Articles | Volume 24, issue 6
https://doi.org/10.5194/nhess-24-1951-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-24-1951-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A systemic and comprehensive assessment of coastal hazard changes: method and application to France and its overseas territories
Cerema, Technopôle Brest Iroise, 155 rue Pierre Bouguer, BP 5, 29280 Plouzané, France
Marissa Yates
LHSV & Cerema, 6 quai Watier, BP 49, 78401 Chatou, France
LHSV, Ecole des Ponts, EDF R&D, 6 quai Watier, BP 49, 78401 Chatou, France
Michalis Vousdoukas
Department of Marine Sciences, University of the Aegean, Mytilene, Greece
Youssef Diab
Lab'Urba, Université Gustave Eiffel, 5 Boulevard Descartes, 77430 Champs-sur-Marne, France
Related authors
No articles found.
Italo R. Lopes, Ivan Federico, Michalis Vousdoukas, Luisa Perini, Salvatore Causio, Giovanni Coppini, Maurilio Milella, Nadia Pinardi, and Lorenzo Mentaschi
EGUsphere, https://doi.org/10.5194/egusphere-2025-1695, https://doi.org/10.5194/egusphere-2025-1695, 2025
Short summary
Short summary
We improved a computer model to simulate coastal flooding by including temporary barriers like sand dunes. We tested it where sand dunes are built seasonally to protect the shoreline for two real storms: one that broke through the dunes and another where dunes held strong. Our model showed how important it is to design these defenses carefully since even if a small part of a dune fails, a major flooding can happen. Overall, our work helps create better tools to manage and protect coastal areas.
Mohammad Hadi Bahmanpour, Alois Tilloy, Michalis Vousdoukas, Ivan Federico, Giovanni Coppini, Luc Feyen, and Lorenzo Mentaschi
EGUsphere, https://doi.org/10.5194/egusphere-2025-843, https://doi.org/10.5194/egusphere-2025-843, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
As natural hazards evolve, understanding how extreme events interact over time is crucial. While single extremes have been widely studied, joint extremes remain challenging to analyze. We present a framework that combines advanced statistical modeling with copula theory to capture changing dependencies. Applying it to historical data reveals dynamic patterns in extreme events. To support broader use, we provide an open-source tool for improved hazard assessment.
Rodrigo Campos-Caba, Jacopo Alessandri, Paula Camus, Andrea Mazzino, Francesco Ferrari, Ivan Federico, Michalis Vousdoukas, Massimo Tondello, and Lorenzo Mentaschi
Ocean Sci., 20, 1513–1526, https://doi.org/10.5194/os-20-1513-2024, https://doi.org/10.5194/os-20-1513-2024, 2024
Short summary
Short summary
Here we show the development of high-resolution simulations of storm surge in the northern Adriatic Sea employing different atmospheric forcing data and physical configurations. Traditional metrics favor a simulation forced by a coarser database and employing a less sophisticated setup. Closer examination allows us to identify a baroclinic model forced by a high-resolution dataset as being better able to capture the variability and peak values of the storm surge.
Roderik van de Wal, Angélique Melet, Debora Bellafiore, Paula Camus, Christian Ferrarin, Gualbert Oude Essink, Ivan D. Haigh, Piero Lionello, Arjen Luijendijk, Alexandra Toimil, Joanna Staneva, and Michalis Vousdoukas
State Planet, 3-slre1, 5, https://doi.org/10.5194/sp-3-slre1-5-2024, https://doi.org/10.5194/sp-3-slre1-5-2024, 2024
Short summary
Short summary
Sea level rise has major impacts in Europe, which vary from place to place and in time, depending on the source of the impacts. Flooding, erosion, and saltwater intrusion lead, via different pathways, to various consequences for coastal regions across Europe. This causes damage to assets, the environment, and people for all three categories of impacts discussed in this paper. The paper provides an overview of the various impacts in Europe.
Dominik Paprotny, Belinda Rhein, Michalis I. Vousdoukas, Paweł Terefenko, Francesco Dottori, Simon Treu, Jakub Śledziowski, Luc Feyen, and Heidi Kreibich
Hydrol. Earth Syst. Sci., 28, 3983–4010, https://doi.org/10.5194/hess-28-3983-2024, https://doi.org/10.5194/hess-28-3983-2024, 2024
Short summary
Short summary
Long-term trends in flood losses are regulated by multiple factors, including climate variation, population and economic growth, land-use transitions, reservoir construction, and flood risk reduction measures. Here, we reconstruct the factual circumstances in which almost 15 000 potential riverine, coastal and compound floods in Europe occurred between 1950 and 2020. About 10 % of those events are reported to have caused significant socioeconomic impacts.
Panagiotis Athanasiou, Ap van Dongeren, Maarten Pronk, Alessio Giardino, Michalis Vousdoukas, and Roshanka Ranasinghe
Earth Syst. Sci. Data, 16, 3433–3452, https://doi.org/10.5194/essd-16-3433-2024, https://doi.org/10.5194/essd-16-3433-2024, 2024
Short summary
Short summary
The shape of the coast, the intensity of waves, the height of the water levels, the presence of people or critical infrastructure, and the land use are important information to assess the vulnerability of the coast to coastal hazards. Here, we provide 80 indicators of this kind at consistent locations along the global ice-free coastline using open-access global datasets. These can be valuable for quick assessments of the vulnerability of the coast and at data-poor locations.
Panagiotis Athanasiou, Ap van Dongeren, Alessio Giardino, Michalis Vousdoukas, Jose A. A. Antolinez, and Roshanka Ranasinghe
Nat. Hazards Earth Syst. Sci., 22, 3897–3915, https://doi.org/10.5194/nhess-22-3897-2022, https://doi.org/10.5194/nhess-22-3897-2022, 2022
Short summary
Short summary
Sandy dunes protect the hinterland from coastal flooding during storms. Thus, models that can efficiently predict dune erosion are critical for coastal zone management and early warning systems. Here we develop such a model for the Dutch coast based on machine learning techniques, allowing for dune erosion estimations in a matter of seconds relative to available computationally expensive models. Validation of the model against benchmark data and observations shows good agreement.
Piero Lionello, David Barriopedro, Christian Ferrarin, Robert J. Nicholls, Mirko Orlić, Fabio Raicich, Marco Reale, Georg Umgiesser, Michalis Vousdoukas, and Davide Zanchettin
Nat. Hazards Earth Syst. Sci., 21, 2705–2731, https://doi.org/10.5194/nhess-21-2705-2021, https://doi.org/10.5194/nhess-21-2705-2021, 2021
Short summary
Short summary
In this review we describe the factors leading to the extreme water heights producing the floods of Venice. We discuss the different contributions, their relative importance, and the resulting compound events. We highlight the role of relative sea level rise and the observed past and very likely future increase in extreme water heights, showing that they might be up to 160 % higher at the end of the 21st century than presently.
Cited articles
Albright, R., Takeshita, Y., Koweek, D., Ninokawa, A., Wolfe, K., Rivlin, T., Nebuchina, Y., Young, J., and Caldeira, K.: Carbon dioxide addition to coral reef waters suppresses net community calcification, Nature, 555, 516–519, https://doi.org/10.1038/nature25968, 2018.
Allgeyer, S., Daubord, C., Hébert, H., Loevenbruck, A., Schindelé, F., and Madariaga, R.: Could a 1755-like tsunami reach the French Atlantic coastline? constraints from twentieth century observations and numerical modeling, Pure Appl. Geophys., 170, 1415–1431, 2013.
Allgeyer, S., Quentel, É., Hébert, H., Gailler, A., and Loevenbruck, A.: Tsunami Hazard in La Réunion Island (SW Indian Ocean): Scenario-Based Numerical Modelling on Vulnerable Coastal Sites, Pure Appl. Geophys., 174, 3123–3145, https://doi.org/10.1007/s00024-017-1632-9, 2017.
Almar, R., Ranasinghe, R., Bergsma, E. W. J., Diaz, H., Melet, A., Papa, F., Vousdoukas, M., Athanasiou, P., Dada, O., Almeida, L. P., and Kestenare, E.: A global analysis of extreme coastal water levels with implications for potential coastal overtopping, Nat. Commun., 12, 3775, https://doi.org/10.1038/s41467-021-24008-9, 2021.
Alongi, D. M.: Mangrove forests: resilience, protection from tsunamis, and response to global climate change, Estuar. Coast. Shelf S., 76, 1–13, 2008.
Androulidakis, Y. S., Kombiadou, K. D., Makris, C. V., Baltikas, V. N., and Krestenitis, Y. N.: Storm surges in the Mediterranean Sea: Variability and trends under future climatic conditions, Dynam. Atmos. Oceans, 71, 56–82, https://doi.org/10.1016/j.dynatmoce.2015.06.001, 2015.
Arns A., Wahl T., Dangendorf S., Jensen J.: The impact of sea level rise on storm surge water levels in the northern part of the German Bight, Coast. Eng., 96, 118–131, https://doi.org/10.1016/j.coastaleng.2014.12.002, 2015.
Arns, A., Wahl, T., Wolff, C., Vafeidis, A., Haigh, I., Woodworth, P., Niehüser, S., and Jensen, J.: Non-linear interaction modulates global extreme sea levels, coastal flood exposure, and impacts, Nat. Commun., 11, 1918, https://doi.org/10.1038/s41467-020-15752-5, 2020.
Aubanel, A., Marquet, N., Colombani, J. M., and Salvat, B.: Modifications of the shore line in the Society islands (French Polynesia), Ocean Coast. Manage., 42, 419–438, 1999.
Aucan, J., Hoeke, R. K., Storlazzi, C. D., Stopa, J., Wandres, M., and Lowe, R.: Waves do not contribute to global sea-level rise, Nat. Clim. Change, 9, 2, https://doi.org/10.1038/s41558-018-0377-5, 2018.
Bamber, L. J., Oppenheimer, M., Kopp, R. E., and Cooke, R. M.: Ice sheet contributions to future sea-level rise from structured expert judgment, P. Natl. Acad. Sci. USA, 116, 11195–11200, https://doi.org/10.1073/pnas.1817205116, 2019.
Bardet, L., Duluc, C.-M., Rebour, V., and L'Her, J.: Regional frequency analysis of extreme storm surges along the French coast, Nat. Hazards Earth Syst. Sci., 11, 1627–1639, https://doi.org/10.5194/nhess-11-1627-2011, 2011.
Barriot, J.-P., Zhang, F., Ducarme, B., Wöppelmann, G., André, G., and Gabillon, A.: A database for sea-level monitoring in French Polynesia, Geosci. Data J., 10, 368–384, https://doi.org/10.1002/gdj3.172, 2023.
Becker, M., Meyssignac, B., Letetrel, C., Llovel, W., Cazenave, A., and Delcroix, T.: Sea level variations at tropical Pacific islands since 1950, Global Planet. Change, 80–81, 85–98, https://doi.org/10.1016/j.gloplacha.2011.09.004, 2012.
Bertin, X., Bruneau, N., Breilh, J.-F., Fortunato, A., and Karpytchev, M.: Importance of wave age and resonance in storm surges: The case Xynthia, Bay of Biscay, Ocean Model., 42, 16–30, https://doi.org/10.1016/j.ocemod.2011.11.001, 2012.
Bertin, X., Li, K., Roland, A., Zhang, Y. J., Breilh, J.-F., and Chaumillon E.: A modeling-based analysis of the flooding associated with Xynthia, central Bay of Biscay, Coast. Eng., 94, 80–89, 2014.
Bertin, X., Li, K., Roland, A., and Bidlot, J.-R.: The contribution of short-waves in storm surges: two case studies in the Bay of Biscay, Cont. Shelf Res., 96, 1–15, https://doi.org/10.1016/j.csr.2015.01.005, 2015.
Bertin, X., Martins, K., de Bakker, A., Chataigner, T., Guérin, T., Coulombier, T., and de Viron, O.: Energy transfers and reflection of infragravity waves at a dissipative beach under storm waves, J. Geophys. Res.-Oceans, 125, e2019JC015714., https://doi.org/10.1029/2019JC015714, 2020.
Bowen, A. J., Inman, D. L., and Simmons, V. P.: Wave `set-down' and set-up, J. Geophys. Res., 73, 2569–2577, https://doi.org/10.1029/JB073i008p02569, 1968.
Brivois, O., Idier, D., Thiébot, J., Castelle, B., Le Cozannet, G., and Calvete, D.: On the use of linear stability model to characterize the morphological behaviour of a double bar system. Application to Truc Vert beach (France), CR Geosci., 344, 277–287, https://doi.org/10.1016/j.crte.2012.02.004, 2012.
Buchanan, M. K., Kopp, R. E., Oppenheimer, M. and Tebaldi, C.: Allowances for evolving coastal flood risk under 41 uncertain local sea-level rise, Climatic Change, 137, 347–362, https://doi.org/10.1007/s10584-016-1664-7, 2016.
Bulteau, T., Idier, D., Lambert, J., and Garcin, M.: How historical information can improve estimation and prediction of extreme coastal water levels: application to the Xynthia event at La Rochelle (France), Nat. Hazards Earth Syst. Sci., 15, 1135–1147, https://doi.org/10.5194/nhess-15-1135-2015, 2015.
Calafat, F. M., Wahl, T., Tadesse, M. G., and Sparrow, S. N.: Trends in Europe storm surge extremes match the rate of sea-level rise, Nature, 603, 841–845, https://doi.org/10.1038/s41586-022-04426-5, 2022.
Campins, J., Genovés, A., Picornell, M. A., and Jansà, A.: Climatology of Mediterranean cyclones using the era-40 dataset, Int. J. Climatol., 31, 1596–1614, https://doi.org/10.1002/joc.2183, 2011.
Casas-Prat, M. and Sierra, J. P.: Trend analysis of the wave storminess: the wave direction, Adv. Geosci., 26, 89–92, https://doi.org/10.5194/adgeo-26-89-2010, 2010.
Cavicchia, L., Von Storch, H., and Gualdi, S.: A long-term climatology of medicanes, Clim. Dynam., 43, 1183–1195, https://doi.org/10.1007/s00382-013-1893-7, 2014.
Cazenave, A. and Le Cozannet, G.: Sea level rise and its coastal impacts, Earth's Future, 2, 15–34, https://doi.org/10.1002/2013EF000188, 2013.
Cazenave, A. and Llovel, W.: Contemporary sea level rise, Ann. Rev. Mar. Sci., 2, 145–173, 2010.
Cerema: Étude des systèmes de protection contre les submersions marines, Collection: Références, 442 pp., ISBN 978-2-37180-118-9, 2016.
Cerema: Les niveaux marins extrêmes. Ports de métropole, Collection: Données, ISBN 978-2-37180-308-4, 2018.
Cerema: Dynamiques et évolution du littoral, Fascicule 11: Synthèse des connaissances de Saint-Pierre-et-Miquelon, Collection: Connaissances, ISBN 978-2-37180-341-1, 2020a.
Cerema: Dynamiques et évolution du littoral, Fascicule 12: Synthèse des connaissances de Saint-Barthélemy et Saint-Martin, Collection: Connaissances, ISBN 978-2-37180-342-8, 2020b.
Cerema: Dynamiques et évolution du littoral, Fascicule 13: Synthèse des connaissances de l'archipel de Guadeloupe, Collection: Connaissances, ISBN: 978-2-37180-316-9, 2020c.
Cerema: Dynamiques et évolution du littoral, Fascicule 14: Synthèse des connaissances de la Martinique, Collection: Connaissances, ISBN 978-2-37180-343-5, 2020d.
Cerema: Dynamiques et évolution du littoral, Fascicule 17: Synthèse des connaissances de La Réunion, Collection: Connaissances, ISBN 978-2-37180-345-9, 2020e.
Cerema: Dynamiques et évolution du littoral, Fascicule 15: Synthèse des connaissances de la Guyane, Collection: Connaissances, ISBN 978-2-37180-344-2, 2021.
Chevalier, C., Froidefond, J.-M., and Devenon, J.-L.: Numerical analysis of the combined action of littoral current, tide and waves on the suspended mud transport and on turbid plumes around French Guiana mudbanks, Cont. Shelf Res., 28, 545–560, https://doi.org/10.1016/j.csr.2007.09.011, 2008.
Church, J. A., Clark, P. U., Cazenave, A., Gregory, J. M., Jevrejeva, S., Levermann, A., Merrifield, M. A., Milne, G. A., Nerem, R. S., Nunn, P. D., Payne, A. J., Pfeffer, W. T., Stammer, D., and Unnikrishnan, A. S.: Sea-level rise by 2100, Science, 342, 1445, https://doi.org/10.1126/science.342.6165.1445-a, 2013.
CIRIA, MEDDE, and USACE: The International Levee Handbook, C731, CIRIA, UK, London, 1332 pp., ISBN 978-0-86017-734-0, 2013.
Conte, D. and Lionello, P.: Characteristics of large positive and negative surges in the Mediterranean sea and their attenuation in future climate scenarios, Global Planet. Change, 111, 159–173, https://doi.org/10.1016/j.gloplacha.2013.09.006, 2013.
Dayan, H., Le Cozannet, G., Speich, S., and Thiéblemont, R.: High-End Scenarios of Sea-Level Rise for Coastal Risk-Averse Stakeholders, Front. Mar. Sci., 8, 569992, https://doi.org/10.3389/fmars.2021.569992, 2021.
De la Torre, Y.: Impacts du cyclone Irma sur le littoral des “îles du Nord” à Saint-Martin et Saint-Barthélemy, Rapport BRGM/RP-67291-FR, 20 ill., 2 ann., p. 29, https://infoterre.brgm.fr/rapports/RP-67291-FR.pdf (last access: 6 June 2024), 2017.
Dietrich, J. C., Bunya, S., Westerink, J. J., Ebersole, B. A., Smith, J. M., Atkinson, J. H., Jensen, R., Resio, D. T., Luettich, R. A., Dawson, C., Cardone, V. J., Cox, A. T., Powell, M. D., Westerink, H. J., and Roberts, H. J.: A high resolution coupled riverine flow, tide, wind, wind wave and storm surge model for southern Louisiana and Mississippi: part II – synoptic description and analyses of Hurricanes Katrina and Rita, Mon. Weather Rev., 138, 378–404, https://doi.org/10.1175/2009MWR2907.1, 2010.
Dodet, G., Bertin, X., Bouchette, F., Gravelle, M., Testut, L., and Wöppelmann, G.: Characterization of Sea-level Variations Along the Metropolitan Coasts of France: Waves, Tides, Storm Surges and Long-term Changes, J. Coast. Res., 88, 10–24, https://doi.org/10.2112/SI88-003.1, 2019.
Dorville, J.-F. M. and Zahibo, N.: Hurricane Omar Waves Impact on the West Coast of the Guadeloupe Island, October 2008, Open Oceanogr. J., 4, 83–91, 2010.
DREAL Nord Pas-de-Calais: Détermination de l'aléa de submersion marine intégrant les conséquences du changement climatique en région Nord – Pas de Calais. Phase 1: Compréhension du fonctionnement du littoral, https://www.hauts-de-france.developpement-durable.gouv.fr/IMG/pdf/50292_-_sub_npc_-_phase_1_-_version_4.pdf (last access: 8 February 2024), 2024.
Durand, F.: Hydrodynamique sédimentaire sur le plateau insulaire de la Martinique, Thèse doctorale, Université Bordeaux 1, p. 214, https://archimer.ifremer.fr/doc/00105/21587/19167.pdf (last access: 6 June 2024), 1996.
Elkut, A. E., Taha, M. T., Abu Zed, A. B. E., Eid, F. M., and Abdallah, A. M.: Wind-wave hindcast using modified ECMWF era-interim wind field in the Mediterranean sea, Estuar. Coast. Shelf Sci., 252, 107267, https://doi.org/10.1016/j.ecss.2021.107267, 2021.
Erkens, G., Bucx, T., Dam, R., de Lange, G., and Lambert, J.: Sinking coastal cities, Proc. IAHS, 372, 189–198, https://doi.org/10.5194/piahs-372-189-2015, 2015.
Fita, L., Romero, R., Luque, A., Emanuel, K., and Ramis, C.: Analysis of the environments of seven Mediterranean tropical-like storms using an axisymmetric, nonhydrostatic, cloud resolving model, Nat. Hazards Earth Syst. Sci., 7, 41–56, https://doi.org/10.5194/nhess-7-41-2007, 2007.
Flather, R. A.: Storm surges, in: Encyclopedia of Ocean Sciences, edited by: Steele, J., Thorpe, S., and Turekian, K., Academic Press, San Diego, California, 2882–2892, ISBN 9780122274305, https://doi.org/10.1006/rwos.2001.0124, 2001.
FLOODsite: Language of risk. Project definitions, 2nd Edn., Report T34-02-01, 55 pp., http://www.floodsite.net/ (last access: 6 June 2024), 2009.
Forbes, D. L.: State of the Arctic coast 2010: scientific review and outlook. Land-Ocean Interactions in the Coastal Zone, Institute of Coastal Research, http://arcticcoasts.org/files/sac/state of the arctic rept-exec summ-high res.pdf (last access: 6 June 2024), 2011.
Formentin, S. M. and Zanuttigh, B.: A new method to estimate the overtopping and overflow discharge at over-washed and breached dikes, Coast. Eng., 140, 240–256, https://doi.org/10.1016/j.coastaleng.2018.08.002, 2018.
Fox-Kemper, B., Hewitt, H. T., Xiao, C., Aðalgeirsdóttir, G., Drijfhout, S. S., Edwards, T. L., Golledge, N. R., Hemer, M., Kopp, R. E., Krinner, G., Mix, A., Notz, D., Nowicki, S., Nurhati, I. S., Ruiz, L., Sallée, J.-B., Slangen, A. B. A., and Yu, Y.: Ocean, Cryosphere and Sea Level Change, in: Climate Change 2021: The Physical Science Basis, Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, Cambridge, UK and New York, NY, USA, 1211–1362, https://doi.org/10.1017/9781009157896.011, 2021.
Frederikse, T., Landerer, F., Caron, L., Adhikari, L. S., Parkes, D., Humphrey, V. W., Dangendorf, S., Hogarth, P., Zanna, L., Cheng, L., and Wu, Y.: The causes of sea-level rise since 1900, Nature, 584, 393–397, https://doi.org/10.1038/s41586-020-2591-3, 2020.
Garnier, E., Ciavola, P., Armaroli, C., Spencer, T., and Ferreira, O.: Historical analysis of storms events: case studies in France, England, Portugal and Italy, Coast. Eng., 134, 10–23, https://doi.org/10.1016/j.coastaleng.2017.06.014, 2018.
Gomes da Silva, P., Coco, G., Garnier, R., and Klein, A. H.: On the prediction of runup, setup and swash on beaches, Earth-Sci. Rev., 204, 103148, https://doi.org/10.1016/j.earscirev.2020.103148, 2020.
Gratiot, N., Gardel, A., and Anthony, E. J.: Trade-wind waves and mud dynamics on the French Guiana coast, South America: Input from ERA-40 wave data and field investigations, Mar. Geol., 236, 15–26, https://doi.org/10.1016/j.margeo.2006.09.013, 2007.
Graumann, A., Houston, T., Lawrimore, J. H., Levinson, D. H., Lott, N., McCown, S., Stephens, S., and Wuertz, D. B.: Hurricane Katrina, A Climatological Perspective, October 2005, Updated August 2006, NOAA's National Climatic Data Center, https://repository.library.noaa.gov/view/noaa/13833 (last access: 6 June 2024), 2006.
Gregory, J. M., Griffies, S. M., Hughes, C. W., Lowe, J. A., Church, J. A., Fukimori, I., Gomez, N., Kopp, R. E., Landerer, F., Le Cozannet, G., Ponte, R. M., Stammer, D., Tamisiea, M. E., and van de Wal, R. S. W.: Concepts and Terminology for Sea Level: Mean, Variability and Change, Both Local and Global, Surv. Geophys., 40, 1251–1289, https://doi.org/10.1007/s10712-019-09525-z, 2019.
Haigh, I., Nicholls, R., and Wells, N.: Rising sea levels in the English Channel 1900 to 2100, Marit. Eng., 164, 81–92, 2011.
Haigh, I. D., Pickering, M. D., Green, J. A. M., Arbic, B. K., Arns, A., Dangendorf, S., Hill, D. F., Horsburgh, K., Howard, T., Idier, D., Jay, D. A., Jänicke, L., Lee, S. B., Müller, M., Schindelegger, M., Talke, S. A., Wilmes, S., and Woodworth, P. L.: The Tides They Are a-Changin': A comprehensive review of past and future non-astronomical changes in tides, their driving mechanisms and future implications, Rev. Geophys., 57, e2018RG000636, https://doi.org/10.1029/2018RG000636, 2019.
Hallegatte, S., Green, C., Nicholls, R. J., and Corfee-Morlot, J.: Future flood losses in major coastal cities, Nat. Clim. Change, 3, 802–806, https://doi.org/10.1038/nclimate1979., 2013.
Hamdi, Y., Bardet, L., Duluc, C.-M., and Rebour, V.: Extreme storm surges: a comparative study of frequency analysis approaches, Nat. Hazards Earth Syst. Sci., 14, 2053–2067, https://doi.org/10.5194/nhess-14-2053-2014, 2014.
Hamdi, Y., Bardet, L., Duluc, C.-M., and Rebour, V.: Use of historical information in extreme-surge frequency estimation: the case of marine flooding on the La Rochelle site in France, Nat. Hazards Earth Syst. Sci., 15, 1515–1531, https://doi.org/10.5194/nhess-15-1515-2015, 2015.
Hamdi, Y., Garnier, E., Giloy, N., Duluc, C.-M., and Rebour, V.: Analysis of the risk associated with coastal flooding hazards: a new historical extreme storm surges dataset for Dunkirk, France, Nat. Hazards Earth Syst. Sci., 18, 3383–3402, https://doi.org/10.5194/nhess-18-3383-2018, 2018.
Hamlington, B. D., Gardner, A. S., Ivins, E., Lenaerts, J. T. M., Reager, J. T., Trossman, D. S., Zaron, E. D., Adhikari, S., Arendt, A., Aschwanden, A., Beckley, B. D., Bekaert, D. P. S., Blewitt, G., Caron, L., Chambers, D. P., Chandanpurkar, H. A., Christianson, K., Csatho, B., Cullather, R. I., DeConto, R. M., Fasullo, J. T., Frederikse, T., Freymueller, J. T., Gilford, D. M., Girotto, M., Hammond, W. C., Hock, R., Holschuh, N., Kopp, R. E., Landerer, F., Larour, E., Menemenlis, D., Merrifield, M., Mitrovica, J. X., Nerem, R. S., Nias, I. J., Nieves, V., Nowicki, S., Pangaluru, K., Piecuch, C. G., Ray, R. D., Rounce, D. R., Schlegel, N.-J., Seroussi, H., Shirzaei, M., Sweet, W. V., Velicogna, I., Vinogradova, N., Wahl, T., Wiese, D. N., and Willis, M. J.: Understanding of contemporary regional sea-level change and the implications for the future, Rev. Geophys., 58, e2019RG000672, https://doi.org/10.1029/2019RG000672, 2020.
Han, G., Ma, Z., Chen, D., deYoung, B., and Chen, N.: Observing storm surges from space: Hurricane Igor off Newfoundland, Sci. Rep., 2, 1010, https://doi.org/10.1038/srep01010, 2012.
Hequette, A.: Les risques naturels littoraux dans le Nord-Pas-de-Calais, France, hors ser. 8, VertigO, https://cosaco.univ-littoral.fr/wp-content/uploads/2018/03/Hequette_Vertigo_2010.pdf (last access: 6 June 2024), 2010.
Hoegh-Guldberg, O., Mumby, P. J., Hooten, A. J., Steneck, R. S., Greenfield, P., Gomez, E., Harvell, C. D., Sale, P. F., Edwards, A. J., Caldeira, K., Knowlton, N., Eakin, C. M., Iglesias-Prieto, R., Muthiga, N., Bradbury, R. H., Dubi, A., and Hatziolos, M. E.: Coral reefs under rapid climate change and ocean acidification, Science, 318, 1737–1742, https://doi.org/10.1126/science.1152509, 2007.
Hsu, C.-E., Serafin, K. A., Yu, X., Hegermiller, C. A., Warner, J. C., and Olabarrieta, M.: Total water levels along the South Atlantic Bight during three along-shelf propagating tropical cyclones: relative contributions of storm surge and wave runup, Nat. Hazards Earth Syst. Sci., 23, 3895–3912, https://doi.org/10.5194/nhess-23-3895-2023, 2023.
Hunter, J.: A simple technique for estimating an allowance for uncertain sea level rise, Climatic Change, 113, 239–252, https://doi.org/10.1007/s10584-011-0332-1, 2012.
Idier, D., Dumas, F., and Muller, H.: Tide-surge interaction in the English Channel, Nat. Hazards Earth Syst. Sci., 12, 3709–3718, https://doi.org/10.5194/nhess-12-3709-2012, 2012.
Idier, D., Paris, F., Le Cozannet, G., Boulahya, F., and Dumas, F.: Sea-level rise impacts on the tides of the European Shelf, Cont. Shelf Res., 137, 56–71, https://doi.org/10.1016/j.csr.2017.01.007, 2017.
Idier, D., Bertin, X., Thompson, P., and Pickering, M. D.: Interactions between mean sea level, tide, surge, waves and flooding: Mechanisms and contributions to sea level variations at the coast, Surv. Geophys., 40, 1603–1630, 2019.
Igigabel, M., Diab, Y., and Yates, M.: Exploring Methodological Approaches for Strengthening the Resilience of Coastal Flood Protection System, Front. Earth Sci., 9, 756936, https://doi.org/10.3389/feart.2021.756936, 2021.
Igigabel, M., Nédélec, Y., Bérenger, N., Flouest, N., Bernard, A., Chassé, P., and Tiberi-Wadier, A.-L.: Guidelines for Analysing Coastal Flood Protection Systems After a Submersion, Water, 14, 15, https://doi.org/10.3390/w14010015, 2022.
IPCC: Climate Change 2001: Synthesis Report, in: A Contribution of Working Groups I, II, and III to the Third Assessment Report of the Integovernmental Panel on Climate Change, edited by: Watson, R. T. and the Core Writing Team, Cambridge University Press, Cambridge, UnK, and New York, NY, USA, 398 pp., https://www.ipcc.ch/site/assets/uploads/2018/08/TAR_syrfull_en.pdf (last access: 6 June 2024), 2001.
IPCC: Climate Change 2007: Synthesis Report, in: Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Core Writing Team, Pachauri, R. K., and Reisinger, A., IPCC, Geneva, Switzerland, 104 pp., https://www.ipcc.ch/report/ar4/syr/ (last access: 6 June 2024), 2007.
IPCC: Climate Change 2014: Synthesis Report., in:Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Core Writing Team, Pachauri, R. K., and Meyer, L. A., IPCC, Geneva, Switzerland, 151 pp., https://www.ipcc.ch/report/ar5/syr/ (last access: 6 June 2024), 2014.
IPCC: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, edited by: Pörtner, H.-O., Roberts, D. C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Nicolai, M., Okem, A., Petzold, J., Rama, B., and Weyer, N., https://www.ipcc.ch/srocc/ (last access: 20 December 2021), 2019.
IPCC: Climate Change 2023: Synthesis Report, in: Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Core Writing Team, Lee, H., and Romero, J., IPCC, Geneva, Switzerland, 184 pp., https://doi.org/10.59327/IPCC/AR6-9789291691647, 2023a.
IPCC: Weather and Climate Extreme Events in a Changing Climate, in: Climate Change 2021 – The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, 1513–1766, https://doi.org/10.1017/9781009157896.013, 2023b.
Jones, A., Kuehnert, J., Fraccaro, P., Meuriot, O., Ishikawa, T., Edwards, B., Stoyanov, N., Remy, S. L., Weldemariam, K., and Assefa, S.: AI for climate impacts: Applications in flood risk, NPJ Clim. Atmos. Sci., 6, 63, https://doi.org/10.1038/s41612-023-00388-1, 2023.
Kaack, L., Donti, P., Strubell, E., and Rolnick, D.: Artificial intelligence and climate change: Opportunities, considerations, and policy levers to align AI with climate change goals, https://eu.boell.org/en/2020/12/03/artificial-intelligenceand-climate-change (last access: 5 June 2024), 2021.
Kennedy, A. B., Westerink, J. J., Smith, J. M., Hope, M. E., Hartman, M., Taflanidis, A. A., Tanaka, S., Westerink, H., Cheung, K. F., Smith, T., Hamann, M., Minamide, M., Ota, A., and Dawson, C.: Tropical cyclone inundation potential on the Hawaiian Islands of Oahuand Kauai, Ocean Model., 52–53, 54–68, https://doi.org/10.1016/j.ocemod.2012.04.009, 2012.
Khan, M. J. U., Beld, I., Wöppelmann, G., Testut, L., Latapy, A., and Pouvreau, N.: Extension of a high temporal resolution sea level time series at Socoa (Saint-Jean-de-Luz, France) back to 1875, Earth Syst. Sci. Data, 15, 5739–5753, https://doi.org/10.5194/essd-15-5739-2023, 2023.
Krien, Y., Dudon, B., Roger, J., and Zahibo, N.: Probabilistic hurricane-induced storm surge hazard assessment in Guadeloupe, Lesser Antilles, Nat. Hazards Earth Syst. Sci., 15, 1711–1720, https://doi.org/10.5194/nhess-15-1711-2015, 2015.
Krien, Y., Dudon, B., Roger, J., Arnaud, G., and Zahibo, N.: Assessing storm surge hazard and impact of sea level rise in the Lesser Antilles case study of Martinique, Nat. Hazards Earth Syst. Sci., 17, 1559–1571, https://doi.org/10.5194/nhess-17-1559-2017, 2017.
Kumar, V., Kedam, N., Sharma, K. V., Mehta, D. J., and Caloiero, T.: Advanced Machine Learning Techniques to Improve Hydrological Prediction: A Comparative Analysis of Streamflow Prediction Models, Water, 15, 2572, https://doi.org/10.3390/w15142572, 2023.
Lamoureux, S., Forbes, D., Bell, T., and Manson, G.: The impact of climate change on infrastructure in the western and central Canadian Arctic, in: From Science to Policy in the Western and Central Canadian Arctic: an Integrated Regional Impact Study (IRIS) of Climate Change and Modernization, edited by: Stern, G. A. and Gaden, A., ArcticNet, Quebec, 300–341, https://www.researchgate.net/publication/303566204_The_impact_of_climate_change_on_infrastructure_in_the_western_and_central_Canadian_Arctic (last access: 7 June 2024), 2015.
Lange, A. M. Z., Fiedler, J. W., Becker, J. M., Merrifield, M. A., and Guza, R. T.: Estimating runup with limited bathymetry, Coast. Eng., 172, 104055, https://doi.org/10.1016/j.coastaleng.2021.104055, 2021.
Lantuit, H., Atkinson, D., Overduin P. P., Grigoriev, M., Rachold, V., Grosse, G., and Hubberten, H.: Coastal erosion dynamics on the permafrost-dominated Bykovsky Peninsula, north Siberia, 1951–2006, Polar Res., 30, 7341, https://doi.org/10.3402/polar.v30i0.7341, 2011.
Larrue S. and Chiron T.: Les îles de Polynésie française face à l'aléa cyclonique, in: Volume 10, VertigO, https://doi.org/10.4000/vertigo.10558, 2010.
Latapy, A., Arnaud, H., Pouvreau, N., and Weber, N.: Reconstruction of sea level changes in Northern France for the past 300 years and their relationship with the evolution of the coastal zone, in: Coast 2017, 7–10 November 2017, Bordeaux, https://doi.org/10.13140/RG.2.2.14180.07041, 2017.
Lavaud, L., Bertin, X., Martins, K., Pezerat, M., Coulombier, T. and Dausse, D.: Wave dissipation and mean circulation on a shore platform under storm wave conditions, J. Geophys. Res.-Earth, 127, e2021JF006466, https://doi.org/10.1029/2021JF006466, 2022.
Lecacheux, S., Pedreros, R., Le Cozannet, G., Thiébot, J., De La Torre, Y., and Bulteau, T.: A method to characterize the different extreme waves for islands exposed to various wave regimes: a case study devoted to Reunion Island, Nat. Hazards Earth Syst. Sci., 12, 2425–2437, https://doi.org/10.5194/nhess-12-2425-2012, 2012.
Le Cozannet, G., Garcin, M., Petitjean, L., Cazenave, A., Becker, M., Meyssignac, B., Walker, P., Devilliers, C., Le Brun, O., Lecacheux, S., Baills, A., Bulteau, T. Yates, M., and Wöppelmann, G.: Exploring the relation between sea level rise and shoreline erosion using sea level reconstructions: an example in French Polynesia, J. Coast. Res., 65, 2137–2142, https://doi.org/10.2112/SI65-361.1, 2013.
Le Gorgeu, V. and Guitonneau, R.: Reconstruction de la Digue de l'Est à Dunkerque, Coast. Eng., 5, 555–586, 1954.
Lin, N. and Chavas, D.: On hurricane parametric wind and applications in storm surge modeling, J. Geophys. Res., 117, D09120, https://doi.org/10.1029/2011JD017126, 2012.
Lowe, J. A., Woodworth, P. L., Knutson, T., McDonald, R. E., McInnes, K. L., Woth, K., von Storch, H., Wolf, J., Swail, V., Bernier, N. B., Gulev, S., Horsburgh, K. J., Unnikrishnan, A. S., Hunter, J. R., and Weisse, R.: Past and future changes in extreme sea levels and waves, in: Understanding sea-level rise and variability, xvi, edited by: Woodworth, P. L., Aarup, T., Wilson, W. S., and Church, J. A., Wiley-Blackwell, Chichester, 428 pp., ISBN 978-1-4443-3452-4, 2010.
Martinez-Asensio, A., Wöppelmann, G., Ballu, V., Becker, M., Testut, L., Magnan, A. K., and Duvat, V. K. E.: Relative Sea-level rise and the influence of vertical land motion at tropical Pacific Islands, Global Planet. Change, 176, 132–143, 2019.
Martins, K., Bertin, X., Mengual, B., Pezerat, M., Lavaud, L., Guérin, T., and Zhang, Y. J.: Wave-induced mean currents and setup over barred and steep sandy beaches, Ocean Model., 179, 102110, https://doi.org/10.1016/j.ocemod.2022.102110, 2022.
Maspataud, A., Ruz, M.-H., and Vanhée, S.: Potential impacts of extreme storm surges on a low-lying densely populated coastline: the case of Dunkirk area, Northern France, Nat. Hazards, 66, 1327–1343, 2013.
Masselink, G. and Short, A. D.: The effect of tidal range on beach morphodynamics and morphology: a conceptual beach model, J. Coast. Res., 9, 785–800, 1993.
Masselink, G., Castelle, B., Scott T., Dodet, G., Suanez, S., Jackson, D., and Floc'h, F.: Extreme wave activity during 2013/2014 winter and morphological impacts along the Atlantic coast of Europe, Geophys. Res. Lett., 43, 2135–2143, https://doi.org/10.1002/2015GL067492, 2016.
Masson, A.: The extratropical transition of Hurricane Igor and the impacts on Newfoundland, Nat. Hazards 72, 617–632, https://doi.org/10.1007/s11069-013-1027-x, 2014.
Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B.: Climate Change 2021: The Physical Science Basis, in: Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_TS.pdf (last access: 7 June 2024), 2021.
Mehta, D., Hadvani, J., Kanthariya, D., and Sonawala, P.: Effect of land use land cover change on runoff characteristics using curve number: A GIS and remote sensing approach, Int. J. Hydrol. Sci. Technol., 16, 1–16, 2023.
Mentaschi, L., Vousdoukas, M., Voukouvalas, E., Sartini, L., Feyen, L., Besio, G., and Alfieri, L.: The transformed-stationary approach: a generic and simplified methodology for non-stationary extreme value analysis, Hydrol. Earth Syst. Sci., 20, 3527–3547, https://doi.org/10.5194/hess-20-3527-2016, 2016.
Mentaschi, L., Vousdoukas, M. I., García-Sánchez, G., Fernández-Montblanc, T., Roland, A., Voukouvalas, E., Federico, I., Abdolali, A., Zhang, Y. J., and Feyen, L.: A global unstructured, coupled, high-resolution hindcast of waves and storm surge, Front. Mar. Sci., 10, 1233679, https://doi.org/10.3389/fmars.2023.1233679, 2023.
Mentaschi, L., Vousdoukas, M., Voukouvalas, E., Sartini, L., Feyen, L., Besio, G., and Alfieri, L.: tsEva, GitHub [code], https://github.com/menta78/tsEva (last access: 5 June 2024), 2024.
Muis, S., Apecechea, M. I., Dullaart, J., de Lima Rego, J., Madsen, K. S., Su, J., Yan, K., and Verlaan, M.: A high-resolution global dataset of extreme sea levels, tides, and storm surges, including future projections, Front. Mar. Sci., 7, 263, https://doi.org/10.3389/fmars.2020.00263, 2020.
Nicholls, R. J., Hanson, S., Herweijer, C., and Patmore, N.: Ranking port cities with high exposure and vulnerability to climate extremes, OECD Environment Working Papers no. 1, Éditions OCDE, Paris, https://doi.org/10.1787/011766488208, 2008.
NWS – National Weather Service: WAVEWATCH III, https://polar.ncep.noaa.gov/waves/wavewatch (last access: 29 May 2024), 2024.
Open Source Community: Delft3D FM., http://oss.deltares.nl (last access: 29 May 2024), 2024.
Oppenheimer, M., Glavovic, B. C., Hinkel, J., van de Wal, R., Magnan, A. K., Abd-Elgawad, A., Cai, R., Cifuentes-Jara, M., DeConto, R. M., Ghosh, T., Hay, J., Isla, F., Marzeion, B., Meyssignac, B., and Sebesvari, Z.: Sea Level Rise and Implications for Low-Lying Islands, Coasts and Communities, in: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, edited by: Pörtner H.-O., Roberts, D. C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., Petzold, J., Rama, B., and Weyer, N. M., https://www.ipcc.ch/site/assets/uploads/sites/3/2019/11/08_SROCC_Ch04_FINAL.pdf (last access: 7 June 2024), 2019.
Pagney, F.: Genèse et dynamique de l'ouragan Hugo sur la Guadeloupe, Annales de Géographie, 100, 152–165, https://doi.org/10.3406/geo.1991.21030, 1991.
Patlakas, P., Stathopoulos, C., Tsalis, C., and Kallos, G.: Wind and wave extremes associated with tropical-like cyclones in the Mediterranean basin, Int. J. Climatol., 41, E1623–E1644, https://doi.org/10.1002/joc.6795, 2021.
Pickering, M. D., Wells, N. C., Horsburgh, K. J., and Green, J. A. M.: The impact of future sea-level rise on the European Shelf tides, Cont. Shelf Res., 35, 1–15, https://doi.org/10.1016/j.csr.2011.11.011, 2012.
Pirazzoli, P. A. and Montaggioni, L. F.: Holocene sea level changes in French Polynesia, Paleogeogr. Paleoclim. Paleoecol., 68, 153–175, 1988.
Quentel, E., Loevenbruck, A., Hébert, H., and Allgeyer, S.: Tsunami hazard in La Réunion island from numerical modeling of historical events, Nat. Hazards Earth Syst. Sci. Discuss., 1, 1823–1855, https://doi.org/10.5194/nhessd-1-1823-2013, 2013.
Ranasinghe, R.: Assessing climate change impacts on open sandy coasts: A review, Earth-Sci. Rev., 160, 320–332, https://doi.org/10.1016/j.earscirev.2016.07.011, 2016.
Rasmussen, D. J., Kulp, S., Kopp, R. E., Oppenheimer, M., and Strauss, B. H.: Popular extreme sea level metrics can better communicate impacts, Climatic Change, 170, 30, https://doi.org/10.1007/s10584-021-03288-6, 2022.
Rego, J. L. and Li, C.: Nonlinear terms in storm surge predictions: effect of tide and shelf geometry with case study from Hurricane Rita, J. Geophys. Res., 115, C06020, https://doi.org/10.1029/2009JC005285, 2010.
Rolnick, D., Donti, P. L., Kaack, L. H., Kochanski, K., Lacoste, A., Sankaran, K., Ross, A. S., Milojevic-Dupont, N., Jaques, N., Waldman-Brown, A., Luccioni, A. S., Maharaj, T., Sherwin, E. D., Mukkavilli, S. K., Kording, K. P., Gomes, C. P., Ng, A. Y., Hassabis, D., Platt, J. C., Creutzig, F., Chayes, J., and Bengio, Y.: Tackling Climate Change with Machine Learning, ACM Comput. Surv., 55, 42, https://doi.org/10.1145/3485128, 2022.
Romero, R. and Emanuel, K.: Climate change and hurricane-like extratropical cyclones: Projections for north Atlantic polar lows and medicanes based on cmip5 models, J. Climate, 30, 279–299, https://doi.org/10.1175/JCLI-D-16-0255.1, 2016.
Ruggiero, P., Komar, P. D., McDougal, W. G., Marra, J. J., and Beach, R. A.: Wave runup, extreme water levels and erosion properties backing beaches, J. Coast. Res., 17, 407–419, 2001.
Ruggiero, P., Buijsman, M., Kaminsky, G., and Gelfenbaum, G.: Modeling the effects of wave climate and sediment supply variability on large-scale shoreline change, Mar. Geol., 273, 127–140, 2010.
Saffache, P., Marc, J.-V., and Huyghes-Belrose, V.: Les cyclones en Guadeloupe: quatre siècles cataclysmiques, IBIS Rouge Editions, Martinique, ISBN 10:2844501974, 2003.
Sahal, A. and Morin, J.: Effects of the October 25, 2010, Mentawai tsunami in La Réunion Island (France): observations and crisis management, Nat. Hazards, 62, 1125–1136, https://doi.org/10.1007/s11069-012-0136-2, 2012.
Shaikh, M. M., Lodha, P., Lalwani, P., and Mehta, D.: Climatic projections of Western India using global and regional climate models, Water Pract. Technol., 17, 1818–1825, 2022.
Sheremet, A., Staples, T., Ardhuin, F., Suanez, S., and Fichaut, B.: Observations of large infragravity runup at Banneg Island, France, Geophys. Res. Lett., 41, 976–982, https://doi.org/10.1002/2013GL058880, 2014.
Stephens, S. A., Coco, G., and Bryan, K. R.: Numerical simulations of wave setup over barred beach profiles: Implications for predictability, J. Waterw. Port Coast. Ocean Eng., 137, 175–181, https://doi.org/10.1061/(ASCE)WW.1943-5460.0000076, 2011.
Stockdon, H. F., Holman, R. A., Howd, P. A., and Sallenger, A. H.: Empirical parameterization of setup, swash, and runup, Coast. Eng., 53, 573–588, https://doi.org/10.1016/j.coastaleng.2005.12.005, 2006.
Syvitski, J. P. M.: Deltas at risk, Sustainabil. Sci., 3, 23–32, https://doi.org/10.1007/s11625-008-0043-3, 2008.
Talke, S. A., Familkhalili, R., Helaire, L. T., Jay, D. A., Orton, P. M., and Ralston, D. K.: The influence of human induced landscape and bathymetry changes on tides, surge and extreme water levels, in: Ocean Sciences Meeting 2020, FEbruary 2020, AGU, 2020.
Thiéblemont, R., Le Cozannet, G., D'Anna, M., Idier, D., Belmadani, A., Slangen, A. B. A., and Longueville, F.: Chronic flooding events due to sea-level rise in French Guiana, Sci. Rep., 13, 21695, https://doi.org/10.1038/s41598-023-48807-w, 2023.
Thiébot, J., Idier, D., Garnier, R., Falquès, A., and Ruessink, G.: The influence of wave direction on the morphological response of a double sandbar system, Cont. Shelf. Res., 32, 71–85, https://doi.org/10.1016/j.csr.2011.10.014, 2012.
Tiggeloven, T., de Moel, H., Winsemius, H. C., Eilander, D., Erkens, G., Gebremedhin, E., Diaz Loaiza, A., Kuzma, S., Luo, T., Iceland, C., Bouwman, A., van Huijstee, J., Ligtvoet, W., and Ward, P. J.: Global-scale benefit–cost analysis of coastal flood adaptation to different flood risk drivers using structural measures, Nat. Hazards Earth Syst. Sci., 20, 1025–1044, https://doi.org/10.5194/nhess-20-1025-2020, 2020.
Tiggeloven, T., Couasnon, A., van Straaten, C., Muis, S., and Ward, P. J.: Exploring deep learning capabilities for surge predictions in coastal areas, Sci. Rep., 11, 17224, https://doi.org/10.1038/s41598-021-96674-0, 2021.
Toomey, T., Amores, A., Marcos, M., Orfila, A., and Romero, R.: Coastal hazards of tropical-like cyclones over the Mediterranean Sea, J. Geophys. Res.-Oceans, 127, e2021JC017964, https://doi.org/10.1029/2021JC017964, 2022.
Ullmann, A., Pirazzoli, P. A., and Tomasin, A.: Sea surges in Camargue: Trends over the 20th century, Cont. Shelf Res., 27, 922–934, 2007.
US Army Corps of Engineers: Coastal Engineering Manual, US Army Corps of Engineers, Washington, D.C., https://www.publications.usace.army.mil/USACE-Publications/Engineer-Manuals/u43544q/636F617374616C20656E67696E656572696E67206D616E75616C/ (last access: 7 June 2024), 2002.
van Ormondt, M., Roelvink, D., and van Dongeren, A.: A Model-Derived Empirical Formulation for Wave Run-Up on Naturally Sloping Beaches, J. Mar. Sci. Eng., 9, 1185, https://doi.org/10.3390/jmse9111185, 2021.
Verma, S., Verma, M. K., Prasad, A. D., Mehta, D., Azamathulla, H. M., Muttil, N., and Rathnayake, U.: Simulating the Hydrological Processes under Multiple Land Use/Land Cover and Climate Change Scenarios in the Mahanadi Reservoir Complex, Chhattisgarh, India, Water, 15, 3068, https://doi.org/10.3390/w15173068, 2023.
Vitousek, S., Barnard, P. L., Fletcher, C. H., Frazer, N., Erikson, L., and Storlazzi, C. D.: Doubling of coastal flooding frequency within decades due to sea-level rise, Sci. Rep., 7, 1399, https://doi.org/10.1038/s41598-017-01362-7, 2017.
Vousdoukas, M., Voukouvalas, E., Annunziato, A., Giardino, A., and Feyen, L.: Projections of extreme storm surge levels along Europe, Clim. Dynam., 47, 3171–3190, https://doi.org/10.1007/s00382-016-3019-5, 2016.
Vousdoukas, M. I.: LISCoAsT, http://data.jrc.ec.europa.eu/collection/LISCOAST (last access: 29 May 2024), 2024.
Vousdoukas, M. I., Mentaschi, L., Voukouvalas, E., Verlaan, M., and Feyen, L.: Extreme sea levels on the rise along Europe's coasts, Earth's Future, 5, 304–323, https://doi.org/10.1002/2016EF000505, 2017.
Vousdoukas, M. I., Mentaschi, L., Voukouvalas, E., Verlaan, M., Jevrejeva, S., Jackson, L. P., and Feyen, L.: Global probabilistic projections of extreme sea levels show intensification of coastal flood hazard, Nat. Commun., 9, 2360, https://doi.org/10.1038/s41467-018-04692-w, 2018a.
Vousdoukas, M. I., Mentaschi, L., Voukouvalas, E., Verlaan, M., Jevrejeva, S., Jackson, L., and Feyen, L.: Global Extreme Sea Level projections. European Commission, Joint Research Centre (JRC) [data set], http://data.europa.eu/89h/jrc-liscoast-10012 (last access: 29 May 2024), http://data.europa.eu/89h/jrc-liscoast-10012 (last access: 29 May 2024), https://doi.org/10.2905/jrc-liscoast-10012, 2018b.
Waycott, M., Duarte, C. M., Carruthers, T. J. B., Orth, R. J., Dennison, W. C., Olyarnik, S., Calladine, A., Fourqurean, J. W., Heck, K. L., Hughes, A. R., Kendrick, G. A., Kenworthy, W. J., Short, F. T., and Williams, S. L.: Accelerating loss of seagrasses across the globe threatens coastal ecosystems, P. Natl. Acad. Sci. USA, 106, 12377–12381, 2009.
Webb, A. P. and Kench, P. S.: The dynamic response of reef islands to sea level rise: Evidence from multi-decadal analysis of island change in the Central Pacific, Global Planet. Change, 72, 234–246, 2010.
Weisse, R., von Storch, H., Niemeyer, H. D., and Knaack, H.: Changing North Sea storm surge climate: an increasing hazard?, Ocean Coast Manage., 68, 58–68, 2012.
Wong, P. P., Losada, I. J., Gattuso, J.-P., Hinkel, J., Khattabi, A., McInnes, K. L., Saito, Y., and Sallenger, A.: Coastal systems and low-lying areas, in: Climate Change 2014: Impacts, Adaptation, and Vulnerability, Part A: Global and Sectoral Aspects, Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Field, C. B., Barros, V. R., Dokken, D. J., Mach, K. J., Mastrandrea, M. D., Bilir, T. E., Chatterjee, M., Ebi, K. L., Estrada, Y. O., Genova, R. C., Girma, B., Kissel, E. S., Levy, A. N., MacCracken, S., Mastrandrea, P. R., and White, L. L., Cambridge University Press, Cambridge, UK and New York, NY, USA, 361–409, https://doi.org/10.1017/CBO9781107415379.010, 2014.
Yates, M., Le Cozannet, G., Garcin, M., Salaï, E., and Walker, P.: Multi-decadal shoreline change on Manihi and Manuae, French Polynesia, J. Coast. Res., 29, 870–882, https://doi.org/10.2112/JCOASTRES-D-12-00129.1, 2013.
Zahibo, N., Pelinovsky, E., Talipova, T., Rabinovich, A., Kurkin, A., and Nikolkina, I.: Statistical analysis of cyclone hazard for Guadeloupe, Lesser Antilles, Atmos. Res., 84, 13–29, 2007.
Short summary
Changes in sea levels alone do not determine the evolution of coastal hazards. Coastal hazard changes should be assessed using additional factors describing geomorphological configurations, metocean event types (storms, cyclones, long swells, and tsunamis), and the marine environment (e.g., coral reef state and sea ice extent). The assessment completed here, at regional scale including the coasts of mainland and overseas France, highlights significant differences in hazard changes.
Changes in sea levels alone do not determine the evolution of coastal hazards. Coastal hazard...
Altmetrics
Final-revised paper
Preprint