Articles | Volume 24, issue 1
https://doi.org/10.5194/nhess-24-291-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/nhess-24-291-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The communication strategy for the release of the first European Seismic Risk Model and the updated European Seismic Hazard Model
Swiss Seismological Service, ETH Zurich, Zurich, 8092, Switzerland
Michèle Marti
Swiss Seismological Service, ETH Zurich, Zurich, 8092, Switzerland
Nadja Valenzuela
Swiss Seismological Service, ETH Zurich, Zurich, 8092, Switzerland
Helen Crowley
EUCENTRE, Pavia, 27100, Italy
Jamal Dabbeek
EUCENTRE, Pavia, 27100, Italy
Department of Architectural and Civil Engineering, An-Najah National University, Nablus, Palestine
Laurentiu Danciu
Swiss Seismological Service, ETH Zurich, Zurich, 8092, Switzerland
Simone Zaugg
Swiss Seismological Service, ETH Zurich, Zurich, 8092, Switzerland
Fabrice Cotton
GFZ German Research Centre for Geosciences, Potsdam, Germany
University of Potsdam, Potsdam, Germany
Domenico Giardini
Swiss Seismological Service, ETH Zurich, Zurich, 8092, Switzerland
Rui Pinho
EUCENTRE, Pavia, 27100, Italy
John F. Schneider
Global Earthquake Model Foundation, Pavia, Italy
Céline Beauval
Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, Univ. Gustave Eiffel, ISTerre, Grenoble, France
António A. Correia
National Laboratory for Civil Engineering, LNEC, Lisbon, Portugal
Olga-Joan Ktenidou
National Observatory of Athens, Athens, Greece
Päivi Mäntyniemi
Institute of Seismology, Department of Geosciences and Geography, University of Helsinki, Helsinki, Finland
Marco Pagani
Global Earthquake Model Foundation, Pavia, Italy
Institute of Catastrophe Risk Management, Nanyang Technological University, Singapore
Vitor Silva
Global Earthquake Model Foundation, Pavia, Italy
Graeme Weatherill
GFZ German Research Centre for Geosciences, Potsdam, Germany
Stefan Wiemer
Swiss Seismological Service, ETH Zurich, Zurich, 8092, Switzerland
Related authors
Athanasios N. Papadopoulos, Philippe Roth, Laurentiu Danciu, Paolo Bergamo, Francesco Panzera, Donat Fäh, Carlo Cauzzi, Blaise Duvernay, Alireza Khodaverdian, Pierino Lestuzzi, Ömer Odabaşi, Ettore Fagà, Paolo Bazzurro, Michèle Marti, Nadja Valenzuela, Irina Dallo, Nicolas Schmid, Philip Kästli, Florian Haslinger, and Stefan Wiemer
Nat. Hazards Earth Syst. Sci., 24, 3561–3578, https://doi.org/10.5194/nhess-24-3561-2024, https://doi.org/10.5194/nhess-24-3561-2024, 2024
Short summary
Short summary
The Earthquake Risk Model of Switzerland (ERM-CH23), released in early 2023, is the culmination of a multidisciplinary effort aiming to achieve, for the first time, a comprehensive assessment of the potential consequences of earthquakes on the Swiss building stock and population. ERM-CH23 provides risk estimates for various impact metrics, ranging from economic loss as a result of damage to buildings and their contents to human losses, such as deaths, injuries, and displaced population.
Maren Böse, Laurentiu Danciu, Athanasios Papadopoulos, John Clinton, Carlo Cauzzi, Irina Dallo, Leila Mizrahi, Tobias Diehl, Paolo Bergamo, Yves Reuland, Andreas Fichtner, Philippe Roth, Florian Haslinger, Frédérick Massin, Nadja Valenzuela, Nikola Blagojević, Lukas Bodenmann, Eleni Chatzi, Donat Fäh, Franziska Glueer, Marta Han, Lukas Heiniger, Paulina Janusz, Dario Jozinović, Philipp Kästli, Federica Lanza, Timothy Lee, Panagiotis Martakis, Michèle Marti, Men-Andrin Meier, Banu Mena Cabrera, Maria Mesimeri, Anne Obermann, Pilar Sanchez-Pastor, Luca Scarabello, Nicolas Schmid, Anastasiia Shynkarenko, Bozidar Stojadinović, Domenico Giardini, and Stefan Wiemer
Nat. Hazards Earth Syst. Sci., 24, 583–607, https://doi.org/10.5194/nhess-24-583-2024, https://doi.org/10.5194/nhess-24-583-2024, 2024
Short summary
Short summary
Seismic hazard and risk are time dependent as seismicity is clustered and exposure can change rapidly. We are developing an interdisciplinary dynamic earthquake risk framework for advancing earthquake risk mitigation in Switzerland. This includes various earthquake risk products and services, such as operational earthquake forecasting and early warning. Standardisation and harmonisation into seamless solutions that access the same databases, workflows, and software are a crucial component.
Christophe Lienert, Franziska Angly Bieri, Irina Dallo, and Michèle Marti
Abstr. Int. Cartogr. Assoc., 5, 154, https://doi.org/10.5194/ica-abs-5-154-2022, https://doi.org/10.5194/ica-abs-5-154-2022, 2022
Sandro Truttmann, Tobias Diehl, Marco Herwegh, and Stefan Wiemer
Solid Earth, 16, 641–662, https://doi.org/10.5194/se-16-641-2025, https://doi.org/10.5194/se-16-641-2025, 2025
Short summary
Short summary
Our study investigates the statistical relationship between geological fractures and earthquakes in the southwestern Swiss Alps. We analyze how the fracture size and earthquake rupture are related and find differences in how fractures at different depths rupture seismically. While shallow fractures tend to rupture only partially, deeper fractures are more likely to rupture along their entire length, potentially resulting in larger earthquakes.
Bénédicte Donniol Jouve, Anne Socquet, Céline Beauval, Jesus Piña Valdès, and Laurentiu Danciu
Nat. Hazards Earth Syst. Sci., 25, 1789–1809, https://doi.org/10.5194/nhess-25-1789-2025, https://doi.org/10.5194/nhess-25-1789-2025, 2025
Short summary
Short summary
We investigate how geodetic monitoring enhances accuracy in seismic hazard assessment. By utilizing geodetic strain rate maps for Europe and the European Seismic Hazard Model 2020 source model, we compare geodetic and seismic moment rates across the continent while addressing associated uncertainties. Our analysis reveals primary compatibility in high-activity zones. In well-constrained regions of lower activity, we also observed an overlap in the distribution of seismic and geodetic moments.
Kathrin Behnen, Marian Hertrich, Hansruedi Maurer, Alexis Shakas, Kai Bröker, Claire Epiney, María Blanch Jover, and Domenico Giardini
Solid Earth, 16, 333–350, https://doi.org/10.5194/se-16-333-2025, https://doi.org/10.5194/se-16-333-2025, 2025
Short summary
Short summary
Several cross-hole seismic surveys in the undisturbed Rotondo granite are used to analyze the seismic anisotropy in the Bedretto Lab, Switzerland. The P and S1 waves show a clear trend of faster velocities in the NE–SW direction and slower velocities perpendicular to it, indicating a tilted transverse isotropic velocity model. The symmetry plane is mostly aligned with the direction of maximum stress, but also the orientation of fractures is expected to influence the velocities.
Naveen Ragu Ramalingam, Kendra Johnson, Marco Pagani, and Mario L. V. Martina
Nat. Hazards Earth Syst. Sci., 25, 1655–1679, https://doi.org/10.5194/nhess-25-1655-2025, https://doi.org/10.5194/nhess-25-1655-2025, 2025
Short summary
Short summary
By combining limited tsunami simulations with machine learning, we developed a fast and efficient framework to predict tsunami impacts such as wave heights and inundation depths at different coastal sites. Testing our model with historical tsunami source scenarios helped assess its reliability and broad applicability. This work enables more efficient and comprehensive tsunami hazard modelling workflow, which is essential for tsunami risk evaluations and enhancing coastal disaster preparedness.
Miriam Larissa Schwarz, Hansruedi Maurer, Anne Christine Obermann, Paul Antony Selvadurai, Alexis Shakas, Stefan Wiemer, and Domenico Giardini
EGUsphere, https://doi.org/10.5194/egusphere-2025-1094, https://doi.org/10.5194/egusphere-2025-1094, 2025
Short summary
Short summary
This study applied fat ray travel time tomography to image the geothermal testbed at the BedrettoLab. An active seismic crosshole survey provided a dataset of 42'843 manually picked first breaks. The complex major fault zone was successfully imaged by a 3D velocity model and validated with wireline logs and geological observations. Seismic events from hydraulic stimulation correlated with velocity structures, "avoiding" very high and low velocities, speculatively due to stress gradients.
Marta Han, Leila Mizrahi, and Stefan Wiemer
Nat. Hazards Earth Syst. Sci., 25, 991–1012, https://doi.org/10.5194/nhess-25-991-2025, https://doi.org/10.5194/nhess-25-991-2025, 2025
Short summary
Short summary
Relying on recent accomplishments of collecting and harmonizing data by the 2020 European Seismic Hazard Model (ESHM20) and leveraging advancements in state-of-the-art earthquake forecasting methods, we develop a harmonized earthquake forecasting model for Europe. We propose several model variants and test them on training data for consistency and on a 7-year testing period against each other, as well as against both a time-independent benchmark and a global time-dependent benchmark.
Elena F. Manea, Laurentiu Danciu, Carmen O. Cioflan, Dragos Toma-Danila, and Matthew C. Gerstenberger
Nat. Hazards Earth Syst. Sci., 25, 1–12, https://doi.org/10.5194/nhess-25-1-2025, https://doi.org/10.5194/nhess-25-1-2025, 2025
Short summary
Short summary
We test and evaluate the results of the 2020 European Seismic Hazard Model (ESHM20) against observations spanning a few centuries at 12 cities in Romania. The full distributions of the hazard curves at the given locations were considered, and the testing was performed for two relevant peak ground acceleration (PGA) values. Our analysis suggests that the observed exceedance rates for the selected PGA levels are consistent with ESHM20 estimates.
Sarah El Kadri, Celine Beauval, Marlene Brax, and Yann Klinger
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-184, https://doi.org/10.5194/nhess-2024-184, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
Seismic hazard evaluation is required for establishing earthquake-resistant building codes. Our aim is to improve the quantification of seismic hazard in the Levant by including our knowledge on how faults may be interconnected. We build an earthquake forecast by redistributing the energy stored in the fault system over all possible earthquake ruptures. This interconnected fault model leads to seismic hazard maps where hazard is as high on secondary fault branches as on main branches.
Roberto Basili, Laurentiu Danciu, Céline Beauval, Karin Sesetyan, Susana Pires Vilanova, Shota Adamia, Pierre Arroucau, Jure Atanackov, Stéphane Baize, Carolina Canora, Riccardo Caputo, Michele Matteo Cosimo Carafa, Edward Marc Cushing, Susana Custódio, Mine Betul Demircioglu Tumsa, João C. Duarte, Athanassios Ganas, Julián García-Mayordomo, Laura Gómez de la Peña, Eulàlia Gràcia, Petra Jamšek Rupnik, Hervé Jomard, Vanja Kastelic, Francesco Emanuele Maesano, Raquel Martín-Banda, Sara Martínez-Loriente, Marta Neres, Hector Perea, Barbara Šket Motnikar, Mara Monica Tiberti, Nino Tsereteli, Varvara Tsironi, Roberto Vallone, Kris Vanneste, Polona Zupančič, and Domenico Giardini
Nat. Hazards Earth Syst. Sci., 24, 3945–3976, https://doi.org/10.5194/nhess-24-3945-2024, https://doi.org/10.5194/nhess-24-3945-2024, 2024
Short summary
Short summary
This study presents the European Fault-Source Model 2020 (EFSM20), a dataset of 1248 geologic crustal faults and four subduction systems, each having the necessary parameters to forecast long-term earthquake occurrences in the European continent. This dataset constituted one of the main inputs for the recently released European Seismic Hazard Model 2020, a key instrument to mitigate seismic risk in Europe. EFSM20 adopts recognized open-standard formats, and it is openly accessible and reusable.
Graeme Weatherill, Fabrice Cotton, Guillaume Daniel, Irmela Zentner, Pablo Iturrieta, and Christian Bosse
Nat. Hazards Earth Syst. Sci., 24, 3755–3787, https://doi.org/10.5194/nhess-24-3755-2024, https://doi.org/10.5194/nhess-24-3755-2024, 2024
Short summary
Short summary
New generations of seismic hazard models are developed with sophisticated approaches to quantify uncertainties in our knowledge of earthquake processes. To understand why and how recent state-of-the-art seismic hazard models for France, Germany, and Europe differ despite similar underlying assumptions, we present a systematic approach to investigate model-to-model differences and to quantify and visualise them while accounting for their respective uncertainties.
Athanasios N. Papadopoulos, Philippe Roth, Laurentiu Danciu, Paolo Bergamo, Francesco Panzera, Donat Fäh, Carlo Cauzzi, Blaise Duvernay, Alireza Khodaverdian, Pierino Lestuzzi, Ömer Odabaşi, Ettore Fagà, Paolo Bazzurro, Michèle Marti, Nadja Valenzuela, Irina Dallo, Nicolas Schmid, Philip Kästli, Florian Haslinger, and Stefan Wiemer
Nat. Hazards Earth Syst. Sci., 24, 3561–3578, https://doi.org/10.5194/nhess-24-3561-2024, https://doi.org/10.5194/nhess-24-3561-2024, 2024
Short summary
Short summary
The Earthquake Risk Model of Switzerland (ERM-CH23), released in early 2023, is the culmination of a multidisciplinary effort aiming to achieve, for the first time, a comprehensive assessment of the potential consequences of earthquakes on the Swiss building stock and population. ERM-CH23 provides risk estimates for various impact metrics, ranging from economic loss as a result of damage to buildings and their contents to human losses, such as deaths, injuries, and displaced population.
Laurentiu Danciu, Domenico Giardini, Graeme Weatherill, Roberto Basili, Shyam Nandan, Andrea Rovida, Céline Beauval, Pierre-Yves Bard, Marco Pagani, Celso G. Reyes, Karin Sesetyan, Susana Vilanova, Fabrice Cotton, and Stefan Wiemer
Nat. Hazards Earth Syst. Sci., 24, 3049–3073, https://doi.org/10.5194/nhess-24-3049-2024, https://doi.org/10.5194/nhess-24-3049-2024, 2024
Short summary
Short summary
The 2020 European Seismic Hazard Model (ESHM20) is the latest seismic hazard assessment update for the Euro-Mediterranean region. This state-of-the-art model delivers a broad range of hazard results, including hazard curves, maps, and uniform hazard spectra. ESHM20 provides two hazard maps as informative references in the next update of the European Seismic Design Code (CEN EC8), and it also provides a key input to the first earthquake risk model for Europe.
Peter Achtziger-Zupančič, Alberto Ceccato, Alba Simona Zappone, Giacomo Pozzi, Alexis Shakas, Florian Amann, Whitney Maria Behr, Daniel Escallon Botero, Domenico Giardini, Marian Hertrich, Mohammadreza Jalali, Xiaodong Ma, Men-Andrin Meier, Julian Osten, Stefan Wiemer, and Massimo Cocco
Solid Earth, 15, 1087–1112, https://doi.org/10.5194/se-15-1087-2024, https://doi.org/10.5194/se-15-1087-2024, 2024
Short summary
Short summary
We detail the selection and characterization of a fault zone for earthquake experiments in the Fault Activation and Earthquake Ruptures (FEAR) project at the Bedretto Lab. FEAR, which studies earthquake processes, overcame data collection challenges near faults. The fault zone in Rotondo granite was selected based on geometry, monitorability, and hydro-mechanical properties. Remote sensing, borehole logging, and geological mapping were used to create a 3D model for precise monitoring.
Konstantinos Trevlopoulos, Pierre Gehl, Caterina Negulescu, Helen Crowley, and Laurentiu Danciu
Nat. Hazards Earth Syst. Sci., 24, 2383–2401, https://doi.org/10.5194/nhess-24-2383-2024, https://doi.org/10.5194/nhess-24-2383-2024, 2024
Short summary
Short summary
The models used to estimate the probability of exceeding a level of earthquake damage are essential to the reduction of disasters. These models consist of components that may be tested individually; however testing these types of models as a whole is challenging. Here, we use observations of damage caused by the 2019 Le Teil earthquake and estimations from other models to test components of seismic risk models.
Graeme Weatherill, Sreeram Reddy Kotha, Laurentiu Danciu, Susana Vilanova, and Fabrice Cotton
Nat. Hazards Earth Syst. Sci., 24, 1795–1834, https://doi.org/10.5194/nhess-24-1795-2024, https://doi.org/10.5194/nhess-24-1795-2024, 2024
Short summary
Short summary
The ground motion models (GMMs) selected for the 2020 European Seismic Hazard Model (ESHM20) and their uncertainties require adaptation to different tectonic environments. Using insights from new data, local experts and developments in the scientific literature, we further calibrate the ESHM20 GMM logic tree to capture previously unmodelled regional variation. We also propose a new scaled-backbone logic tree for application to Europe's subduction zones and the Vrancea deep seismic source.
Karina Loviknes, Fabrice Cotton, and Graeme Weatherill
Nat. Hazards Earth Syst. Sci., 24, 1223–1247, https://doi.org/10.5194/nhess-24-1223-2024, https://doi.org/10.5194/nhess-24-1223-2024, 2024
Short summary
Short summary
Earthquake ground shaking can be strongly affected by local geology and is often amplified by soft sediments. In this study, we introduce a global geomorphological model for sediment thickness as a protentional parameter for predicting this site amplification. The results show that including geology and geomorphology in site-amplification predictions adds important value and that global or regional models for sediment thickness from fields beyond engineering seismology are worth considering.
Dino Bindi, Riccardo Zaccarelli, Angelo Strollo, Domenico Di Giacomo, Andres Heinloo, Peter Evans, Fabrice Cotton, and Frederik Tilmann
Earth Syst. Sci. Data, 16, 1733–1745, https://doi.org/10.5194/essd-16-1733-2024, https://doi.org/10.5194/essd-16-1733-2024, 2024
Short summary
Short summary
The size of an earthquake is often described by a single number called the magnitude. Among the possible magnitude scales, the seismic moment (Mw) and the radiated energy (Me) scales are based on physical parameters describing the rupture process. Since these two magnitude scales provide complementary information that can be used for seismic hazard assessment and for seismic risk mitigation, we complement the Mw catalog disseminated by the GEOFON Data Centre with Me values.
Maren Böse, Laurentiu Danciu, Athanasios Papadopoulos, John Clinton, Carlo Cauzzi, Irina Dallo, Leila Mizrahi, Tobias Diehl, Paolo Bergamo, Yves Reuland, Andreas Fichtner, Philippe Roth, Florian Haslinger, Frédérick Massin, Nadja Valenzuela, Nikola Blagojević, Lukas Bodenmann, Eleni Chatzi, Donat Fäh, Franziska Glueer, Marta Han, Lukas Heiniger, Paulina Janusz, Dario Jozinović, Philipp Kästli, Federica Lanza, Timothy Lee, Panagiotis Martakis, Michèle Marti, Men-Andrin Meier, Banu Mena Cabrera, Maria Mesimeri, Anne Obermann, Pilar Sanchez-Pastor, Luca Scarabello, Nicolas Schmid, Anastasiia Shynkarenko, Bozidar Stojadinović, Domenico Giardini, and Stefan Wiemer
Nat. Hazards Earth Syst. Sci., 24, 583–607, https://doi.org/10.5194/nhess-24-583-2024, https://doi.org/10.5194/nhess-24-583-2024, 2024
Short summary
Short summary
Seismic hazard and risk are time dependent as seismicity is clustered and exposure can change rapidly. We are developing an interdisciplinary dynamic earthquake risk framework for advancing earthquake risk mitigation in Switzerland. This includes various earthquake risk products and services, such as operational earthquake forecasting and early warning. Standardisation and harmonisation into seamless solutions that access the same databases, workflows, and software are a crucial component.
Olga-Joan Ktenidou, Antonia Papageorgiou, Erion-Vasilis Pikoulis, Spyros Liakopoulos, Fevronia Gkika, Ziya Cekinmez, Panagiotis Savvaidis, Kalliopi Fragouli, and Christos P. Evangelidis
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-233, https://doi.org/10.5194/nhess-2023-233, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
Greek seismic data are valuable in European and even global databases, due to its high seismicity and numerous seismic stations. Seismic data coming from stations that lie on rock (i.e., not soil) sits are particularly valuable in seismology to define reference ground conditions and ground motions. However, little knowledge exists yet on how rock stations in Greece behave. This is the first time the network of the National Observatory is studied systematically to reveal reference stations.
Max Schneider, Fabrice Cotton, and Pia-Johanna Schweizer
Nat. Hazards Earth Syst. Sci., 23, 2505–2521, https://doi.org/10.5194/nhess-23-2505-2023, https://doi.org/10.5194/nhess-23-2505-2023, 2023
Short summary
Short summary
Hazard maps are fundamental to earthquake risk reduction, but research is missing on how to design them. We review the visualization literature to identify evidence-based criteria for color and classification schemes for hazard maps. We implement these for the German seismic hazard map, focusing on communicating four properties of seismic hazard. Our evaluation finds that the redesigned map successfully communicates seismic hazard in Germany, improving on the baseline map for two key properties.
Juan Camilo Gómez Zapata, Massimiliano Pittore, Nils Brinckmann, Juan Lizarazo-Marriaga, Sergio Medina, Nicola Tarque, and Fabrice Cotton
Nat. Hazards Earth Syst. Sci., 23, 2203–2228, https://doi.org/10.5194/nhess-23-2203-2023, https://doi.org/10.5194/nhess-23-2203-2023, 2023
Short summary
Short summary
To investigate cumulative damage on extended building portfolios, we propose an alternative and modular method to probabilistically integrate sets of single-hazard vulnerability models that are being constantly developed by experts from various research fields to be used within a multi-risk context. We demonstrate its application by assessing the economic losses expected for the residential building stock of Lima, Peru, a megacity commonly exposed to consecutive earthquake and tsunami scenarios.
John Douglas, Helen Crowley, Vitor Silva, Warner Marzocchi, Laurentiu Danciu, and Rui Pinho
EGUsphere, https://doi.org/10.5194/egusphere-2023-991, https://doi.org/10.5194/egusphere-2023-991, 2023
Preprint withdrawn
Short summary
Short summary
Estimates of the earthquake ground motions expected during the lifetime of a building or the length of an insurance policy are frequently calculated for locations around the world. Estimates for the same location from different studies can show large differences. These differences affect engineering, financial and risk management decisions. We apply various approaches to understand when such differences have an impact on such decisions and when they are expected because data are limited.
Audrey Bonnelye, Pierre Dick, Marco Bohnhoff, Fabrice Cotton, Rüdiger Giese, Jan Henninges, Damien Jougnot, Grzegorz Kwiatek, and Stefan Lüth
Adv. Geosci., 58, 177–188, https://doi.org/10.5194/adgeo-58-177-2023, https://doi.org/10.5194/adgeo-58-177-2023, 2023
Short summary
Short summary
The overall objective of the CHENILLE project is to performed an in-situ experiment in the Underground Reaserch Laboratory of Tournemire (Southern France) consisting of hydraulic and thermal stimulation of a fault zone. This experiment is monitored with extensive geophysical means (passive seismic, active seismic, distributed fiber optics for temperature measurements) in order to unravel the physical processes taking place during the stimulation for a better charactization of fault zones.
Anirudh Rao, Jungkyo Jung, Vitor Silva, Giuseppe Molinario, and Sang-Ho Yun
Nat. Hazards Earth Syst. Sci., 23, 789–807, https://doi.org/10.5194/nhess-23-789-2023, https://doi.org/10.5194/nhess-23-789-2023, 2023
Short summary
Short summary
This article presents a framework for semi-automated building damage assessment due to earthquakes from remote-sensing data and other supplementary datasets including high-resolution building inventories, while also leveraging recent advances in machine-learning algorithms. For three out of the four recent earthquakes studied, the machine-learning framework is able to identify over 50 % or nearly half of the damaged buildings successfully.
Christophe Lienert, Franziska Angly Bieri, Irina Dallo, and Michèle Marti
Abstr. Int. Cartogr. Assoc., 5, 154, https://doi.org/10.5194/ica-abs-5-154-2022, https://doi.org/10.5194/ica-abs-5-154-2022, 2022
Xiaodong Ma, Marian Hertrich, Florian Amann, Kai Bröker, Nima Gholizadeh Doonechaly, Valentin Gischig, Rebecca Hochreutener, Philipp Kästli, Hannes Krietsch, Michèle Marti, Barbara Nägeli, Morteza Nejati, Anne Obermann, Katrin Plenkers, Antonio P. Rinaldi, Alexis Shakas, Linus Villiger, Quinn Wenning, Alba Zappone, Falko Bethmann, Raymi Castilla, Francisco Seberto, Peter Meier, Thomas Driesner, Simon Loew, Hansruedi Maurer, Martin O. Saar, Stefan Wiemer, and Domenico Giardini
Solid Earth, 13, 301–322, https://doi.org/10.5194/se-13-301-2022, https://doi.org/10.5194/se-13-301-2022, 2022
Short summary
Short summary
Questions on issues such as anthropogenic earthquakes and deep geothermal energy developments require a better understanding of the fractured rock. Experiments conducted at reduced scales but with higher-resolution observations can shed some light. To this end, the BedrettoLab was recently established in an existing tunnel in Ticino, Switzerland, with preliminary efforts to characterize realistic rock mass behavior at the hectometer scale.
Juan Camilo Gomez-Zapata, Nils Brinckmann, Sven Harig, Raquel Zafrir, Massimiliano Pittore, Fabrice Cotton, and Andrey Babeyko
Nat. Hazards Earth Syst. Sci., 21, 3599–3628, https://doi.org/10.5194/nhess-21-3599-2021, https://doi.org/10.5194/nhess-21-3599-2021, 2021
Short summary
Short summary
We present variable-resolution boundaries based on central Voronoi tessellations (CVTs) to spatially aggregate building exposure models and physical vulnerability assessment. Their geo-cell sizes are inversely proportional to underlying distributions that account for the combination between hazard intensities and exposure proxies. We explore their efficiency and associated uncertainties in risk–loss estimations and mapping from decoupled scenario-based earthquakes and tsunamis in Lima, Peru.
Alba Zappone, Antonio Pio Rinaldi, Melchior Grab, Quinn C. Wenning, Clément Roques, Claudio Madonna, Anne C. Obermann, Stefano M. Bernasconi, Matthias S. Brennwald, Rolf Kipfer, Florian Soom, Paul Cook, Yves Guglielmi, Christophe Nussbaum, Domenico Giardini, Marco Mazzotti, and Stefan Wiemer
Solid Earth, 12, 319–343, https://doi.org/10.5194/se-12-319-2021, https://doi.org/10.5194/se-12-319-2021, 2021
Short summary
Short summary
The success of the geological storage of carbon dioxide is linked to the availability at depth of a capable reservoir and an impermeable caprock. The sealing capacity of the caprock is a key parameter for long-term CO2 containment. Faults crosscutting the caprock might represent preferential pathways for CO2 to escape. A decameter-scale experiment on injection in a fault, monitored by an integrated network of multiparamerter sensors, sheds light on the mobility of fluids within the fault.
Camilla Rossi, Francesco Grigoli, Simone Cesca, Sebastian Heimann, Paolo Gasperini, Vala Hjörleifsdóttir, Torsten Dahm, Christopher J. Bean, Stefan Wiemer, Luca Scarabello, Nima Nooshiri, John F. Clinton, Anne Obermann, Kristján Ágústsson, and Thorbjörg Ágústsdóttir
Adv. Geosci., 54, 129–136, https://doi.org/10.5194/adgeo-54-129-2020, https://doi.org/10.5194/adgeo-54-129-2020, 2020
Short summary
Short summary
We investigate the microseismicity occurred at Hengill area, a complex tectonic and geothermal site, where the origin of earthquakes may be either natural or anthropogenic. We use a very dense broadband seismic monitoring network and apply full-waveform based method for location. Our results and first characterization identified different types of microseismic clusters, which might be associated to either production/injection or the tectonic activity of the geothermal area.
Cited articles
Becker, J. S., McBride, S. K., Potter, S. H., Gerstenberger, M. C., and Christophersen, A.: Effective communication of Operational Earthquake Forecasts (OEF): findings from a New Zealand workshop, Lower Hutt, NZ, GNS Science report 2016/45, GNS Science, p. 49, https://doi.org/10.21420/G2DH00, 2018.
Bruhn, M. and Herbst, U.: Kommunikation für Nonprofit-Organisation, in: Handbuch Instrumente der Kommunikation, edited by: Bruhn, M., Esch, F.-R., and Langner, T., Springer Fachmedien Wiesbaden, Wiesbaden, 605–622, https://doi.org/10.1007/978-3-658-04655-2_29, 2016.
Bujack, R., Turton, T. L., Samsel, F., Ware, C., Rogers, D. H., and Ahrens, J.: The good, the bad, and the ugly: a theoretical framework for the assessment of continuous colormaps, IEEE T. Vis. Comput. Gr., 24, 923–933, https://doi.org/10.1109/TVCG.2017.2743978, 2018.
Christensen, L. T. and Cornelissen, J.: Bridging corporate and organizational communication: review, development and a look to the future, in: Organisationskommunikation und Public Relations, edited by: Zerfaß, A., Rademacher, L., and Wehmeier, S., Springer Fachmedien Wiesbaden, Wiesbaden, 43–72, https://doi.org/10.1007/978-3-531-18961-1_3, 2013.
Crameri, F., Shephard, G. E., and Heron, P. J.: The misuse of colour in science communication, Nat. Commun., 11, 5444, https://doi.org/10.1038/s41467-020-19160-7, 2020.
Crowley, H., Despotaki, V., Rodrigues, D., Silva, V., Costa, C., Toma-Danila, D., Riga, E., Karatzetzou, A., Fotopoulou, S., Sousa, L., Ozcebe, S., Gamba, P., Dabbeek, J., Romão, X., Pereira, N., Castro, J. M., Daniell, J., Veliu, E., Bilgin, H., Adam, C., Deyanova, M., Ademović, N., Atalic, J., Bessason, B., Shendova, V., Tiganescu, A., Zugic, Z., Akkar, S., Hancilar, U., and Exposure Contributors: European Exposure Model Data Repository (Version 1.0) [Data set], Zenodo [data set], https://doi.org/10.5281/zenodo.4062044, 2020.
Crowley, H., Dabbeek, J., Despotaki, V., Rodrigues, D., Martins, L., Silva, V., Romão, X., Pereira, N., Weatherill, G., and Danciu, L.: European Seismic Risk Model (ESRM20), EFEHR Technical Report 002, V1.0.1., EFEHR, https://doi.org/10.7414/EUC-EFEHR-TR002-ESRM20, 2021.
Crowley, H., Dabbeek, J., Danciu, L., Kalakonas, P., Riga, E., Silva, V., Veliu, E., and Weatherill, G.: Earthquake Scenario Loss Testing Repository (Version 1.1) [Data set], Zenodo [data set], https://doi.org/10.5281/zenodo.5728008, 2023.
Dallo, I., Stauffacher, M., and Marti, M.: What defines the success of maps and additional information on a multi-hazard platform?, Int. J. Disast. Risk Re., 49, 101761, https://doi.org/10.1016/j.ijdrr.2020.101761, 2020.
Dallo, I., Stauffacher, M., and Marti, M.: Actionable and understandable? Evidence-based recommendations for the design of (multi-)hazard warning messages, Int. J. Disast. Risk Re., 74, 102917, https://doi.org/10.1016/j.ijdrr.2022.102917, 2022a.
Dallo, I., Marti, M., Clinton, J., Böse, M., Massin, F., and Zaugg, S.: Earthquake early warning in countries where damaging earthquakes only occur every 50 to 150 years – The societal perspective, Int. J. Disast. Risk Re., 83, 103441, https://doi.org/10.1016/j.ijdrr.2022.103441, 2022b.
Dallo, I., Schnegg, L. N., Marti, M., Fulda, D., Papadopoulos, A. N., Roth, P., Danciu, L., Valenzuela, N., Wenk, S. R., Bergamo, P., Haslinger, F., Fäh, D., Kästli, P., and Wiemer, S.: Designing understandable, action-oriented, and well-perceived earthquake risk mapsthe Swiss case study, Front. Commun., 8, 1306104, https://doi.org/10.3389/fcomm.2023.1306104, 2024.
Danciu, L., Nandan, S., Reyes, C., Basili, R., Weatherill, G., Beauval, C., Rovida, A., Vilanova, S., Sesetyan, K., Bard, P.-Y., Cotton, F., Wiemer, S., and Giardini, D.: The 2020 update of the European Seismic Hazard Model: Model Overview, EFEHR Technical Report 001, v1.0.0, EFEHR, https://doi.org/10.12686/A15, 2021.
Dasgupta, A., Poco, J., Rogowitz, B., Han, K., Bertini, E., and Silva, C. T.: The effect of color scales on climate scientists' objective and subjective performance in spatial data analysis tasks, IEEE T. Vis. Comput. Gr., 26, 1577–1591, https://doi.org/10.1109/TVCG.2018.2876539, 2020.
Edler, D., Keil, J., Tuller, M.-C., Bestgen, A.-K., and Dickmann, F.: Searching for the `Right' legend: the impact of legend position on legend decoding in a cartographic memory task, Cartogr. J., 57, 6–17, https://doi.org/10.1080/00087041.2018.1533293, 2020.
Eurocode 8: Eurocode 8 – Design of structures for earthquake resistance – Part 1-1: General rules and seismic action, FprEN 1998-1-1 (draft), European Committee for Standardization (CEN), https://www.confinedmasonry.org/wp-content/uploads/2009/09/Eurocode-8-1-Earthquakes-general.pdf (last access: 30 January 2024), 2023.
Getto, G. and Amant, K. St.: Designing globally, working locally: using personas to develop online communication products for international users, Commun. Des. Q. Rev., 3, 24–46, https://doi.org/10.1145/2721882.2721886, 2015.
Grünthal, G., Stromeyer, D., Bosse, C., Cotton, F., and Bindi, D.: The probabilistic seismic hazard assessment of Germany – version 2016, considering the range of epistemic uncertainties and aleatory variability, B. Earthq. Eng., 16, 4339–4395, https://doi.org/10.1007/s10518-018-0315-y, 2018.
Han, M., Mizrahi, L., Dallo, I., and Wiemer, S.: Sequence-specific updating of European ETAS model: Application to the 2023 Türkiye-Syria earthquake sequence, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-17634, https://doi.org/10.5194/egusphere-egu23-17634, 2023.
Jiménez, M. J., Giardini, D., Grünthal, G., and SESAME Working Group: Unified seismic hazard modelling throughout the Mediterranean region, B. Geofis. Teor. Appl., 42, 3–18, 2001.
Karjack, S., Brudzinski, M. R., and Shipley, T. F.: Assessment of the general public's understanding of rapidly produced earthquake information products ShakeMap and PAGER, Seismol. Res. Lett., 93, 2891–2905, https://doi.org/10.1785/0220210318, 2022.
Maltese, A. V., Harsh, J. A., and Svetina, D.: Data visualization literacy: investigating data interpretation along the novice—expert continuum, Journal of College Science Teaching, 45, 84–90, 2015.
Marti, M., Stauffacher, M., and Wiemer, S.: Difficulties in explaining complex issues with maps: evaluating seismic hazard communication – the Swiss case, Nat. Hazards Earth Syst. Sci., 19, 2677–2700, https://doi.org/10.5194/nhess-19-2677-2019, 2019.
Marti, M., Stauffacher, M., and Wiemer, S.: Anecdotal evidence is an insufficient basis for designing earthquake preparedness campaigns, Seismol. Res. Lett., 91, 1929–1935, https://doi.org/10.1785/0220200010, 2020.
Marti, M., Haslinger, F., Peppoloni, S., Di Capua, G., Glaves, H., and Dallo, I.: Addressing the challenges of making data, products, and services accessible: an EPOS perspective, Ann. Geophys., 65, DM212, https://doi.org/10.4401/ag-8746, 2022.
Marti, M., Dallo, I., Roth, P., Papadopoulos, A. N., and Zaugg, S.: Illustrating the impact of earthquakes: Evidence-based and user-centered recommendations on how to design earthquake scenarios and rapid impact assessments, Int. J. Disast. Risk Re., 90, 103674, https://doi.org/10.1016/j.ijdrr.2023.103674, 2023.
McMahon, R., Stauffacher, M., and Knutti, R.: The unseen uncertainties in climate change: reviewing comprehension of an IPCC scenario graph, Climatic Change, 133, 141–154, https://doi.org/10.1007/s10584-015-1473-4, 2015.
Pohl, C., Klein, J. T., Hoffmann, S., Mitchell, C., and Fam, D.: Conceptualising transdisciplinary integration as a multidimensional interactive process, Environ. Sci. Policy, 118, 18–26, https://doi.org/10.1016/j.envsci.2020.12.005, 2021.
Robertson, P. K. and O'Callaghan, J. F.: The generation of color sequences for univariate and bivariate mapping, IEEE Comput. Graph., 6, 24–32, https://doi.org/10.1109/MCG.1986.276688, 1986.
Romão, X., Pereira, N., Castro, J. M., Crowley, H., Silva, V., Martins, L., and De Maio, F.: European Building Vulnerability Data Repository (v2.1) [Data set], Zenodo [data set], https://doi.org/10.5281/zenodo.4062410, 2021.
Röttger, U.: Einsatz der Public Relations im Rahmen der Unternehmenskommunikation, in: Handbuch Instrumente der Kommunikation. Grundlagen, innovative Ansätze, praktische Umsetzungen (2. Aufl.), edited by: Bruhn, M., Esch, F. R., and Langner, T., Springer Reference Wirtschaft, Wiesbaden, https://doi.org/10.1007/978-3-658-05261-4, 2016.
Schneider, M., Cotton, F., and Schweizer, P.-J.: Criteria-based visualization design for hazard maps, Nat. Hazards Earth Syst. Sci., 23, 2505–2521, https://doi.org/10.5194/nhess-23-2505-2023, 2023a.
Schneider, M., Wein, A., van der Elst, N., McBride, S. K., Becker, J., Castro, R., Diaz, M., Gonzalez-Huizar, H., Hardebeck, J., Michael, A., Mixco, L., Page, M., and Palomo, J.: Visual Communication of Aftershock Forecasts Based on User Needs: A Case Study of the United States, Mexico and El Salvador, OSF, https://doi.org/10.31219/osf.io/5qam4, 2023b.
Sherman-Morris, K., Antonelli, K. B., and Williams, C. C.: Measuring the effectiveness of the graphical communication of hurricane storm surge threat, Weather Clim. Soc., 7, 69–82, https://doi.org/10.1175/WCAS-D-13-00073.1, 2015.
Smith, J.: Defining and applying Personas to UX Design, Web Design Envato Tuts+, https://webdesign.tutsplus.com/defining-and-applying-personas-to-ux-design--webdesign-7561a (last access: 30 January 2024), 2012.
Sullivan-Wiley, K. A. and Short Gianotti, A. G.: Risk perception in a multi-hazard environment, World Dev., 97, 138–152, https://doi.org/10.1016/j.worlddev.2017.04.002, 2017.
Thompson, M. A., Lindsay, J. M., and Gaillard, J. C.: The influence of probabilistic volcanic hazard map properties on hazard communication, J. Appl. Volcanol., 4, 6, https://doi.org/10.1186/s13617-015-0023-0, 2015.
Wang, T., Shu, S., and Mo, L.: Blue or red? The effects of colour on the emotions of Chinese people, Asian J. Soc. Psychol., 17, 152–158, https://doi.org/10.1111/ajsp.12050, 2014.
Weatherill, G.: ESHM20 Ground Motion Models – Python Module [Code], GitLab [code], https://gitlab.seismo.ethz.ch/efehr/eshm20_gmms (last access: 30 January 2024), 2023a.
Weatherill, G.: Exposure to Site Tool – User Manual and Technical Guide [Code], GitLab [code], https://gitlab.seismo.ethz.ch/efehr/esrm20_sitemodel (last access: 30 January 2024), 2023b.
Woessner, J., Laurentiu, D., Giardini, D., Crowley, H., Cotton, F., Grünthal, G., Valensise, G., Arvidsson, R., Basili, R., Demircioglu, M. B., Hiemer, S., Meletti, C., Musson, R. W., Rovida, A. N., Sesetyan, K., Stucchi, M., and The SHARE consortium: The 2013 European Seismic Hazard Model: key components and results, B. Earthq. Eng., 13, 3553–3596, https://doi.org/10.1007/s10518-015-9795-1, 2015.
Wood, M. M., Mileti, D. S., Bean, H., Liu, B. F., Sutton, J., and Madden, S.: Milling and public warnings, Environ. Behav., 50, 535–566, https://doi.org/10.1177/0013916517709561, 2018.
Zerfaß, A. and Piwinger, M. (Eds.): Handbuch Unternehmenskommunikation: Strategie – Management – Wertschöpfung, Springer Fachmedien Wiesbaden, Wiesbaden, https://doi.org/10.1007/978-3-8349-4543-3, 2014.
Short summary
For the release of cross-country harmonised hazard and risk models, a communication strategy co-defined by the model developers and communication experts is needed. The strategy should consist of a communication concept, user testing, expert feedback mechanisms, and the establishment of a network with outreach specialists. Here we present our approach for the release of the European Seismic Hazard Model and European Seismic Risk Model and provide practical recommendations for similar efforts.
For the release of cross-country harmonised hazard and risk models, a communication strategy...
Special issue
Altmetrics
Final-revised paper
Preprint