routes to safe zones: a GIS-based approach to tsunami evacuation planning on the island of Stromboli, Italy, J. Appl. Volcanol., 10, 4, https://doi.org/10.1186/s13617-021-00104-9, 2021.
Calvari, S., Spampinato, L., Lodato, L., Harris, A. J. L., Patrick, M. R., Dehn, J., Burton, M. R., and Andronico, D.: Chronology and complex volcanic processes during the 2002–2003 flank eruption at Stromboli volcano (Italy) reconstructed from direct observations and surveys with a handheld thermal camera, J. Geophys. Res.-Solid, 110, B02201, https://doi.org/10.1029/2004JB003129, 2005.
Calvari, S., Branca, S., Corsaro, R. A., De Beni, E., Miraglia, L., Norini, G., Wijbrans, J., and Boschi, E.: Reconstruction of the eruptive activity on the NE sector of Stromboli volcano: timing of flank eruptions since 15 ka, Bull. Volcanol., 73, 101–112, https://doi.org/10.1007/s00445-010-0412-5, 2011.
Cerminara, M., Esposti Ongaro, T., De' Michieli Vitturi, M., Tadini, A., Trolese, M., Fornaciai, A., Nannipieri, L., and Rodriguez Galvez, J. F.: Simulated scenarios of volcanic mass movements and associated tsunamis at Stromboli (Aeolian archipelago, Tyrrhenian sea, Italy), version 1 [Data set], INGV – Istituto Nazionale di Geofisica e Vulcanologia [data set], https://doi.org/10.13127/stromboli/sciara_del_fuoco_tsunami, 2024.
Chiocci, F. L. and Ridente, D.: Regional-scale seafloor mapping and geohazard assessment. The experience from the Italian project MaGIC (Marine Geohazards along the Italian Coasts), Mar. Geophys. Res., 32, 13–23, https://doi.org/10.1007/s11001-011-9120-6, 2011.
Chiocci, F. L., Bosman, A., Romagnoli, C., Tommasi, P., and de Alteris, G.: The December 2002 Sciara del Fuoco (Stromboli Island) submarine landslide: a first characterization, EGS – AGU – EUG Joint Assembly, abstract id 12069, http://adsabs.harvard.edu/abs/2003EAEJA....12069C (last access: 18 December 2020), 2003.
Chiocci, F. L., Romagnoli, C., and Bosman, A.: Morphologic resilience and depositional processes due to the rapid evolution of the submerged Sciara del Fuoco (Stromboli Island) after the December 2002 submarine slide and tsunami, Geomorphology, 100, 356–365, https://doi.org/10.1016/j.geomorph.2008.01.008, 2008a.
Chiocci, F., Romagnoli, C., and Tommasi, P.: The Stromboli 2002 tsunamigenic submarine slide: Characteristics and possible failure mechanisms, J. Geophys. Res., 113, B10102, https://doi.org/10.1029/2007JB005172, 2008b.
Citypopulation.de: Stromboli (Messina, Sicily, Italy) – Population Statistics, Charts, Map, Location, Weather and Web Information, https://www.citypopulation.de/en/italy/localities/sicilia/messina/08304110011__stromboli/ (last access: 10 October 2023), 2023.
Esposti Ongaro, T., de' Michieli Vitturi, M., Cerminara, M., Fornaciai, A., Nannipieri, L., Favalli, M., Calusi, B., Macías, J., Castro, M. J., Ortega, S., González-Vida, J. M., and Escalante, C.: Modeling Tsunamis Generated by Submarine Landslides at Stromboli Volcano (Aeolian Islands, Italy): A Numerical Benchmark Study, Front. Earth Sci., 9, 274, https://doi.org/10.3389/feart.2021.628652, 2021.
Favalli, M., Fornaciai, A., and Pareschi, M. T.: LIDAR strip adjustment: Application to volcanic areas, Geomorphology, 111, 123–135, https://doi.org/10.1016/j.geomorph.2009.04.010, 2009.
Fernández-Nieto, E., Parisot, M., Penel, Y., and Sainte-Marie, J.: A hierarchy of dispersive layer-averaged approximations of Euler equations for free surface flows, Commun. Math. Sci., 16, 1169–1202, https://doi.org/10.4310/CMS.2018.v16.n5.a1, 2018.
Fornaciai, A., Favalli, M., and Nannipieri, L.: Numerical simulation of the tsunamis generated by the Sciara del Fuoco landslides (Stromboli Island, Italy), Sci. Rep., 9, 18542, https://doi.org/10.1038/s41598-019-54949-7, 2019.
Fornaciai, A., Favalli, M., and Nannipieri, L.: Reconstruction of the 2002 tsunami at Stromboli using the non-hydrostatic WAVE model (NHWAVE), Geol. Soc. Lond. Spec. Publ., 519, SP519-2020-162, https://doi.org/10.1144/SP519-2020-162, 2022.
Giordano, G. and De Astis, G.: The summer 2019 basaltic Vulcanian eruptions (paroxysms) of Stromboli, Bull. Volcanol., 83, 27, https://doi.org/10.1007/s00445-020-01423-2, 2020.
Giraud, C.: Introduction to high-dimensional statistics and probability, J. Roy. Stat. Soc. A, 185, 364, https://doi.org/10.1111/rssa.12861, 2021.
Grezio, A., Babeyko, A., Baptista, M. A., Behrens, J., Costa, A., Davies, G. R., Geist, E. L., Glimsdal, S., González, F. I., Griffin, J., Harbitz, C. B., Leveque, R. J., Lorito, S., Løvholt, F., Omira, R., Mueller, C., Paris, R., Parsons, T., Polet, J., Power, W., Selva, J., Sørensen, M. B., and Thio, H. K.: Probabilistic Tsunami Hazard Analysis: Multiple Sources and Global Applications, Rev. Geophys., 55, 1158–1198, https://doi.org/10.1002/2017RG000579, 2017.
Harbitz, C., Løvholt, F., and Bungum, H.: Submarine landslide tsunamis: how extreme and how likely?, Nat. Hazards, 72, 1341–1374, https://doi.org/10.1007/s11069-013-0681-3, 2014.
Istat.it: Dashboard Permanent census of population and housing, https://esploradati.censimentopopolazione.istat.it/databrowser/#/en/censtest/dashboards (last access: 17 October 2023), 2023.
Kokelaar, P. and Romagnoli, C.: Sector collapse, sedimentation and clast population evolution at an active island-arc volcano: Stromboli, Italy, Bull. Volcanol., 57, 240–262, https://doi.org/10.1007/BF00265424, 1995.
Lacanna G. and Ripepe M.: Genesis of tsunami waves generated by Pyroclastic flows and the Early-Warning system, in: The Rittmann Conference, 14 February 2020, Catania, Italy, https://www.conferenzarittmann.it/images/2020/Miscellanea_52.pdf (last access: 1 December 2023), 2020.
Leone, F., Péroche, M., Lagahé, E., Gherardi, M., Sahal, A., Vinet, F., Hachim, S., and Lavigne, F.: Modélisation de l'accessibilité territoriale pour l'aide à la gestion de crise tsunami (Mayotte, France), Annales de géographie, 693, 502–524, https://doi.org/10.3917/ag.693.0502, 2013.
Leone, F., Péroche, M., Robustelli, M., Cargnelutti, L., Perdrieau, J.-C., Coupin, T., and Gherardi, M.: Planifier les évacuations en cas de tsunami: la méthode EXPLOIT, Guide méthodologique, Service des publications de Montpellier 3, 2018.
Macías, J., Escalante, C., and Castro, M. J.: Multilayer-HySEA model validation for landslide-generated tsunamis – Part 1: Rigid slides, Nat. Hazards Earth Syst. Sci., 21, 775–789, https://doi.org/10.5194/nhess-21-775-2021, 2021a.
Macías, J., Escalante, C., and Castro, M. J.: Multilayer-HySEA model validation for landslide-generated tsunamis – Part 2: Granular slides, Nat. Hazards Earth Syst. Sci., 21, 791–805, https://doi.org/10.5194/nhess-21-791-2021, 2021b.
Maramai, A., Graziani, L., Alessio, G., Burrato, P., Colini, L., Cucci, L., Nappi, R., Nardi, A., and Vilardo, G.: Near- and far-field survey report of the 30 December 2002 Stromboli (Southern Italy) tsunami, Mar. Geol., 215, 93–106, https://doi.org/10.1016/j.margeo.2004.11.009, 2005a.
Maramai, A., Graziani, L., and Tinti, S.: Tsunamis in the Aeolian Islands (southern Italy): a review, Mar. Geol., 215, 11–21, https://doi.org/10.1016/j.margeo.2004.03.018, 2005b.
Maramai, A., Graziani, L., and Brizuela, B.: Euro-Mediterranean Tsunami Catalogue (EMTC), version 1.0 (1.0), INGV, https://doi.org/10.13127/TSUNAMI/EMTC.1.0, 2014.
Muhari, A., Heidarzadeh, M., Susmoro, H., Nugroho, H. D., Kriswati, E., Supartoyo, Wijanarto, A. B., Imamura, F., and Arikawa, T.: The December 2018 Anak Krakatau Volcano Tsunami as Inferred from Post-Tsunami Field Surveys and Spectral Analysis, Pure Appl. Geophys., 176, 5219–5233, https://doi.org/10.1007/s00024-019-02358-2, 2019.
NCEI: Center NGD Tsunami Data and Information, https://www.ngdc.noaa.gov/hazard/tsu.shtml (last access: 9 January 2023), 2023.
Paris, R., Ramalho, R. S., Madeira, J., Avila, S. L., May, S. M., Rixhon, G., Engel, M., Brückner, H., Herzog, M., Schukraft, G., Perez-Torrado, F. J., Rodriguez-Gonzalez, A., Carracedo, J. C., and Giachetti, T.: Mega-tsunami conglomerates and flank collapses of ocean island volcanoes, Mar. Geol., 395, 168–187, https://doi.org/10.1016/j.margeo.2017.10.004, 2018.
Péroche, M.: La gestion de crise tsunami dans la Caraïbe: contribution géographique aux dispositifs d'alerte et d'évacuation des populations, phdthesis, Univeristé Paul Valery, Montpellier 3, https://hal.science/tel-03129123v1 (last access: 10 January 2023), 2016.
Pino, N. A., Ripepe, M., and Cimini, G. B.: The Stromboli Volcano landslides of December 2002: A seismological description, Geophys. Res. Lett., 31, L02605, https://doi.org/10.1029/2003GL018385, 2004.
Pistolesi, M., Bertagnini, A., Di Roberto, A., Ripepe, M., and Rosi, M.: Tsunami and tephra deposits record interactions between past eruptive activity and landslides at Stromboli volcano, Italy, Geology, 48, 436–440, https://doi.org/10.1130/G47331.1, 2020.
Provitolo, D., Dubos-Paillard, E., Verdière, N., Lanza, V., Charrier, R., Bertelle, C., and Aziz-Alaoui, M. A.: Les comportements humains en situation de catastrophe: de l'observation à la modélisation conceptuelle et mathématique, Cybergeo: European Journal of Geography, Systèmes, Modélisation, Géostatistiques, document 735, https://doi.org/10.4000/cybergeo.27150, 2015.
Ripepe, M. and Lacanna, G.: Volcano generated tsunami recorded in the near source, Nat. Commun., 15, 1802, https://doi.org/10.1038/s41467-024-45937-1, 2024.
Riskianingrum, D. and Yogaswara, H.: The fading of disaster memory in Pulau Sebesi: A historical construction, E3S Web Conf., 340, 05008, https://doi.org/10.1051/e3sconf/202234005008, 2022.
Rosi, M., Bertagnini, A., and Landi, P.: Onset of the persistent activity at Stromboli Volcano (Italy), Bull. Volcanol., 62, 294–300, https://doi.org/10.1007/s004450000098, 2000.
Rosi, M., Pistolesi, M., Bertagnini, A., Landi, P., Pompilio, M., and Di Roberto, A.: Stromboli volcano, Aeolian Islands (Italy): present eruptive activity and hazards, in: The Aeolian Islands Volcanoes, vol. 37, edited by: Lucchi, F., Peccerillo, A., Keller, J., Tranne, C. A., and Rossi, P. L., Geological Society of London, https://doi.org/10.1144/M37.14, 2013.
Selva, J., Amato, A., Armigliato, A., Basili, R., Bernardi, F., Brizuela, B., Cerminara, M., de' Micheli Vitturi, M., Di Bucci, D., Di Manna, P., Esposti Ongaro, T., Lacanna, G., Lorito, S., Løvholt, F., Mangione, D., Panunzi, E., Piatanesi, A., Ricciardi, A., Ripepe, M., Romano, F., Santini, M., Scalzo, A., Tonini, R., Volpe, M., and Zaniboni, F.: Tsunami risk management for crustal earthquakes and non-seismic sources in Italy, Riv. Nuovo Cim., 44, 69–144, https://doi.org/10.1007/s40766-021-00016-9, 2021.
Solís, I. and Gazmuri, P.: Evaluation of the risk and the evacuation policy in the case of a tsunami in the city of Iquique, Chile, Nat. Hazards, 88, 503–532, https://doi.org/10.1007/s11069-017-2876-5, 2017.
Speranza, F., Pompilio, M., D'Ajello Caracciolo, F., and Sagnotti, L.: Holocene eruptive history of the Stromboli volcano: Constraints from paleomagnetic dating, J. Geophys. Res., 113, B09101, https://doi.org/10.1029/2007JB005139, 2008.
Tinti, S., Manucci, A., Pagnoni, G., Armigliato, A., and Zaniboni, F.: The 30 December 2002 landslide-induced tsunamis in Stromboli: sequence of the events reconstructed from the eyewitness accounts, Nat. Hazards Earth Syst. Sci., 5, 763–775, https://doi.org/10.5194/nhess-5-763-2005, 2005.
Tinti, S., Maramai, A., Armigliato, A., Graziani, L., Manucci, A., Pagnoni, G., and Zaniboni, F.: Observations of physical effects from tsunamis of December 30, 2002 at Stromboli volcano, southern Italy, Bull. Volcanol., 68, 450–461, https://doi.org/10.1007/s00445-005-0021-x, 2006a.
Tinti, S., Pagnoni, G., and Zaniboni, F.: The landslides and tsunamis of the 30th of December 2002 in Stromboli analysed through numerical simulations, Bull. Volcanol., 68, 462–479, https://doi.org/10.1007/s00445-005-0022-9, 2006b.
Tommasi, P., Baldi, P., Chiocci, F. L., Coltelli, M., Marsella, M., Pompilio, M., and Romagnoli, C.: The Landslide Sequence Induced by the 2002 Eruption at Stromboli Volcano, in: Landslides: Risk Analysis and Sustainable Disaster Management, edited by: Sassa, K., Fukuoka, H., Wang, F., and Wang, G., Springer, Berlin, Heidelberg, 251–258, https://doi.org/10.1007/3-540-28680-2_32, 2005.
Tulius, J.: Lesson from the Past, Knowledge for the Future: Roles of Human Memories in Earthquake and Tsunami Narratives in Mentawai, Indonesia, Paradigma, 10, 147–168, https://doi.org/10.17510/paradigma.v10i2.396, 2020.
Turchi, A., Di Traglia, F., Gentile, R., Fornaciai, A., Zetti, I., and Fanti, R.: Relative seismic and tsunami risk assessment for Stromboli Island (Italy), Int. J. Disast. Risk Reduct., 76, 103002, https://doi.org/10.1016/j.ijdrr.2022.103002, 2022.
Short summary
Currently on the island of Stromboli, only 4 min of warning time is available for a locally generated tsunami. We combined tsunami simulations and human exposure to complete a risk analysis. We linked the predicted inundation area and the tsunami warning signals to assess the hazard posed by future tsunamis and to design escape routes to reach safe areas and to optimise evacuation times. Such products can be used by civil protection agencies on Stromboli.
Currently on the island of Stromboli, only 4 min of warning time is available for a locally...
Altmetrics
Final-revised paper
Preprint