Articles | Volume 24, issue 6
https://doi.org/10.5194/nhess-24-1951-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-24-1951-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A systemic and comprehensive assessment of coastal hazard changes: method and application to France and its overseas territories
Cerema, Technopôle Brest Iroise, 155 rue Pierre Bouguer, BP 5, 29280 Plouzané, France
Marissa Yates
LHSV & Cerema, 6 quai Watier, BP 49, 78401 Chatou, France
LHSV, Ecole des Ponts, EDF R&D, 6 quai Watier, BP 49, 78401 Chatou, France
Michalis Vousdoukas
Department of Marine Sciences, University of the Aegean, Mytilene, Greece
Youssef Diab
Lab'Urba, Université Gustave Eiffel, 5 Boulevard Descartes, 77430 Champs-sur-Marne, France
Related authors
No articles found.
Italo R. Lopes, Ivan Federico, Michalis Vousdoukas, Luisa Perini, Salvatore Causio, Giovanni Coppini, Maurilio Milella, Nadia Pinardi, and Lorenzo Mentaschi
EGUsphere, https://doi.org/10.5194/egusphere-2025-1695, https://doi.org/10.5194/egusphere-2025-1695, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
We improved a computer model to simulate coastal flooding by including temporary barriers like sand dunes. We tested it where sand dunes are built seasonally to protect the shoreline for two real storms: one that broke through the dunes and another where dunes held strong. Our model showed how important it is to design these defenses carefully since even if a small part of a dune fails, a major flooding can happen. Overall, our work helps create better tools to manage and protect coastal areas.
Mohammad Hadi Bahmanpour, Alois Tilloy, Michalis Vousdoukas, Ivan Federico, Giovanni Coppini, Luc Feyen, and Lorenzo Mentaschi
EGUsphere, https://doi.org/10.5194/egusphere-2025-843, https://doi.org/10.5194/egusphere-2025-843, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
As natural hazards evolve, understanding how extreme events interact over time is crucial. While single extremes have been widely studied, joint extremes remain challenging to analyze. We present a framework that combines advanced statistical modeling with copula theory to capture changing dependencies. Applying it to historical data reveals dynamic patterns in extreme events. To support broader use, we provide an open-source tool for improved hazard assessment.
Rodrigo Campos-Caba, Jacopo Alessandri, Paula Camus, Andrea Mazzino, Francesco Ferrari, Ivan Federico, Michalis Vousdoukas, Massimo Tondello, and Lorenzo Mentaschi
Ocean Sci., 20, 1513–1526, https://doi.org/10.5194/os-20-1513-2024, https://doi.org/10.5194/os-20-1513-2024, 2024
Short summary
Short summary
Here we show the development of high-resolution simulations of storm surge in the northern Adriatic Sea employing different atmospheric forcing data and physical configurations. Traditional metrics favor a simulation forced by a coarser database and employing a less sophisticated setup. Closer examination allows us to identify a baroclinic model forced by a high-resolution dataset as being better able to capture the variability and peak values of the storm surge.
Roderik van de Wal, Angélique Melet, Debora Bellafiore, Paula Camus, Christian Ferrarin, Gualbert Oude Essink, Ivan D. Haigh, Piero Lionello, Arjen Luijendijk, Alexandra Toimil, Joanna Staneva, and Michalis Vousdoukas
State Planet, 3-slre1, 5, https://doi.org/10.5194/sp-3-slre1-5-2024, https://doi.org/10.5194/sp-3-slre1-5-2024, 2024
Short summary
Short summary
Sea level rise has major impacts in Europe, which vary from place to place and in time, depending on the source of the impacts. Flooding, erosion, and saltwater intrusion lead, via different pathways, to various consequences for coastal regions across Europe. This causes damage to assets, the environment, and people for all three categories of impacts discussed in this paper. The paper provides an overview of the various impacts in Europe.
Dominik Paprotny, Belinda Rhein, Michalis I. Vousdoukas, Paweł Terefenko, Francesco Dottori, Simon Treu, Jakub Śledziowski, Luc Feyen, and Heidi Kreibich
Hydrol. Earth Syst. Sci., 28, 3983–4010, https://doi.org/10.5194/hess-28-3983-2024, https://doi.org/10.5194/hess-28-3983-2024, 2024
Short summary
Short summary
Long-term trends in flood losses are regulated by multiple factors, including climate variation, population and economic growth, land-use transitions, reservoir construction, and flood risk reduction measures. Here, we reconstruct the factual circumstances in which almost 15 000 potential riverine, coastal and compound floods in Europe occurred between 1950 and 2020. About 10 % of those events are reported to have caused significant socioeconomic impacts.
Panagiotis Athanasiou, Ap van Dongeren, Maarten Pronk, Alessio Giardino, Michalis Vousdoukas, and Roshanka Ranasinghe
Earth Syst. Sci. Data, 16, 3433–3452, https://doi.org/10.5194/essd-16-3433-2024, https://doi.org/10.5194/essd-16-3433-2024, 2024
Short summary
Short summary
The shape of the coast, the intensity of waves, the height of the water levels, the presence of people or critical infrastructure, and the land use are important information to assess the vulnerability of the coast to coastal hazards. Here, we provide 80 indicators of this kind at consistent locations along the global ice-free coastline using open-access global datasets. These can be valuable for quick assessments of the vulnerability of the coast and at data-poor locations.
Panagiotis Athanasiou, Ap van Dongeren, Alessio Giardino, Michalis Vousdoukas, Jose A. A. Antolinez, and Roshanka Ranasinghe
Nat. Hazards Earth Syst. Sci., 22, 3897–3915, https://doi.org/10.5194/nhess-22-3897-2022, https://doi.org/10.5194/nhess-22-3897-2022, 2022
Short summary
Short summary
Sandy dunes protect the hinterland from coastal flooding during storms. Thus, models that can efficiently predict dune erosion are critical for coastal zone management and early warning systems. Here we develop such a model for the Dutch coast based on machine learning techniques, allowing for dune erosion estimations in a matter of seconds relative to available computationally expensive models. Validation of the model against benchmark data and observations shows good agreement.
Piero Lionello, David Barriopedro, Christian Ferrarin, Robert J. Nicholls, Mirko Orlić, Fabio Raicich, Marco Reale, Georg Umgiesser, Michalis Vousdoukas, and Davide Zanchettin
Nat. Hazards Earth Syst. Sci., 21, 2705–2731, https://doi.org/10.5194/nhess-21-2705-2021, https://doi.org/10.5194/nhess-21-2705-2021, 2021
Short summary
Short summary
In this review we describe the factors leading to the extreme water heights producing the floods of Venice. We discuss the different contributions, their relative importance, and the resulting compound events. We highlight the role of relative sea level rise and the observed past and very likely future increase in extreme water heights, showing that they might be up to 160 % higher at the end of the 21st century than presently.
Emanuele Bevacqua, Michalis I. Vousdoukas, Theodore G. Shepherd, and Mathieu Vrac
Nat. Hazards Earth Syst. Sci., 20, 1765–1782, https://doi.org/10.5194/nhess-20-1765-2020, https://doi.org/10.5194/nhess-20-1765-2020, 2020
Short summary
Short summary
Coastal compound flooding (CF), caused by interacting storm surges and high water runoff, is typically studied based on concurring storm surge extremes with either precipitation or river discharge extremes. Globally, these two approaches show similar CF spatial patterns, especially where the CF potential is the highest. Deviations between the two approaches increase with the catchment size. The precipitation-based analysis allows for considering
local-rainfall-driven CF and CF in small rivers.
Panagiotis Athanasiou, Ap van Dongeren, Alessio Giardino, Michalis Vousdoukas, Sandra Gaytan-Aguilar, and Roshanka Ranasinghe
Earth Syst. Sci. Data, 11, 1515–1529, https://doi.org/10.5194/essd-11-1515-2019, https://doi.org/10.5194/essd-11-1515-2019, 2019
Short summary
Short summary
This dataset provides the spatial distribution of nearshore slopes at a resolution of 1 km along the global coastline. The calculation was based on available global topo-bathymetric datasets and ocean wave reanalysis. The calculated slopes show skill in capturing the spatial variability of the nearshore slopes when compared against local observations. The importance of this variability is presented with a global coastal retreat assessment for an arbitrary sea level rise scenario.
Michalis I. Vousdoukas, Dimitrios Bouziotas, Alessio Giardino, Laurens M. Bouwer, Lorenzo Mentaschi, Evangelos Voukouvalas, and Luc Feyen
Nat. Hazards Earth Syst. Sci., 18, 2127–2142, https://doi.org/10.5194/nhess-18-2127-2018, https://doi.org/10.5194/nhess-18-2127-2018, 2018
Short summary
Short summary
We examine sources of epistemic uncertainty in coastal flood risk models. We find that uncertainty from sea level estimations can be higher than that related to greenhouse gas emissions or climate prediction errors. Of comparable importance is information on coastal protection levels and the topography. In the absence of large datasets with sufficient resolution and accuracy, the last two factors are the main bottlenecks in terms of estimating coastal flood risks at large scales.
Dominik Paprotny, Michalis I. Vousdoukas, Oswaldo Morales-Nápoles, Sebastiaan N. Jonkman, and Luc Feyen
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-132, https://doi.org/10.5194/hess-2018-132, 2018
Preprint withdrawn
Isavela N. Monioudi, Adonis F. Velegrakis, Antonis E. Chatzipavlis, Anastasios Rigos, Theophanis Karambas, Michalis I. Vousdoukas, Thomas Hasiotis, Nikoletta Koukourouvli, Pascal Peduzzi, Eva Manoutsoglou, Serafim E. Poulos, and Michael B. Collins
Nat. Hazards Earth Syst. Sci., 17, 449–466, https://doi.org/10.5194/nhess-17-449-2017, https://doi.org/10.5194/nhess-17-449-2017, 2017
Short summary
Short summary
This work constitutes the first comprehensive attempt to record the spatial characteristics of the Aegean island beaches (Greece) and assess the long-term and episodic sea level rise (SLR) impacts under different scenarios. Results suggest that Aegean beaches may be particularly vulnerable to SLRs, where severe impacts which could be devastating are projected by 2100. Appropriate coastal "setback zone" policies should be adopted, as they form a significant environmental and economic resource.
Lorenzo Mentaschi, Michalis Vousdoukas, Evangelos Voukouvalas, Ludovica Sartini, Luc Feyen, Giovanni Besio, and Lorenzo Alfieri
Hydrol. Earth Syst. Sci., 20, 3527–3547, https://doi.org/10.5194/hess-20-3527-2016, https://doi.org/10.5194/hess-20-3527-2016, 2016
Short summary
Short summary
The climate is subject to variations which must be considered
studying the intensity and frequency of extreme events.
We introduce in this paper a new methodology
for the study of variable extremes, which consists in detecting
the pattern of variability of a time series, and applying these patterns
to the analysis of the extreme events.
This technique comes with advantages with respect to the previous ones
in terms of accuracy, simplicity, and robustness.
Michalis I. Vousdoukas, Evangelos Voukouvalas, Lorenzo Mentaschi, Francesco Dottori, Alessio Giardino, Dimitrios Bouziotas, Alessandra Bianchi, Peter Salamon, and Luc Feyen
Nat. Hazards Earth Syst. Sci., 16, 1841–1853, https://doi.org/10.5194/nhess-16-1841-2016, https://doi.org/10.5194/nhess-16-1841-2016, 2016
Short summary
Short summary
Coastal flooding has severe socioeconomic impacts that are projected to increase under the changing climate. The present contribution reports on efforts towards a new methodology for mapping coastal flood hazard at European scale, combining the contribution of waves, improved inundation modeling and an open, physics-based framework which can be constantly upgraded whenever new and more accurate data become available.
Related subject area
Sea, Ocean and Coastal Hazards
Advancing nearshore and onshore tsunami hazard approximation with machine learning surrogates
Untangling the waves: decomposing extreme sea levels in a non-tidal basin, the Baltic Sea
Accelerating compound flood risk assessments through active learning: A case study of Charleston County (USA)
Tsunami detection methods for ocean-bottom pressure gauges
Using random forests to forecast daily extreme sea level occurrences at the Baltic Coast
Probabilistic tsunami hazard analysis of Batukaras, a tourism village in Indonesia
Review article: A comprehensive review of compound flooding literature with a focus on coastal and estuarine regions
Validated probabilistic approach to estimate flood direct impacts on the population and assets on European coastlines
Physics-based forecast modelling of rip-current and shore-break wave hazards
Changing sea level, changing shorelines: integration of remote-sensing observations at the Terschelling barrier island
Regional modelling of extreme sea levels induced by hurricanes
New insights into combined surfzone, embayment, and estuarine bathing hazards
Dynamic projections of extreme sea levels for western Europe based on ocean and wind-wave modelling
Brief communication: From modelling to reality – flood modelling gaps highlighted by a recent severe storm surge event along the German Baltic Sea coast
Super Typhoons Mangkhut (2018) and Saola (2023) during landfall: comparison and insights for wind engineering practice
Inundation and evacuation of shoreline populations during landslide-triggered tsunamis: an integrated numerical and statistical hazard assessment
Rapid simulation of wave runup on morphologically diverse, reef-lined coasts with the BEWARE-2 (Broad-range Estimator of Wave Attack in Reef Environments) meta-process model
Development of a wind-based storm surge model for the German Bight
A brief history of tsunamis in the Vanuatu Arc
Tsunami inundation and vulnerability analysis on the Makran coast, Pakistan
Influence of data source and copula statistics on estimates of compound flood extremes in a river mouth environment
Volcano tsunamis and their effects on moored vessel safety: the 2022 Tonga event
Recent Baltic Sea Storm Surge Events From A Climate Perspective
Modelling tsunami initial conditions due to rapid coseismic seafloor displacement: efficient numerical integration and a tool to build unit source databases
Estuarine hurricane wind can intensify surge-dominated extreme water level in shallow and converging coastal systems
Revisiting regression methods for estimating long-term trends in sea surface temperature
Global application of a regional frequency analysis to extreme sea levels
Tsunami hazard assessment in the South China Sea based on geodetic locking of the Manila subduction zone
The impact of long-term changes in ocean waves and storm surge on coastal shoreline change: a case study of Bass Strait and south-east Australia
Brief communication: Implications of outstanding solitons for the occurrence of rogue waves at two additional sites in the North Sea
A multiscale modelling framework of coastal flooding events for global to local flood hazard assessments
Simulating sea level extremes from synthetic low-pressure systems
Nonlinear processes in tsunami simulations for the Peruvian coast with focus on Lima and Callao
The potential of global coastal flood risk reduction using various DRR measures
Thresholds for estuarine compound flooding using a combined hydrodynamic–statistical modelling approach
Nearshore tsunami amplitudes across the Maldives archipelago due to worst-case seismic scenarios in the Indian Ocean
Evidence of Middle Holocene landslide-generated tsunamis recorded in lake sediments from Saqqaq, West Greenland
Investigation of historical severe storms and storm tides in the German Bight with century reanalysis data
Proposal for a new meteotsunami intensity index
Total water levels along the South Atlantic Bight during three along-shelf propagating tropical cyclones: relative contributions of storm surge and wave runup
Hurricane Irma: an unprecedented event over the last 3700 years? Geomorphological changes and sedimentological record in Codrington Lagoon, Barbuda
Bayesian extreme value analysis of extreme sea levels along the German Baltic coast using historical information
Storm characteristics influence nitrogen removal in an urban estuarine environment
A new European coastal flood database for low–medium intensity events
Boulder transport and wave height of a seventeenth-century South China Sea tsunami on Penghu Islands, Taiwan
A wave-resolving modeling study of rip current variability, rip hazard, and swimmer escape strategies on an embayed beach
Human displacements from Tropical Cyclone Idai attributable to climate change
Three decades of coastal subsidence in the slow-moving Nice Côte d'Azur Airport area (France) revealed by InSAR (interferometric synthetic-aperture radar): insights into the deformation mechanism
Modelling extreme water levels using intertidal topography and bathymetry derived from multispectral satellite images
Regional assessment of extreme sea levels and associated coastal flooding along the German Baltic Sea coast
Naveen Ragu Ramalingam, Kendra Johnson, Marco Pagani, and Mario L. V. Martina
Nat. Hazards Earth Syst. Sci., 25, 1655–1679, https://doi.org/10.5194/nhess-25-1655-2025, https://doi.org/10.5194/nhess-25-1655-2025, 2025
Short summary
Short summary
By combining limited tsunami simulations with machine learning, we developed a fast and efficient framework to predict tsunami impacts such as wave heights and inundation depths at different coastal sites. Testing our model with historical tsunami source scenarios helped assess its reliability and broad applicability. This work enables more efficient and comprehensive tsunami hazard modelling workflow, which is essential for tsunami risk evaluations and enhancing coastal disaster preparedness.
Marvin Lorenz, Katri Viigand, and Ulf Gräwe
Nat. Hazards Earth Syst. Sci., 25, 1439–1458, https://doi.org/10.5194/nhess-25-1439-2025, https://doi.org/10.5194/nhess-25-1439-2025, 2025
Short summary
Short summary
This study divides the sea level components that contribute to extreme sea levels in the Baltic Sea into three parts: the filling state of the Baltic Sea, seiches, and storm surges. In the western part of the Baltic Sea, storm surges are the main factor, while in the central and northern parts, the filling state plays a larger role. Using a numerical model, we show that wind and air pressure are the main drivers of these events, with Atlantic sea level also playing a small role.
Lucas Terlinden-Ruhl, Anaïs Couasnon, Dirk Eilander, Gijs G. Hendrickx, Patricia Mares-Nasarre, and José A. Á. Antolínez
Nat. Hazards Earth Syst. Sci., 25, 1353–1375, https://doi.org/10.5194/nhess-25-1353-2025, https://doi.org/10.5194/nhess-25-1353-2025, 2025
Short summary
Short summary
This study develops a conceptual framework that uses active learning to accelerate compound flood risk assessments. A case study of Charleston County shows that the framework achieves faster and more accurate risk quantification compared to the state-of-the-art. This win–win allows for an increase in the number of flooding parameters, which results in an 11.6 % difference in the expected annual damages. Therefore, this framework allows for more comprehensive compound flood risk assessments.
Cesare Angeli, Alberto Armigliato, Martina Zanetti, Filippo Zaniboni, Fabrizio Romano, Hafize Başak Bayraktar, and Stefano Lorito
Nat. Hazards Earth Syst. Sci., 25, 1169–1185, https://doi.org/10.5194/nhess-25-1169-2025, https://doi.org/10.5194/nhess-25-1169-2025, 2025
Short summary
Short summary
To issue precise and timely tsunami alerts, detecting the propagating tsunami is fundamental. The most used instruments are pressure sensors positioned at the ocean bottom, called ocean-bottom pressure gauges (OBPGs). In this work, we study four different techniques that allow us to recognize a tsunami as soon as it is recorded by an OBPG and a methodology to calibrate them. The techniques are compared in terms of their ability to detect and characterize the tsunami wave in real time.
Kai Bellinghausen, Birgit Hünicke, and Eduardo Zorita
Nat. Hazards Earth Syst. Sci., 25, 1139–1162, https://doi.org/10.5194/nhess-25-1139-2025, https://doi.org/10.5194/nhess-25-1139-2025, 2025
Short summary
Short summary
We designed a tool to predict the storm surges at the Baltic Sea coast with satisfactory predictability (80 % correct predictions), using lead times of a few days. The proportion of false warnings is typically as low as 10 % to 20 %. We were able to identify the relevant predictor regions and their patterns – such as low-pressure systems and strong winds. Due to its short computing time, the method can be used as a pre-warning system to trigger the application of more sophisticated algorithms.
Wiwin Windupranata, Muhammad Wahyu Al Ghifari, Candida Aulia De Silva Nusantara, Marsyanisa Shafa, Intan Hayatiningsih, Iyan Eka Mulia, and Alqinthara Nuraghnia
Nat. Hazards Earth Syst. Sci., 25, 1057–1069, https://doi.org/10.5194/nhess-25-1057-2025, https://doi.org/10.5194/nhess-25-1057-2025, 2025
Short summary
Short summary
Batukaras is a village on the southern coast of Java that is prone to tsunami hazards. To assess the potential tsunami hazard in the area, the probabilistic tsunami hazard analysis method was employed. It resulted in tsunami heights of 0.84, 1.63, 2.97, and 5.7 m for each earthquake return period of 250, 500, 1000, and 2500 years, respectively. The largest contribution of earthquake sources comes from the West Java–Central Java megathrust segment.
Joshua Green, Ivan D. Haigh, Niall Quinn, Jeff Neal, Thomas Wahl, Melissa Wood, Dirk Eilander, Marleen de Ruiter, Philip Ward, and Paula Camus
Nat. Hazards Earth Syst. Sci., 25, 747–816, https://doi.org/10.5194/nhess-25-747-2025, https://doi.org/10.5194/nhess-25-747-2025, 2025
Short summary
Short summary
Compound flooding, involving the combination or successive occurrence of two or more flood drivers, can amplify flood impacts in coastal/estuarine regions. This paper reviews the practices, trends, methodologies, applications, and findings of coastal compound flooding literature at regional to global scales. We explore the types of compound flood events, their mechanistic processes, and the range of terminology. Lastly, this review highlights knowledge gaps and implications for future practices.
Enrico Duo, Juan Montes, Marine Le Gal, Tomás Fernández-Montblanc, Paolo Ciavola, and Clara Armaroli
Nat. Hazards Earth Syst. Sci., 25, 13–39, https://doi.org/10.5194/nhess-25-13-2025, https://doi.org/10.5194/nhess-25-13-2025, 2025
Short summary
Short summary
The present work, developed within the EU H2020 European Coastal Flood Awareness System (ECFAS) project, presents an approach used to estimate direct impacts of coastal flood on population, buildings, and roads along European coasts. The findings demonstrate that the ECFAS impact approach offers valuable estimates for affected populations, reliable damage assessments for buildings and roads, and improved accuracy compared to traditional grid-based approaches.
Bruno Castelle, Jeoffrey Dehez, Jean-Philippe Savy, Sylvain Liquet, and David Carayon
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-168, https://doi.org/10.5194/nhess-2024-168, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
This paper introduces two new, simple, physics-based hazard forecast models of rip current and shore-break waves, which are the two primary natural hazards beachgoers expose themselves to in the surf zone. These models, which depend on a limited number of free parameters, accurately predict rip-current and shore-break wave hazard levels, including their modulation by tide elevation and incident wave conditions, opening new perspectives to forecast multiple surf-zone hazards on sandy beaches.
Benedikt Aschenneller, Roelof Rietbroek, and Daphne van der Wal
Nat. Hazards Earth Syst. Sci., 24, 4145–4177, https://doi.org/10.5194/nhess-24-4145-2024, https://doi.org/10.5194/nhess-24-4145-2024, 2024
Short summary
Short summary
Shorelines retreat or advance in response to sea level changes, subsidence or uplift of the ground, and morphological processes (sedimentation and erosion). We show that the geometrical influence of each of these drivers on shoreline movements can be quantified by combining different remote sensing observations, including radar altimetry, lidar and optical satellite images. The focus here is to illustrate the uncertainties of these observations by comparing datasets that cover similar processes.
Alisée A. Chaigneau, Melisa Menéndez, Marta Ramírez-Pérez, and Alexandra Toimil
Nat. Hazards Earth Syst. Sci., 24, 4109–4131, https://doi.org/10.5194/nhess-24-4109-2024, https://doi.org/10.5194/nhess-24-4109-2024, 2024
Short summary
Short summary
Tropical cyclones drive extreme sea levels, causing large storm surges due to low atmospheric pressure and strong winds. This study explores factors affecting the numerical modelling of storm surges induced by hurricanes in the tropical Atlantic. Two ocean models are compared and used for sensitivity experiments. ERA5 atmospheric reanalysis forcing generally improves surge estimates compared to parametric wind models. Including ocean circulations reduces errors in surge estimates in some areas.
Christopher Stokes, Timothy Poate, Gerd Masselink, Tim Scott, and Steve Instance
Nat. Hazards Earth Syst. Sci., 24, 4049–4074, https://doi.org/10.5194/nhess-24-4049-2024, https://doi.org/10.5194/nhess-24-4049-2024, 2024
Short summary
Short summary
Currents at beaches with an estuary mouth have rarely been studied before. Using field measurements and computer modelling, we show that surfzone currents can be driven by both estuary flow and rip currents. We show that an estuary mouth beach can have flows reaching 1.5 m s−1 and have a high likelihood of taking bathers out of the surfzone. The river channels on the beach direct the flows, and even though they change position over time, it was possible to predict when peak hazards would occur.
Alisée A. Chaigneau, Angélique Melet, Aurore Voldoire, Maialen Irazoqui Apecechea, Guillaume Reffray, Stéphane Law-Chune, and Lotfi Aouf
Nat. Hazards Earth Syst. Sci., 24, 4031–4048, https://doi.org/10.5194/nhess-24-4031-2024, https://doi.org/10.5194/nhess-24-4031-2024, 2024
Short summary
Short summary
Climate-change-induced sea level rise increases the frequency of extreme sea levels. We analyze projected changes in extreme sea levels for western European coasts produced with high-resolution models (∼ 6 km). Unlike commonly used coarse-scale global climate models, this approach allows us to simulate key processes driving coastal sea level variations, such as long-term sea level rise, tides, storm surges induced by low atmospheric surface pressure and winds, waves, and their interactions.
Joshua Kiesel, Claudia Wolff, and Marvin Lorenz
Nat. Hazards Earth Syst. Sci., 24, 3841–3849, https://doi.org/10.5194/nhess-24-3841-2024, https://doi.org/10.5194/nhess-24-3841-2024, 2024
Short summary
Short summary
In October 2023, one of the strongest storm surges on record hit the southwestern Baltic Sea coast, causing severe impacts in the German federal state of Schleswig-Holstein, including dike failures. Recent studies on coastal flooding from the same region align well with the October 2023 surge, with differences in peak water levels of less than 30 cm. This rare coincidence is used to assess current capabilities and limitations of coastal flood modelling and derive key areas for future research.
Yujie Liu, Yuncheng He, Pakwai Chan, Aiming Liu, and Qijun Gao
EGUsphere, https://doi.org/10.5194/egusphere-2024-3223, https://doi.org/10.5194/egusphere-2024-3223, 2024
Short summary
Short summary
Offshore wind turbines are sensitive to tropical cyclones (TCs). Wind data from Super Typhoons Mangkhut and Saola, impacting South China, are vital for design and operation. Despite Saola's higher intensity, it caused less damage. Both had concentric eyewall structures, but Saola completed an eyewall replacement before landfall, becoming more compact. Mangkhut decayed but affected a wider area. Their wind characteristics provide insights for turbine maintenance and operation.
Emmie Malika Bonilauri, Catherine Aaron, Matteo Cerminara, Raphaël Paris, Tomaso Esposti Ongaro, Benedetta Calusi, Domenico Mangione, and Andrew John Lang Harris
Nat. Hazards Earth Syst. Sci., 24, 3789–3813, https://doi.org/10.5194/nhess-24-3789-2024, https://doi.org/10.5194/nhess-24-3789-2024, 2024
Short summary
Short summary
Currently on the island of Stromboli, only 4 min of warning time is available for a locally generated tsunami. We combined tsunami simulations and human exposure to complete a risk analysis. We linked the predicted inundation area and the tsunami warning signals to assess the hazard posed by future tsunamis and to design escape routes to reach safe areas and to optimise evacuation times. Such products can be used by civil protection agencies on Stromboli.
Robert McCall, Curt Storlazzi, Floortje Roelvink, Stuart G. Pearson, Roel de Goede, and José A. Á. Antolínez
Nat. Hazards Earth Syst. Sci., 24, 3597–3625, https://doi.org/10.5194/nhess-24-3597-2024, https://doi.org/10.5194/nhess-24-3597-2024, 2024
Short summary
Short summary
Accurate predictions of wave-driven flooding are essential to manage risk on low-lying, reef-lined coasts. Models to provide this information are, however, computationally expensive. We present and validate a modeling system that simulates flood drivers on diverse and complex reef-lined coasts as competently as a full-physics model but at a fraction of the computational cost to run. This development paves the way for application in large-scale early-warning systems and flood risk assessments.
Laura Schaffer, Andreas Boesch, Johanna Baehr, and Tim Kruschke
EGUsphere, https://doi.org/10.5194/egusphere-2024-3144, https://doi.org/10.5194/egusphere-2024-3144, 2024
Short summary
Short summary
We developed a simple yet effective model to predict storm surges in the German Bight, using wind data and a multiple linear regression approach. Trained on historical data from 1959 to 2022, our storm surge model demonstrates high predictive skill and performs as well as more complex models, despite its simplicity. It can predict both moderate and extreme storm surges, making it a valuable tool for future climate change studies.
Jean H. M. Roger and Bernard Pelletier
Nat. Hazards Earth Syst. Sci., 24, 3461–3478, https://doi.org/10.5194/nhess-24-3461-2024, https://doi.org/10.5194/nhess-24-3461-2024, 2024
Short summary
Short summary
We present a catalogue of tsunamis that occurred in the Vanuatu Arc. It has been built based on the analysis of existing catalogues, historical documents, and sea-level data from five coastal tide gauges. Since 1863, 100 tsunamis of local, regional, or far-field origins have been listed; 15 of them show maximum wave amplitudes and/or run-up heights of above 1 m, and 8 are between 0.3 and 1 m. Details are provided for particular events, including debated events or events with no known origin(s).
Rashid Haider, Sajid Ali, Gösta Hoffmann, and Klaus Reicherter
Nat. Hazards Earth Syst. Sci., 24, 3279–3290, https://doi.org/10.5194/nhess-24-3279-2024, https://doi.org/10.5194/nhess-24-3279-2024, 2024
Short summary
Short summary
The coastlines bordering the Arabian Sea have yielded various tsunamites reflecting its high hazard potential and recurrences. My PhD project aims at the estimation and zonation of the hazards and risks associated with. This publication is a continuation of the previous publication (Haider et al., 2023), which focused on hazard estimation through a multi-proxy approach. This part of the study estimates the risk potential through integrated tsunami inundation analysis.
Kévin Dubois, Morten Andreas Dahl Larsen, Martin Drews, Erik Nilsson, and Anna Rutgersson
Nat. Hazards Earth Syst. Sci., 24, 3245–3265, https://doi.org/10.5194/nhess-24-3245-2024, https://doi.org/10.5194/nhess-24-3245-2024, 2024
Short summary
Short summary
Both extreme river discharge and storm surges can interact at the coast and lead to flooding. However, it is difficult to predict flood levels during such compound events because they are rare and complex. Here, we focus on the quantification of uncertainties and investigate the sources of limitations while carrying out such analyses at Halmstad, Sweden. Based on a sensitivity analysis, we emphasize that both the choice of data source and statistical methodology influence the results.
Sergio Padilla, Íñigo Aniel-Quiroga, Rachid Omira, Mauricio González, Jihwan Kim, and Maria A. Baptista
Nat. Hazards Earth Syst. Sci., 24, 3095–3113, https://doi.org/10.5194/nhess-24-3095-2024, https://doi.org/10.5194/nhess-24-3095-2024, 2024
Short summary
Short summary
The eruption of the Hunga Tonga–Hunga Ha'apai volcano in January 2022 triggered a global phenomenon, including an atmospheric wave and a volcano-meteorological tsunami (VMT). The tsunami, reaching as far as Callao, Peru, 10 000 km away, caused significant coastal impacts. This study delves into understanding these effects, particularly on vessel mooring safety. The findings underscore the importance of enhancing early warning systems and preparing port authorities for managing such rare events.
Nikolaus Groll, Lidia Gaslikova, and Ralf Weisse
EGUsphere, https://doi.org/10.5194/egusphere-2024-2664, https://doi.org/10.5194/egusphere-2024-2664, 2024
Short summary
Short summary
In recent years, the western Baltic Sea has experienced severe storm surges. By analysing the individual contributions and the total water level, these events can be put into a climate perspective. It was found that individual contributions were not exceptional in all events and no clear trend can be identified, often the combination of the individual contributions leads to the extreme events of recent years. This points to the importance of analysing composite events.
Alice Abbate, José M. González Vida, Manuel J. Castro Díaz, Fabrizio Romano, Hafize Başak Bayraktar, Andrey Babeyko, and Stefano Lorito
Nat. Hazards Earth Syst. Sci., 24, 2773–2791, https://doi.org/10.5194/nhess-24-2773-2024, https://doi.org/10.5194/nhess-24-2773-2024, 2024
Short summary
Short summary
Modelling tsunami generation due to a rapid submarine earthquake is a complex problem. Under a variety of realistic conditions in a subduction zone, we propose and test an efficient solution to this problem: a tool that can compute the generation of any potential tsunami in any ocean in the world. In the future, we will explore solutions that would also allow us to model tsunami generation by slower (time-dependent) seafloor displacement.
Mithun Deb, James J. Benedict, Ning Sun, Zhaoqing Yang, Robert D. Hetland, David Judi, and Taiping Wang
Nat. Hazards Earth Syst. Sci., 24, 2461–2479, https://doi.org/10.5194/nhess-24-2461-2024, https://doi.org/10.5194/nhess-24-2461-2024, 2024
Short summary
Short summary
We coupled earth system, hydrology, and hydrodynamic models to generate plausible and physically consistent ensembles of hurricane events and their associated water levels from the open coast to tidal rivers of Delaware Bay and River. Our results show that the hurricane landfall locations and the estuarine wind can significantly amplify the extreme surge in a shallow and converging system, especially when the wind direction aligns with the surge propagation direction.
Ming-Huei Chang, Yen-Chen Huang, Yu-Hsin Cheng, Chuen-Teyr Terng, Jinyi Chen, and Jyh Cherng Jan
Nat. Hazards Earth Syst. Sci., 24, 2481–2494, https://doi.org/10.5194/nhess-24-2481-2024, https://doi.org/10.5194/nhess-24-2481-2024, 2024
Short summary
Short summary
Monitoring the long-term trends in sea surface warming is crucial for informed decision-making and adaptation. This study offers a comprehensive examination of prevalent trend extraction methods. We identify the least-squares regression as suitable for general tasks yet highlight the need to address seasonal signal-induced bias, i.e., the phase–distance imbalance. Our developed method, evaluated using simulated and real data, is unbiased and better than the conventional SST anomaly method.
Thomas P. Collings, Niall D. Quinn, Ivan D. Haigh, Joshua Green, Izzy Probyn, Hamish Wilkinson, Sanne Muis, William V. Sweet, and Paul D. Bates
Nat. Hazards Earth Syst. Sci., 24, 2403–2423, https://doi.org/10.5194/nhess-24-2403-2024, https://doi.org/10.5194/nhess-24-2403-2024, 2024
Short summary
Short summary
Coastal areas are at risk of flooding from rising sea levels and extreme weather events. This study applies a new approach to estimating the likelihood of coastal flooding around the world. The method uses data from observations and computer models to create a detailed map of where these coastal floods might occur. The approach can predict flooding in areas for which there are few or no data available. The results can be used to help prepare for and prevent this type of flooding.
Guangsheng Zhao and Xiaojing Niu
Nat. Hazards Earth Syst. Sci., 24, 2303–2313, https://doi.org/10.5194/nhess-24-2303-2024, https://doi.org/10.5194/nhess-24-2303-2024, 2024
Short summary
Short summary
The purpose of this study is to estimate the spatial distribution of the tsunami hazard in the South China Sea from the Manila subduction zone. The plate motion data are used to invert the degree of locking on the fault plane. The degree of locking is used to estimate the maximum possible magnitude of earthquakes and describe the slip distribution. A spatial distribution map of the 1000-year return period tsunami wave height in the South China Sea was obtained by tsunami hazard assessment.
Mandana Ghanavati, Ian R. Young, Ebru Kirezci, and Jin Liu
Nat. Hazards Earth Syst. Sci., 24, 2175–2190, https://doi.org/10.5194/nhess-24-2175-2024, https://doi.org/10.5194/nhess-24-2175-2024, 2024
Short summary
Short summary
The paper examines the changes in shoreline position of the coast of south-east Australia over a 26-year period to determine whether changes are consistent with observed changes in ocean wave and storm surge climate. The results show that in regions where there have been significant changes in wave energy flux or wave direction, there have also been changes in shoreline position consistent with non-equilibrium longshore drift.
Ina Teutsch, Ralf Weisse, and Sander Wahls
Nat. Hazards Earth Syst. Sci., 24, 2065–2069, https://doi.org/10.5194/nhess-24-2065-2024, https://doi.org/10.5194/nhess-24-2065-2024, 2024
Short summary
Short summary
We investigate buoy and radar measurement data from shallow depths in the southern North Sea. We analyze the role of solitons for the occurrence of rogue waves. This is done by computing the nonlinear soliton spectrum of each time series. In a previous study that considered a single measurement site, we found a connection between the shape of the soliton spectrum and the occurrence of rogue waves. In this study, results for two additional sites are reported.
Irene Benito, Jeroen C. J. H. Aerts, Philip J. Ward, Dirk Eilander, and Sanne Muis
EGUsphere, https://doi.org/10.5194/egusphere-2024-1354, https://doi.org/10.5194/egusphere-2024-1354, 2024
Short summary
Short summary
Global flood models are key for mitigating coastal flooding impacts, yet they still have limitations to provide actionable insights locally. We present a multiscale framework that couples dynamic water level and flood models, and bridges between fully global and local modelling approaches. We apply it to three storms to present the merits of a multiscale approach. Our findings reveal that the importance of model refinements varies based on the study area characteristics and the storm’s nature.
Jani Särkkä, Jani Räihä, Mika Rantanen, and Matti Kämäräinen
Nat. Hazards Earth Syst. Sci., 24, 1835–1842, https://doi.org/10.5194/nhess-24-1835-2024, https://doi.org/10.5194/nhess-24-1835-2024, 2024
Short summary
Short summary
We study the relationship between tracks of low-pressure systems and related sea level extremes. We perform the studies by introducing a method to simulate sea levels using synthetic low-pressure systems. We test the method using sites located along the Baltic Sea coast. We find high extremes, where the sea level extreme reaches up to 3.5 m. In addition, we add the maximal value of the mean level of the Baltic Sea (1 m), leading to a sea level of 4.5 m.
Alexey Androsov, Sven Harig, Natalia Zamora, Kim Knauer, and Natalja Rakowsky
Nat. Hazards Earth Syst. Sci., 24, 1635–1656, https://doi.org/10.5194/nhess-24-1635-2024, https://doi.org/10.5194/nhess-24-1635-2024, 2024
Short summary
Short summary
Two numerical codes are used in a comparative analysis of the calculation of the tsunami wave due to an earthquake along the Peruvian coast. The comparison primarily evaluates the flow velocity fields in flooded areas. The relative importance of the various parts of the equations is determined, focusing on the nonlinear terms. The influence of the nonlinearity on the degree and volume of flooding, flow velocity, and small-scale fluctuations is determined.
Eric Mortensen, Timothy Tiggeloven, Toon Haer, Bas van Bemmel, Dewi Le Bars, Sanne Muis, Dirk Eilander, Frederiek Sperna Weiland, Arno Bouwman, Willem Ligtvoet, and Philip J. Ward
Nat. Hazards Earth Syst. Sci., 24, 1381–1400, https://doi.org/10.5194/nhess-24-1381-2024, https://doi.org/10.5194/nhess-24-1381-2024, 2024
Short summary
Short summary
Current levels of coastal flood risk are projected to increase in coming decades due to various reasons, e.g. sea-level rise, land subsidence, and coastal urbanization: action is needed to minimize this future risk. We evaluate dykes and coastal levees, foreshore vegetation, zoning restrictions, and dry-proofing on a global scale to estimate what levels of risk reductions are possible. We demonstrate that there are several potential adaptation pathways forward for certain areas of the world.
Charlotte Lyddon, Nguyen Chien, Grigorios Vasilopoulos, Michael Ridgill, Sogol Moradian, Agnieszka Olbert, Thomas Coulthard, Andrew Barkwith, and Peter Robins
Nat. Hazards Earth Syst. Sci., 24, 973–997, https://doi.org/10.5194/nhess-24-973-2024, https://doi.org/10.5194/nhess-24-973-2024, 2024
Short summary
Short summary
Recent storms in the UK, like Storm Ciara in 2020, show how vulnerable estuaries are to the combined effect of sea level and river discharge. We show the combinations of sea levels and river discharges that cause flooding in the Conwy estuary, N Wales. The results showed flooding was amplified under moderate conditions in the middle estuary and elsewhere sea state or river flow dominated the hazard. Combined sea and river thresholds can improve prediction and early warning of compound flooding.
Shuaib Rasheed, Simon C. Warder, Yves Plancherel, and Matthew D. Piggott
Nat. Hazards Earth Syst. Sci., 24, 737–755, https://doi.org/10.5194/nhess-24-737-2024, https://doi.org/10.5194/nhess-24-737-2024, 2024
Short summary
Short summary
Here we use a high-resolution bathymetry dataset of the Maldives archipelago, as well as corresponding high numerical model resolution, to carry out a scenario-based tsunami hazard assessment for the entire Maldives archipelago to investigate the potential impact of plausible far-field tsunamis across the Indian Ocean at the island scale. The results indicate that several factors contribute to mitigating and amplifying tsunami waves at the island scale.
Niels J. Korsgaard, Kristian Svennevig, Anne S. Søndergaard, Gregor Luetzenburg, Mimmi Oksman, and Nicolaj K. Larsen
Nat. Hazards Earth Syst. Sci., 24, 757–772, https://doi.org/10.5194/nhess-24-757-2024, https://doi.org/10.5194/nhess-24-757-2024, 2024
Short summary
Short summary
A tsunami wave will leave evidence of erosion and deposition in coastal lakes, making it possible to determine the runup height and when it occurred. Here, we use four lakes now located at elevations of 19–91 m a.s.l. close to the settlement of Saqqaq, West Greenland, to show that at least two giant tsunamis occurred 7300–7600 years ago with runup heights larger than 40 m. We infer that any tsunamis from at least nine giga-scale landslides must have happened 8500–10 000 years ago.
Elke Magda Inge Meyer and Lidia Gaslikova
Nat. Hazards Earth Syst. Sci., 24, 481–499, https://doi.org/10.5194/nhess-24-481-2024, https://doi.org/10.5194/nhess-24-481-2024, 2024
Short summary
Short summary
Storm tides for eight extreme historical storms in the German Bight are modelled using sets of slightly varying atmospheric conditions from the century reanalyses. Comparisons with the water level observations from the gauges Norderney, Cuxhaven and Husum show that single members of the reanalyses are suitable for the reconstruction of extreme storms. Storms with more northerly tracks show less variability within a set and have more potential for accurate reconstruction of extreme water levels.
Clare Lewis, Tim Smyth, Jess Neumann, and Hannah Cloke
Nat. Hazards Earth Syst. Sci., 24, 121–131, https://doi.org/10.5194/nhess-24-121-2024, https://doi.org/10.5194/nhess-24-121-2024, 2024
Short summary
Short summary
Meteotsunami are the result of atmospheric disturbances and can impact coastlines causing injury, loss of life, and damage to assets. This paper introduces a novel intensity index to allow for the quantification of these events at the shoreline. This has the potential to assist in the field of natural hazard assessment. It was trialled in the UK but designed for global applicability and to become a widely accepted standard in coastal planning, meteotsunami forecasting, and early warning systems.
Chu-En Hsu, Katherine A. Serafin, Xiao Yu, Christie A. Hegermiller, John C. Warner, and Maitane Olabarrieta
Nat. Hazards Earth Syst. Sci., 23, 3895–3912, https://doi.org/10.5194/nhess-23-3895-2023, https://doi.org/10.5194/nhess-23-3895-2023, 2023
Short summary
Short summary
Total water levels (TWLs) induced by tropical cyclones (TCs) are among the leading hazards faced by coastal communities. Using numerical models, we examined how TWL components (surge and wave runup) along the South Atlantic Bight varied during hurricanes Matthew (2016), Dorian (2019), and Isaias (2020). Peak surge and peak wave runup were dominated by wind speeds and relative positions to TCs. The exceedance time of TWLs was controlled by normalized distances to TC and TC translation speeds.
Maude Biguenet, Eric Chaumillon, Pierre Sabatier, Antoine Bastien, Emeline Geba, Fabien Arnaud, Thibault Coulombier, and Nathalie Feuillet
Nat. Hazards Earth Syst. Sci., 23, 3761–3788, https://doi.org/10.5194/nhess-23-3761-2023, https://doi.org/10.5194/nhess-23-3761-2023, 2023
Short summary
Short summary
This work documents the impact of Hurricane Irma (2017) on the Codrington barrier and lagoon on Barbuda Island. Irma caused two wide breaches in the sandy barrier, which remained unopened for 250 years. The thick and extensive sand sheet at the top of the lagoon fill was attributed to Irma. This unique deposit in a 3700-year record confirms Irma's exceptional character. This case study illustrates the consequences of high-intensity hurricanes in low-lying islands in a global warming context.
Leigh Richard MacPherson, Arne Arns, Svenja Fischer, Fernando Javier Méndez, and Jürgen Jensen
Nat. Hazards Earth Syst. Sci., 23, 3685–3701, https://doi.org/10.5194/nhess-23-3685-2023, https://doi.org/10.5194/nhess-23-3685-2023, 2023
Short summary
Short summary
Efficient adaptation planning for coastal flooding caused by extreme sea levels requires accurate assessments of the underlying hazard. Tide-gauge data alone are often insufficient for providing the desired accuracy but may be supplemented with historical information. We estimate extreme sea levels along the German Baltic coast and show that relying solely on tide-gauge data leads to underestimations. Incorporating historical information leads to improved estimates with reduced uncertainties.
Anne Margaret H. Smiley, Suzanne P. Thompson, Nathan S. Hall, and Michael F. Piehler
Nat. Hazards Earth Syst. Sci., 23, 3635–3649, https://doi.org/10.5194/nhess-23-3635-2023, https://doi.org/10.5194/nhess-23-3635-2023, 2023
Short summary
Short summary
Floodwaters can deliver reactive nitrogen to sensitive aquatic systems and diminish water quality. We assessed the nitrogen removal capabilities of flooded habitats and urban landscapes. Differences in processing rates across land cover treatments and between nutrient treatments suggest that abundance and spatial distributions of habitats, as well as storm characteristics, influence landscape-scale nitrogen removal. Results have important implications for coastal development and climate change.
Marine Le Gal, Tomás Fernández-Montblanc, Enrico Duo, Juan Montes Perez, Paulo Cabrita, Paola Souto Ceccon, Véra Gastal, Paolo Ciavola, and Clara Armaroli
Nat. Hazards Earth Syst. Sci., 23, 3585–3602, https://doi.org/10.5194/nhess-23-3585-2023, https://doi.org/10.5194/nhess-23-3585-2023, 2023
Short summary
Short summary
Assessing coastal hazards is crucial to mitigate flooding disasters. In this regard, coastal flood databases are valuable tools. This paper describes a new coastal flood map catalogue covering the entire European coastline, as well as the methodology to build it and its accuracy. The catalogue focuses on frequent extreme events and relies on synthetic scenarios estimated from local storm conditions. Flood-prone areas and regions sensitive to storm duration and water level peak were identified.
Neng-Ti Yu, Cheng-Hao Lu, I-Chin Yen, Jia-Hong Chen, Jiun-Yee Yen, and Shyh-Jeng Chyi
Nat. Hazards Earth Syst. Sci., 23, 3525–3542, https://doi.org/10.5194/nhess-23-3525-2023, https://doi.org/10.5194/nhess-23-3525-2023, 2023
Short summary
Short summary
A paleotsunami deposit of cliff-top basalt debris was identified on the Penghu Islands in the southern Taiwan Strait and related to the 1661 earthquake in southwest Taiwan. A minimum wave height of 3.2 m is estimated to have rotated the biggest boulder for over 30 m landwards onto the cliff top at 2.5 m a.s.l. The event must have been huge compared to the 1994 M 6.4 earthquake with the ensuing 0.4 m high tsunami in the same area, validating the intimidating tsunami risks in the South China Sea.
Ye Yuan, Huaiwei Yang, Fujiang Yu, Yi Gao, Benxia Li, and Chuang Xing
Nat. Hazards Earth Syst. Sci., 23, 3487–3507, https://doi.org/10.5194/nhess-23-3487-2023, https://doi.org/10.5194/nhess-23-3487-2023, 2023
Short summary
Short summary
Rip currents are narrow jets of offshore-directed flow that originated in the surf zone, which can take swimmers of all ability levels into deeper water unawares. In this study, a 1 m fine-resolution wave-resolving model was configured to study rip current variability and the optimal swimmer escape strategies. Multiple factors contribute to the survival of swimmers. However, for weak-to-moderate rip and longshore currents, swimming onshore consistently seems to be the most successful strategy.
Benedikt Mester, Thomas Vogt, Seth Bryant, Christian Otto, Katja Frieler, and Jacob Schewe
Nat. Hazards Earth Syst. Sci., 23, 3467–3485, https://doi.org/10.5194/nhess-23-3467-2023, https://doi.org/10.5194/nhess-23-3467-2023, 2023
Short summary
Short summary
In 2019, Cyclone Idai displaced more than 478 000 people in Mozambique. In our study, we use coastal flood modeling and satellite imagery to construct a counterfactual cyclone event without the effects of climate change. We show that 12 600–14 900 displacements can be attributed to sea level rise and the intensification of storm wind speeds due to global warming. Our impact attribution study is the first one on human displacement and one of very few for a low-income country.
Olivier Cavalié, Frédéric Cappa, and Béatrice Pinel-Puysségur
Nat. Hazards Earth Syst. Sci., 23, 3235–3246, https://doi.org/10.5194/nhess-23-3235-2023, https://doi.org/10.5194/nhess-23-3235-2023, 2023
Short summary
Short summary
Coastal areas are fragile ecosystems that face multiple hazards. In this study, we measured the downward motion of the Nice Côte d'Azur Airport (France) that was built on reclaimed area and found that it has subsided from 16 mm yr-1 in the 1990s to 8 mm yr-1 today. A continuous remote monitoring of the platform will provide key data for a detailed investigation of future subsidence maps, and this contribution will help to evaluate the potential failure of part of the airport platform.
Wagner L. L. Costa, Karin R. Bryan, and Giovanni Coco
Nat. Hazards Earth Syst. Sci., 23, 3125–3146, https://doi.org/10.5194/nhess-23-3125-2023, https://doi.org/10.5194/nhess-23-3125-2023, 2023
Short summary
Short summary
For predicting flooding events at the coast, topo-bathymetric data are essential. However, elevation data can be unavailable. To tackle this issue, recent efforts have centred on the use of satellite-derived topography (SDT) and bathymetry (SDB). This work is aimed at evaluating their accuracy and use for flooding prediction in enclosed estuaries. Results show that the use of SDT and SDB in numerical modelling can produce similar predictions when compared to the surveyed elevation data.
Joshua Kiesel, Marvin Lorenz, Marcel König, Ulf Gräwe, and Athanasios T. Vafeidis
Nat. Hazards Earth Syst. Sci., 23, 2961–2985, https://doi.org/10.5194/nhess-23-2961-2023, https://doi.org/10.5194/nhess-23-2961-2023, 2023
Short summary
Short summary
Among the Baltic Sea littoral states, Germany is anticipated to experience considerable damage as a result of increased coastal flooding due to sea-level rise (SLR). Here we apply a new modelling framework to simulate how flooding along the German Baltic Sea coast may change until 2100 if dikes are not upgraded. We find that the study region is highly exposed to flooding, and we emphasise the importance of current plans to update coastal protection in the future.
Cited articles
Albright, R., Takeshita, Y., Koweek, D., Ninokawa, A., Wolfe, K., Rivlin, T., Nebuchina, Y., Young, J., and Caldeira, K.: Carbon dioxide addition to coral reef waters suppresses net community calcification, Nature, 555, 516–519, https://doi.org/10.1038/nature25968, 2018.
Allgeyer, S., Daubord, C., Hébert, H., Loevenbruck, A., Schindelé, F., and Madariaga, R.: Could a 1755-like tsunami reach the French Atlantic coastline? constraints from twentieth century observations and numerical modeling, Pure Appl. Geophys., 170, 1415–1431, 2013.
Allgeyer, S., Quentel, É., Hébert, H., Gailler, A., and Loevenbruck, A.: Tsunami Hazard in La Réunion Island (SW Indian Ocean): Scenario-Based Numerical Modelling on Vulnerable Coastal Sites, Pure Appl. Geophys., 174, 3123–3145, https://doi.org/10.1007/s00024-017-1632-9, 2017.
Almar, R., Ranasinghe, R., Bergsma, E. W. J., Diaz, H., Melet, A., Papa, F., Vousdoukas, M., Athanasiou, P., Dada, O., Almeida, L. P., and Kestenare, E.: A global analysis of extreme coastal water levels with implications for potential coastal overtopping, Nat. Commun., 12, 3775, https://doi.org/10.1038/s41467-021-24008-9, 2021.
Alongi, D. M.: Mangrove forests: resilience, protection from tsunamis, and response to global climate change, Estuar. Coast. Shelf S., 76, 1–13, 2008.
Androulidakis, Y. S., Kombiadou, K. D., Makris, C. V., Baltikas, V. N., and Krestenitis, Y. N.: Storm surges in the Mediterranean Sea: Variability and trends under future climatic conditions, Dynam. Atmos. Oceans, 71, 56–82, https://doi.org/10.1016/j.dynatmoce.2015.06.001, 2015.
Arns A., Wahl T., Dangendorf S., Jensen J.: The impact of sea level rise on storm surge water levels in the northern part of the German Bight, Coast. Eng., 96, 118–131, https://doi.org/10.1016/j.coastaleng.2014.12.002, 2015.
Arns, A., Wahl, T., Wolff, C., Vafeidis, A., Haigh, I., Woodworth, P., Niehüser, S., and Jensen, J.: Non-linear interaction modulates global extreme sea levels, coastal flood exposure, and impacts, Nat. Commun., 11, 1918, https://doi.org/10.1038/s41467-020-15752-5, 2020.
Aubanel, A., Marquet, N., Colombani, J. M., and Salvat, B.: Modifications of the shore line in the Society islands (French Polynesia), Ocean Coast. Manage., 42, 419–438, 1999.
Aucan, J., Hoeke, R. K., Storlazzi, C. D., Stopa, J., Wandres, M., and Lowe, R.: Waves do not contribute to global sea-level rise, Nat. Clim. Change, 9, 2, https://doi.org/10.1038/s41558-018-0377-5, 2018.
Bamber, L. J., Oppenheimer, M., Kopp, R. E., and Cooke, R. M.: Ice sheet contributions to future sea-level rise from structured expert judgment, P. Natl. Acad. Sci. USA, 116, 11195–11200, https://doi.org/10.1073/pnas.1817205116, 2019.
Bardet, L., Duluc, C.-M., Rebour, V., and L'Her, J.: Regional frequency analysis of extreme storm surges along the French coast, Nat. Hazards Earth Syst. Sci., 11, 1627–1639, https://doi.org/10.5194/nhess-11-1627-2011, 2011.
Barriot, J.-P., Zhang, F., Ducarme, B., Wöppelmann, G., André, G., and Gabillon, A.: A database for sea-level monitoring in French Polynesia, Geosci. Data J., 10, 368–384, https://doi.org/10.1002/gdj3.172, 2023.
Becker, M., Meyssignac, B., Letetrel, C., Llovel, W., Cazenave, A., and Delcroix, T.: Sea level variations at tropical Pacific islands since 1950, Global Planet. Change, 80–81, 85–98, https://doi.org/10.1016/j.gloplacha.2011.09.004, 2012.
Bertin, X., Bruneau, N., Breilh, J.-F., Fortunato, A., and Karpytchev, M.: Importance of wave age and resonance in storm surges: The case Xynthia, Bay of Biscay, Ocean Model., 42, 16–30, https://doi.org/10.1016/j.ocemod.2011.11.001, 2012.
Bertin, X., Li, K., Roland, A., Zhang, Y. J., Breilh, J.-F., and Chaumillon E.: A modeling-based analysis of the flooding associated with Xynthia, central Bay of Biscay, Coast. Eng., 94, 80–89, 2014.
Bertin, X., Li, K., Roland, A., and Bidlot, J.-R.: The contribution of short-waves in storm surges: two case studies in the Bay of Biscay, Cont. Shelf Res., 96, 1–15, https://doi.org/10.1016/j.csr.2015.01.005, 2015.
Bertin, X., Martins, K., de Bakker, A., Chataigner, T., Guérin, T., Coulombier, T., and de Viron, O.: Energy transfers and reflection of infragravity waves at a dissipative beach under storm waves, J. Geophys. Res.-Oceans, 125, e2019JC015714., https://doi.org/10.1029/2019JC015714, 2020.
Bowen, A. J., Inman, D. L., and Simmons, V. P.: Wave `set-down' and set-up, J. Geophys. Res., 73, 2569–2577, https://doi.org/10.1029/JB073i008p02569, 1968.
Brivois, O., Idier, D., Thiébot, J., Castelle, B., Le Cozannet, G., and Calvete, D.: On the use of linear stability model to characterize the morphological behaviour of a double bar system. Application to Truc Vert beach (France), CR Geosci., 344, 277–287, https://doi.org/10.1016/j.crte.2012.02.004, 2012.
Buchanan, M. K., Kopp, R. E., Oppenheimer, M. and Tebaldi, C.: Allowances for evolving coastal flood risk under 41 uncertain local sea-level rise, Climatic Change, 137, 347–362, https://doi.org/10.1007/s10584-016-1664-7, 2016.
Bulteau, T., Idier, D., Lambert, J., and Garcin, M.: How historical information can improve estimation and prediction of extreme coastal water levels: application to the Xynthia event at La Rochelle (France), Nat. Hazards Earth Syst. Sci., 15, 1135–1147, https://doi.org/10.5194/nhess-15-1135-2015, 2015.
Calafat, F. M., Wahl, T., Tadesse, M. G., and Sparrow, S. N.: Trends in Europe storm surge extremes match the rate of sea-level rise, Nature, 603, 841–845, https://doi.org/10.1038/s41586-022-04426-5, 2022.
Campins, J., Genovés, A., Picornell, M. A., and Jansà, A.: Climatology of Mediterranean cyclones using the era-40 dataset, Int. J. Climatol., 31, 1596–1614, https://doi.org/10.1002/joc.2183, 2011.
Casas-Prat, M. and Sierra, J. P.: Trend analysis of the wave storminess: the wave direction, Adv. Geosci., 26, 89–92, https://doi.org/10.5194/adgeo-26-89-2010, 2010.
Cavicchia, L., Von Storch, H., and Gualdi, S.: A long-term climatology of medicanes, Clim. Dynam., 43, 1183–1195, https://doi.org/10.1007/s00382-013-1893-7, 2014.
Cazenave, A. and Le Cozannet, G.: Sea level rise and its coastal impacts, Earth's Future, 2, 15–34, https://doi.org/10.1002/2013EF000188, 2013.
Cazenave, A. and Llovel, W.: Contemporary sea level rise, Ann. Rev. Mar. Sci., 2, 145–173, 2010.
Cerema: Étude des systèmes de protection contre les submersions marines, Collection: Références, 442 pp., ISBN 978-2-37180-118-9, 2016.
Cerema: Les niveaux marins extrêmes. Ports de métropole, Collection: Données, ISBN 978-2-37180-308-4, 2018.
Cerema: Dynamiques et évolution du littoral, Fascicule 11: Synthèse des connaissances de Saint-Pierre-et-Miquelon, Collection: Connaissances, ISBN 978-2-37180-341-1, 2020a.
Cerema: Dynamiques et évolution du littoral, Fascicule 12: Synthèse des connaissances de Saint-Barthélemy et Saint-Martin, Collection: Connaissances, ISBN 978-2-37180-342-8, 2020b.
Cerema: Dynamiques et évolution du littoral, Fascicule 13: Synthèse des connaissances de l'archipel de Guadeloupe, Collection: Connaissances, ISBN: 978-2-37180-316-9, 2020c.
Cerema: Dynamiques et évolution du littoral, Fascicule 14: Synthèse des connaissances de la Martinique, Collection: Connaissances, ISBN 978-2-37180-343-5, 2020d.
Cerema: Dynamiques et évolution du littoral, Fascicule 17: Synthèse des connaissances de La Réunion, Collection: Connaissances, ISBN 978-2-37180-345-9, 2020e.
Cerema: Dynamiques et évolution du littoral, Fascicule 15: Synthèse des connaissances de la Guyane, Collection: Connaissances, ISBN 978-2-37180-344-2, 2021.
Chevalier, C., Froidefond, J.-M., and Devenon, J.-L.: Numerical analysis of the combined action of littoral current, tide and waves on the suspended mud transport and on turbid plumes around French Guiana mudbanks, Cont. Shelf Res., 28, 545–560, https://doi.org/10.1016/j.csr.2007.09.011, 2008.
Church, J. A., Clark, P. U., Cazenave, A., Gregory, J. M., Jevrejeva, S., Levermann, A., Merrifield, M. A., Milne, G. A., Nerem, R. S., Nunn, P. D., Payne, A. J., Pfeffer, W. T., Stammer, D., and Unnikrishnan, A. S.: Sea-level rise by 2100, Science, 342, 1445, https://doi.org/10.1126/science.342.6165.1445-a, 2013.
CIRIA, MEDDE, and USACE: The International Levee Handbook, C731, CIRIA, UK, London, 1332 pp., ISBN 978-0-86017-734-0, 2013.
Conte, D. and Lionello, P.: Characteristics of large positive and negative surges in the Mediterranean sea and their attenuation in future climate scenarios, Global Planet. Change, 111, 159–173, https://doi.org/10.1016/j.gloplacha.2013.09.006, 2013.
Dayan, H., Le Cozannet, G., Speich, S., and Thiéblemont, R.: High-End Scenarios of Sea-Level Rise for Coastal Risk-Averse Stakeholders, Front. Mar. Sci., 8, 569992, https://doi.org/10.3389/fmars.2021.569992, 2021.
De la Torre, Y.: Impacts du cyclone Irma sur le littoral des “îles du Nord” à Saint-Martin et Saint-Barthélemy, Rapport BRGM/RP-67291-FR, 20 ill., 2 ann., p. 29, https://infoterre.brgm.fr/rapports/RP-67291-FR.pdf (last access: 6 June 2024), 2017.
Dietrich, J. C., Bunya, S., Westerink, J. J., Ebersole, B. A., Smith, J. M., Atkinson, J. H., Jensen, R., Resio, D. T., Luettich, R. A., Dawson, C., Cardone, V. J., Cox, A. T., Powell, M. D., Westerink, H. J., and Roberts, H. J.: A high resolution coupled riverine flow, tide, wind, wind wave and storm surge model for southern Louisiana and Mississippi: part II – synoptic description and analyses of Hurricanes Katrina and Rita, Mon. Weather Rev., 138, 378–404, https://doi.org/10.1175/2009MWR2907.1, 2010.
Dodet, G., Bertin, X., Bouchette, F., Gravelle, M., Testut, L., and Wöppelmann, G.: Characterization of Sea-level Variations Along the Metropolitan Coasts of France: Waves, Tides, Storm Surges and Long-term Changes, J. Coast. Res., 88, 10–24, https://doi.org/10.2112/SI88-003.1, 2019.
Dorville, J.-F. M. and Zahibo, N.: Hurricane Omar Waves Impact on the West Coast of the Guadeloupe Island, October 2008, Open Oceanogr. J., 4, 83–91, 2010.
DREAL Nord Pas-de-Calais: Détermination de l'aléa de submersion marine intégrant les conséquences du changement climatique en région Nord – Pas de Calais. Phase 1: Compréhension du fonctionnement du littoral, https://www.hauts-de-france.developpement-durable.gouv.fr/IMG/pdf/50292_-_sub_npc_-_phase_1_-_version_4.pdf (last access: 8 February 2024), 2024.
Durand, F.: Hydrodynamique sédimentaire sur le plateau insulaire de la Martinique, Thèse doctorale, Université Bordeaux 1, p. 214, https://archimer.ifremer.fr/doc/00105/21587/19167.pdf (last access: 6 June 2024), 1996.
Elkut, A. E., Taha, M. T., Abu Zed, A. B. E., Eid, F. M., and Abdallah, A. M.: Wind-wave hindcast using modified ECMWF era-interim wind field in the Mediterranean sea, Estuar. Coast. Shelf Sci., 252, 107267, https://doi.org/10.1016/j.ecss.2021.107267, 2021.
Erkens, G., Bucx, T., Dam, R., de Lange, G., and Lambert, J.: Sinking coastal cities, Proc. IAHS, 372, 189–198, https://doi.org/10.5194/piahs-372-189-2015, 2015.
Fita, L., Romero, R., Luque, A., Emanuel, K., and Ramis, C.: Analysis of the environments of seven Mediterranean tropical-like storms using an axisymmetric, nonhydrostatic, cloud resolving model, Nat. Hazards Earth Syst. Sci., 7, 41–56, https://doi.org/10.5194/nhess-7-41-2007, 2007.
Flather, R. A.: Storm surges, in: Encyclopedia of Ocean Sciences, edited by: Steele, J., Thorpe, S., and Turekian, K., Academic Press, San Diego, California, 2882–2892, ISBN 9780122274305, https://doi.org/10.1006/rwos.2001.0124, 2001.
FLOODsite: Language of risk. Project definitions, 2nd Edn., Report T34-02-01, 55 pp., http://www.floodsite.net/ (last access: 6 June 2024), 2009.
Forbes, D. L.: State of the Arctic coast 2010: scientific review and outlook. Land-Ocean Interactions in the Coastal Zone, Institute of Coastal Research, http://arcticcoasts.org/files/sac/state of the arctic rept-exec summ-high res.pdf (last access: 6 June 2024), 2011.
Formentin, S. M. and Zanuttigh, B.: A new method to estimate the overtopping and overflow discharge at over-washed and breached dikes, Coast. Eng., 140, 240–256, https://doi.org/10.1016/j.coastaleng.2018.08.002, 2018.
Fox-Kemper, B., Hewitt, H. T., Xiao, C., Aðalgeirsdóttir, G., Drijfhout, S. S., Edwards, T. L., Golledge, N. R., Hemer, M., Kopp, R. E., Krinner, G., Mix, A., Notz, D., Nowicki, S., Nurhati, I. S., Ruiz, L., Sallée, J.-B., Slangen, A. B. A., and Yu, Y.: Ocean, Cryosphere and Sea Level Change, in: Climate Change 2021: The Physical Science Basis, Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, Cambridge, UK and New York, NY, USA, 1211–1362, https://doi.org/10.1017/9781009157896.011, 2021.
Frederikse, T., Landerer, F., Caron, L., Adhikari, L. S., Parkes, D., Humphrey, V. W., Dangendorf, S., Hogarth, P., Zanna, L., Cheng, L., and Wu, Y.: The causes of sea-level rise since 1900, Nature, 584, 393–397, https://doi.org/10.1038/s41586-020-2591-3, 2020.
Garnier, E., Ciavola, P., Armaroli, C., Spencer, T., and Ferreira, O.: Historical analysis of storms events: case studies in France, England, Portugal and Italy, Coast. Eng., 134, 10–23, https://doi.org/10.1016/j.coastaleng.2017.06.014, 2018.
Gomes da Silva, P., Coco, G., Garnier, R., and Klein, A. H.: On the prediction of runup, setup and swash on beaches, Earth-Sci. Rev., 204, 103148, https://doi.org/10.1016/j.earscirev.2020.103148, 2020.
Gratiot, N., Gardel, A., and Anthony, E. J.: Trade-wind waves and mud dynamics on the French Guiana coast, South America: Input from ERA-40 wave data and field investigations, Mar. Geol., 236, 15–26, https://doi.org/10.1016/j.margeo.2006.09.013, 2007.
Graumann, A., Houston, T., Lawrimore, J. H., Levinson, D. H., Lott, N., McCown, S., Stephens, S., and Wuertz, D. B.: Hurricane Katrina, A Climatological Perspective, October 2005, Updated August 2006, NOAA's National Climatic Data Center, https://repository.library.noaa.gov/view/noaa/13833 (last access: 6 June 2024), 2006.
Gregory, J. M., Griffies, S. M., Hughes, C. W., Lowe, J. A., Church, J. A., Fukimori, I., Gomez, N., Kopp, R. E., Landerer, F., Le Cozannet, G., Ponte, R. M., Stammer, D., Tamisiea, M. E., and van de Wal, R. S. W.: Concepts and Terminology for Sea Level: Mean, Variability and Change, Both Local and Global, Surv. Geophys., 40, 1251–1289, https://doi.org/10.1007/s10712-019-09525-z, 2019.
Haigh, I., Nicholls, R., and Wells, N.: Rising sea levels in the English Channel 1900 to 2100, Marit. Eng., 164, 81–92, 2011.
Haigh, I. D., Pickering, M. D., Green, J. A. M., Arbic, B. K., Arns, A., Dangendorf, S., Hill, D. F., Horsburgh, K., Howard, T., Idier, D., Jay, D. A., Jänicke, L., Lee, S. B., Müller, M., Schindelegger, M., Talke, S. A., Wilmes, S., and Woodworth, P. L.: The Tides They Are a-Changin': A comprehensive review of past and future non-astronomical changes in tides, their driving mechanisms and future implications, Rev. Geophys., 57, e2018RG000636, https://doi.org/10.1029/2018RG000636, 2019.
Hallegatte, S., Green, C., Nicholls, R. J., and Corfee-Morlot, J.: Future flood losses in major coastal cities, Nat. Clim. Change, 3, 802–806, https://doi.org/10.1038/nclimate1979., 2013.
Hamdi, Y., Bardet, L., Duluc, C.-M., and Rebour, V.: Extreme storm surges: a comparative study of frequency analysis approaches, Nat. Hazards Earth Syst. Sci., 14, 2053–2067, https://doi.org/10.5194/nhess-14-2053-2014, 2014.
Hamdi, Y., Bardet, L., Duluc, C.-M., and Rebour, V.: Use of historical information in extreme-surge frequency estimation: the case of marine flooding on the La Rochelle site in France, Nat. Hazards Earth Syst. Sci., 15, 1515–1531, https://doi.org/10.5194/nhess-15-1515-2015, 2015.
Hamdi, Y., Garnier, E., Giloy, N., Duluc, C.-M., and Rebour, V.: Analysis of the risk associated with coastal flooding hazards: a new historical extreme storm surges dataset for Dunkirk, France, Nat. Hazards Earth Syst. Sci., 18, 3383–3402, https://doi.org/10.5194/nhess-18-3383-2018, 2018.
Hamlington, B. D., Gardner, A. S., Ivins, E., Lenaerts, J. T. M., Reager, J. T., Trossman, D. S., Zaron, E. D., Adhikari, S., Arendt, A., Aschwanden, A., Beckley, B. D., Bekaert, D. P. S., Blewitt, G., Caron, L., Chambers, D. P., Chandanpurkar, H. A., Christianson, K., Csatho, B., Cullather, R. I., DeConto, R. M., Fasullo, J. T., Frederikse, T., Freymueller, J. T., Gilford, D. M., Girotto, M., Hammond, W. C., Hock, R., Holschuh, N., Kopp, R. E., Landerer, F., Larour, E., Menemenlis, D., Merrifield, M., Mitrovica, J. X., Nerem, R. S., Nias, I. J., Nieves, V., Nowicki, S., Pangaluru, K., Piecuch, C. G., Ray, R. D., Rounce, D. R., Schlegel, N.-J., Seroussi, H., Shirzaei, M., Sweet, W. V., Velicogna, I., Vinogradova, N., Wahl, T., Wiese, D. N., and Willis, M. J.: Understanding of contemporary regional sea-level change and the implications for the future, Rev. Geophys., 58, e2019RG000672, https://doi.org/10.1029/2019RG000672, 2020.
Han, G., Ma, Z., Chen, D., deYoung, B., and Chen, N.: Observing storm surges from space: Hurricane Igor off Newfoundland, Sci. Rep., 2, 1010, https://doi.org/10.1038/srep01010, 2012.
Hequette, A.: Les risques naturels littoraux dans le Nord-Pas-de-Calais, France, hors ser. 8, VertigO, https://cosaco.univ-littoral.fr/wp-content/uploads/2018/03/Hequette_Vertigo_2010.pdf (last access: 6 June 2024), 2010.
Hoegh-Guldberg, O., Mumby, P. J., Hooten, A. J., Steneck, R. S., Greenfield, P., Gomez, E., Harvell, C. D., Sale, P. F., Edwards, A. J., Caldeira, K., Knowlton, N., Eakin, C. M., Iglesias-Prieto, R., Muthiga, N., Bradbury, R. H., Dubi, A., and Hatziolos, M. E.: Coral reefs under rapid climate change and ocean acidification, Science, 318, 1737–1742, https://doi.org/10.1126/science.1152509, 2007.
Hsu, C.-E., Serafin, K. A., Yu, X., Hegermiller, C. A., Warner, J. C., and Olabarrieta, M.: Total water levels along the South Atlantic Bight during three along-shelf propagating tropical cyclones: relative contributions of storm surge and wave runup, Nat. Hazards Earth Syst. Sci., 23, 3895–3912, https://doi.org/10.5194/nhess-23-3895-2023, 2023.
Hunter, J.: A simple technique for estimating an allowance for uncertain sea level rise, Climatic Change, 113, 239–252, https://doi.org/10.1007/s10584-011-0332-1, 2012.
Idier, D., Dumas, F., and Muller, H.: Tide-surge interaction in the English Channel, Nat. Hazards Earth Syst. Sci., 12, 3709–3718, https://doi.org/10.5194/nhess-12-3709-2012, 2012.
Idier, D., Paris, F., Le Cozannet, G., Boulahya, F., and Dumas, F.: Sea-level rise impacts on the tides of the European Shelf, Cont. Shelf Res., 137, 56–71, https://doi.org/10.1016/j.csr.2017.01.007, 2017.
Idier, D., Bertin, X., Thompson, P., and Pickering, M. D.: Interactions between mean sea level, tide, surge, waves and flooding: Mechanisms and contributions to sea level variations at the coast, Surv. Geophys., 40, 1603–1630, 2019.
Igigabel, M., Diab, Y., and Yates, M.: Exploring Methodological Approaches for Strengthening the Resilience of Coastal Flood Protection System, Front. Earth Sci., 9, 756936, https://doi.org/10.3389/feart.2021.756936, 2021.
Igigabel, M., Nédélec, Y., Bérenger, N., Flouest, N., Bernard, A., Chassé, P., and Tiberi-Wadier, A.-L.: Guidelines for Analysing Coastal Flood Protection Systems After a Submersion, Water, 14, 15, https://doi.org/10.3390/w14010015, 2022.
IPCC: Climate Change 2001: Synthesis Report, in: A Contribution of Working Groups I, II, and III to the Third Assessment Report of the Integovernmental Panel on Climate Change, edited by: Watson, R. T. and the Core Writing Team, Cambridge University Press, Cambridge, UnK, and New York, NY, USA, 398 pp., https://www.ipcc.ch/site/assets/uploads/2018/08/TAR_syrfull_en.pdf (last access: 6 June 2024), 2001.
IPCC: Climate Change 2007: Synthesis Report, in: Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Core Writing Team, Pachauri, R. K., and Reisinger, A., IPCC, Geneva, Switzerland, 104 pp., https://www.ipcc.ch/report/ar4/syr/ (last access: 6 June 2024), 2007.
IPCC: Climate Change 2014: Synthesis Report., in:Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Core Writing Team, Pachauri, R. K., and Meyer, L. A., IPCC, Geneva, Switzerland, 151 pp., https://www.ipcc.ch/report/ar5/syr/ (last access: 6 June 2024), 2014.
IPCC: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, edited by: Pörtner, H.-O., Roberts, D. C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Nicolai, M., Okem, A., Petzold, J., Rama, B., and Weyer, N., https://www.ipcc.ch/srocc/ (last access: 20 December 2021), 2019.
IPCC: Climate Change 2023: Synthesis Report, in: Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Core Writing Team, Lee, H., and Romero, J., IPCC, Geneva, Switzerland, 184 pp., https://doi.org/10.59327/IPCC/AR6-9789291691647, 2023a.
IPCC: Weather and Climate Extreme Events in a Changing Climate, in: Climate Change 2021 – The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, 1513–1766, https://doi.org/10.1017/9781009157896.013, 2023b.
Jones, A., Kuehnert, J., Fraccaro, P., Meuriot, O., Ishikawa, T., Edwards, B., Stoyanov, N., Remy, S. L., Weldemariam, K., and Assefa, S.: AI for climate impacts: Applications in flood risk, NPJ Clim. Atmos. Sci., 6, 63, https://doi.org/10.1038/s41612-023-00388-1, 2023.
Kaack, L., Donti, P., Strubell, E., and Rolnick, D.: Artificial intelligence and climate change: Opportunities, considerations, and policy levers to align AI with climate change goals, https://eu.boell.org/en/2020/12/03/artificial-intelligenceand-climate-change (last access: 5 June 2024), 2021.
Kennedy, A. B., Westerink, J. J., Smith, J. M., Hope, M. E., Hartman, M., Taflanidis, A. A., Tanaka, S., Westerink, H., Cheung, K. F., Smith, T., Hamann, M., Minamide, M., Ota, A., and Dawson, C.: Tropical cyclone inundation potential on the Hawaiian Islands of Oahuand Kauai, Ocean Model., 52–53, 54–68, https://doi.org/10.1016/j.ocemod.2012.04.009, 2012.
Khan, M. J. U., Beld, I., Wöppelmann, G., Testut, L., Latapy, A., and Pouvreau, N.: Extension of a high temporal resolution sea level time series at Socoa (Saint-Jean-de-Luz, France) back to 1875, Earth Syst. Sci. Data, 15, 5739–5753, https://doi.org/10.5194/essd-15-5739-2023, 2023.
Krien, Y., Dudon, B., Roger, J., and Zahibo, N.: Probabilistic hurricane-induced storm surge hazard assessment in Guadeloupe, Lesser Antilles, Nat. Hazards Earth Syst. Sci., 15, 1711–1720, https://doi.org/10.5194/nhess-15-1711-2015, 2015.
Krien, Y., Dudon, B., Roger, J., Arnaud, G., and Zahibo, N.: Assessing storm surge hazard and impact of sea level rise in the Lesser Antilles case study of Martinique, Nat. Hazards Earth Syst. Sci., 17, 1559–1571, https://doi.org/10.5194/nhess-17-1559-2017, 2017.
Kumar, V., Kedam, N., Sharma, K. V., Mehta, D. J., and Caloiero, T.: Advanced Machine Learning Techniques to Improve Hydrological Prediction: A Comparative Analysis of Streamflow Prediction Models, Water, 15, 2572, https://doi.org/10.3390/w15142572, 2023.
Lamoureux, S., Forbes, D., Bell, T., and Manson, G.: The impact of climate change on infrastructure in the western and central Canadian Arctic, in: From Science to Policy in the Western and Central Canadian Arctic: an Integrated Regional Impact Study (IRIS) of Climate Change and Modernization, edited by: Stern, G. A. and Gaden, A., ArcticNet, Quebec, 300–341, https://www.researchgate.net/publication/303566204_The_impact_of_climate_change_on_infrastructure_in_the_western_and_central_Canadian_Arctic (last access: 7 June 2024), 2015.
Lange, A. M. Z., Fiedler, J. W., Becker, J. M., Merrifield, M. A., and Guza, R. T.: Estimating runup with limited bathymetry, Coast. Eng., 172, 104055, https://doi.org/10.1016/j.coastaleng.2021.104055, 2021.
Lantuit, H., Atkinson, D., Overduin P. P., Grigoriev, M., Rachold, V., Grosse, G., and Hubberten, H.: Coastal erosion dynamics on the permafrost-dominated Bykovsky Peninsula, north Siberia, 1951–2006, Polar Res., 30, 7341, https://doi.org/10.3402/polar.v30i0.7341, 2011.
Larrue S. and Chiron T.: Les îles de Polynésie française face à l'aléa cyclonique, in: Volume 10, VertigO, https://doi.org/10.4000/vertigo.10558, 2010.
Latapy, A., Arnaud, H., Pouvreau, N., and Weber, N.: Reconstruction of sea level changes in Northern France for the past 300 years and their relationship with the evolution of the coastal zone, in: Coast 2017, 7–10 November 2017, Bordeaux, https://doi.org/10.13140/RG.2.2.14180.07041, 2017.
Lavaud, L., Bertin, X., Martins, K., Pezerat, M., Coulombier, T. and Dausse, D.: Wave dissipation and mean circulation on a shore platform under storm wave conditions, J. Geophys. Res.-Earth, 127, e2021JF006466, https://doi.org/10.1029/2021JF006466, 2022.
Lecacheux, S., Pedreros, R., Le Cozannet, G., Thiébot, J., De La Torre, Y., and Bulteau, T.: A method to characterize the different extreme waves for islands exposed to various wave regimes: a case study devoted to Reunion Island, Nat. Hazards Earth Syst. Sci., 12, 2425–2437, https://doi.org/10.5194/nhess-12-2425-2012, 2012.
Le Cozannet, G., Garcin, M., Petitjean, L., Cazenave, A., Becker, M., Meyssignac, B., Walker, P., Devilliers, C., Le Brun, O., Lecacheux, S., Baills, A., Bulteau, T. Yates, M., and Wöppelmann, G.: Exploring the relation between sea level rise and shoreline erosion using sea level reconstructions: an example in French Polynesia, J. Coast. Res., 65, 2137–2142, https://doi.org/10.2112/SI65-361.1, 2013.
Le Gorgeu, V. and Guitonneau, R.: Reconstruction de la Digue de l'Est à Dunkerque, Coast. Eng., 5, 555–586, 1954.
Lin, N. and Chavas, D.: On hurricane parametric wind and applications in storm surge modeling, J. Geophys. Res., 117, D09120, https://doi.org/10.1029/2011JD017126, 2012.
Lowe, J. A., Woodworth, P. L., Knutson, T., McDonald, R. E., McInnes, K. L., Woth, K., von Storch, H., Wolf, J., Swail, V., Bernier, N. B., Gulev, S., Horsburgh, K. J., Unnikrishnan, A. S., Hunter, J. R., and Weisse, R.: Past and future changes in extreme sea levels and waves, in: Understanding sea-level rise and variability, xvi, edited by: Woodworth, P. L., Aarup, T., Wilson, W. S., and Church, J. A., Wiley-Blackwell, Chichester, 428 pp., ISBN 978-1-4443-3452-4, 2010.
Martinez-Asensio, A., Wöppelmann, G., Ballu, V., Becker, M., Testut, L., Magnan, A. K., and Duvat, V. K. E.: Relative Sea-level rise and the influence of vertical land motion at tropical Pacific Islands, Global Planet. Change, 176, 132–143, 2019.
Martins, K., Bertin, X., Mengual, B., Pezerat, M., Lavaud, L., Guérin, T., and Zhang, Y. J.: Wave-induced mean currents and setup over barred and steep sandy beaches, Ocean Model., 179, 102110, https://doi.org/10.1016/j.ocemod.2022.102110, 2022.
Maspataud, A., Ruz, M.-H., and Vanhée, S.: Potential impacts of extreme storm surges on a low-lying densely populated coastline: the case of Dunkirk area, Northern France, Nat. Hazards, 66, 1327–1343, 2013.
Masselink, G. and Short, A. D.: The effect of tidal range on beach morphodynamics and morphology: a conceptual beach model, J. Coast. Res., 9, 785–800, 1993.
Masselink, G., Castelle, B., Scott T., Dodet, G., Suanez, S., Jackson, D., and Floc'h, F.: Extreme wave activity during 2013/2014 winter and morphological impacts along the Atlantic coast of Europe, Geophys. Res. Lett., 43, 2135–2143, https://doi.org/10.1002/2015GL067492, 2016.
Masson, A.: The extratropical transition of Hurricane Igor and the impacts on Newfoundland, Nat. Hazards 72, 617–632, https://doi.org/10.1007/s11069-013-1027-x, 2014.
Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B.: Climate Change 2021: The Physical Science Basis, in: Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_TS.pdf (last access: 7 June 2024), 2021.
Mehta, D., Hadvani, J., Kanthariya, D., and Sonawala, P.: Effect of land use land cover change on runoff characteristics using curve number: A GIS and remote sensing approach, Int. J. Hydrol. Sci. Technol., 16, 1–16, 2023.
Mentaschi, L., Vousdoukas, M., Voukouvalas, E., Sartini, L., Feyen, L., Besio, G., and Alfieri, L.: The transformed-stationary approach: a generic and simplified methodology for non-stationary extreme value analysis, Hydrol. Earth Syst. Sci., 20, 3527–3547, https://doi.org/10.5194/hess-20-3527-2016, 2016.
Mentaschi, L., Vousdoukas, M. I., García-Sánchez, G., Fernández-Montblanc, T., Roland, A., Voukouvalas, E., Federico, I., Abdolali, A., Zhang, Y. J., and Feyen, L.: A global unstructured, coupled, high-resolution hindcast of waves and storm surge, Front. Mar. Sci., 10, 1233679, https://doi.org/10.3389/fmars.2023.1233679, 2023.
Mentaschi, L., Vousdoukas, M., Voukouvalas, E., Sartini, L., Feyen, L., Besio, G., and Alfieri, L.: tsEva, GitHub [code], https://github.com/menta78/tsEva (last access: 5 June 2024), 2024.
Muis, S., Apecechea, M. I., Dullaart, J., de Lima Rego, J., Madsen, K. S., Su, J., Yan, K., and Verlaan, M.: A high-resolution global dataset of extreme sea levels, tides, and storm surges, including future projections, Front. Mar. Sci., 7, 263, https://doi.org/10.3389/fmars.2020.00263, 2020.
Nicholls, R. J., Hanson, S., Herweijer, C., and Patmore, N.: Ranking port cities with high exposure and vulnerability to climate extremes, OECD Environment Working Papers no. 1, Éditions OCDE, Paris, https://doi.org/10.1787/011766488208, 2008.
NWS – National Weather Service: WAVEWATCH III, https://polar.ncep.noaa.gov/waves/wavewatch (last access: 29 May 2024), 2024.
Open Source Community: Delft3D FM., http://oss.deltares.nl (last access: 29 May 2024), 2024.
Oppenheimer, M., Glavovic, B. C., Hinkel, J., van de Wal, R., Magnan, A. K., Abd-Elgawad, A., Cai, R., Cifuentes-Jara, M., DeConto, R. M., Ghosh, T., Hay, J., Isla, F., Marzeion, B., Meyssignac, B., and Sebesvari, Z.: Sea Level Rise and Implications for Low-Lying Islands, Coasts and Communities, in: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, edited by: Pörtner H.-O., Roberts, D. C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., Petzold, J., Rama, B., and Weyer, N. M., https://www.ipcc.ch/site/assets/uploads/sites/3/2019/11/08_SROCC_Ch04_FINAL.pdf (last access: 7 June 2024), 2019.
Pagney, F.: Genèse et dynamique de l'ouragan Hugo sur la Guadeloupe, Annales de Géographie, 100, 152–165, https://doi.org/10.3406/geo.1991.21030, 1991.
Patlakas, P., Stathopoulos, C., Tsalis, C., and Kallos, G.: Wind and wave extremes associated with tropical-like cyclones in the Mediterranean basin, Int. J. Climatol., 41, E1623–E1644, https://doi.org/10.1002/joc.6795, 2021.
Pickering, M. D., Wells, N. C., Horsburgh, K. J., and Green, J. A. M.: The impact of future sea-level rise on the European Shelf tides, Cont. Shelf Res., 35, 1–15, https://doi.org/10.1016/j.csr.2011.11.011, 2012.
Pirazzoli, P. A. and Montaggioni, L. F.: Holocene sea level changes in French Polynesia, Paleogeogr. Paleoclim. Paleoecol., 68, 153–175, 1988.
Quentel, E., Loevenbruck, A., Hébert, H., and Allgeyer, S.: Tsunami hazard in La Réunion island from numerical modeling of historical events, Nat. Hazards Earth Syst. Sci. Discuss., 1, 1823–1855, https://doi.org/10.5194/nhessd-1-1823-2013, 2013.
Ranasinghe, R.: Assessing climate change impacts on open sandy coasts: A review, Earth-Sci. Rev., 160, 320–332, https://doi.org/10.1016/j.earscirev.2016.07.011, 2016.
Rasmussen, D. J., Kulp, S., Kopp, R. E., Oppenheimer, M., and Strauss, B. H.: Popular extreme sea level metrics can better communicate impacts, Climatic Change, 170, 30, https://doi.org/10.1007/s10584-021-03288-6, 2022.
Rego, J. L. and Li, C.: Nonlinear terms in storm surge predictions: effect of tide and shelf geometry with case study from Hurricane Rita, J. Geophys. Res., 115, C06020, https://doi.org/10.1029/2009JC005285, 2010.
Rolnick, D., Donti, P. L., Kaack, L. H., Kochanski, K., Lacoste, A., Sankaran, K., Ross, A. S., Milojevic-Dupont, N., Jaques, N., Waldman-Brown, A., Luccioni, A. S., Maharaj, T., Sherwin, E. D., Mukkavilli, S. K., Kording, K. P., Gomes, C. P., Ng, A. Y., Hassabis, D., Platt, J. C., Creutzig, F., Chayes, J., and Bengio, Y.: Tackling Climate Change with Machine Learning, ACM Comput. Surv., 55, 42, https://doi.org/10.1145/3485128, 2022.
Romero, R. and Emanuel, K.: Climate change and hurricane-like extratropical cyclones: Projections for north Atlantic polar lows and medicanes based on cmip5 models, J. Climate, 30, 279–299, https://doi.org/10.1175/JCLI-D-16-0255.1, 2016.
Ruggiero, P., Komar, P. D., McDougal, W. G., Marra, J. J., and Beach, R. A.: Wave runup, extreme water levels and erosion properties backing beaches, J. Coast. Res., 17, 407–419, 2001.
Ruggiero, P., Buijsman, M., Kaminsky, G., and Gelfenbaum, G.: Modeling the effects of wave climate and sediment supply variability on large-scale shoreline change, Mar. Geol., 273, 127–140, 2010.
Saffache, P., Marc, J.-V., and Huyghes-Belrose, V.: Les cyclones en Guadeloupe: quatre siècles cataclysmiques, IBIS Rouge Editions, Martinique, ISBN 10:2844501974, 2003.
Sahal, A. and Morin, J.: Effects of the October 25, 2010, Mentawai tsunami in La Réunion Island (France): observations and crisis management, Nat. Hazards, 62, 1125–1136, https://doi.org/10.1007/s11069-012-0136-2, 2012.
Shaikh, M. M., Lodha, P., Lalwani, P., and Mehta, D.: Climatic projections of Western India using global and regional climate models, Water Pract. Technol., 17, 1818–1825, 2022.
Sheremet, A., Staples, T., Ardhuin, F., Suanez, S., and Fichaut, B.: Observations of large infragravity runup at Banneg Island, France, Geophys. Res. Lett., 41, 976–982, https://doi.org/10.1002/2013GL058880, 2014.
Stephens, S. A., Coco, G., and Bryan, K. R.: Numerical simulations of wave setup over barred beach profiles: Implications for predictability, J. Waterw. Port Coast. Ocean Eng., 137, 175–181, https://doi.org/10.1061/(ASCE)WW.1943-5460.0000076, 2011.
Stockdon, H. F., Holman, R. A., Howd, P. A., and Sallenger, A. H.: Empirical parameterization of setup, swash, and runup, Coast. Eng., 53, 573–588, https://doi.org/10.1016/j.coastaleng.2005.12.005, 2006.
Syvitski, J. P. M.: Deltas at risk, Sustainabil. Sci., 3, 23–32, https://doi.org/10.1007/s11625-008-0043-3, 2008.
Talke, S. A., Familkhalili, R., Helaire, L. T., Jay, D. A., Orton, P. M., and Ralston, D. K.: The influence of human induced landscape and bathymetry changes on tides, surge and extreme water levels, in: Ocean Sciences Meeting 2020, FEbruary 2020, AGU, 2020.
Thiéblemont, R., Le Cozannet, G., D'Anna, M., Idier, D., Belmadani, A., Slangen, A. B. A., and Longueville, F.: Chronic flooding events due to sea-level rise in French Guiana, Sci. Rep., 13, 21695, https://doi.org/10.1038/s41598-023-48807-w, 2023.
Thiébot, J., Idier, D., Garnier, R., Falquès, A., and Ruessink, G.: The influence of wave direction on the morphological response of a double sandbar system, Cont. Shelf. Res., 32, 71–85, https://doi.org/10.1016/j.csr.2011.10.014, 2012.
Tiggeloven, T., de Moel, H., Winsemius, H. C., Eilander, D., Erkens, G., Gebremedhin, E., Diaz Loaiza, A., Kuzma, S., Luo, T., Iceland, C., Bouwman, A., van Huijstee, J., Ligtvoet, W., and Ward, P. J.: Global-scale benefit–cost analysis of coastal flood adaptation to different flood risk drivers using structural measures, Nat. Hazards Earth Syst. Sci., 20, 1025–1044, https://doi.org/10.5194/nhess-20-1025-2020, 2020.
Tiggeloven, T., Couasnon, A., van Straaten, C., Muis, S., and Ward, P. J.: Exploring deep learning capabilities for surge predictions in coastal areas, Sci. Rep., 11, 17224, https://doi.org/10.1038/s41598-021-96674-0, 2021.
Toomey, T., Amores, A., Marcos, M., Orfila, A., and Romero, R.: Coastal hazards of tropical-like cyclones over the Mediterranean Sea, J. Geophys. Res.-Oceans, 127, e2021JC017964, https://doi.org/10.1029/2021JC017964, 2022.
Ullmann, A., Pirazzoli, P. A., and Tomasin, A.: Sea surges in Camargue: Trends over the 20th century, Cont. Shelf Res., 27, 922–934, 2007.
US Army Corps of Engineers: Coastal Engineering Manual, US Army Corps of Engineers, Washington, D.C., https://www.publications.usace.army.mil/USACE-Publications/Engineer-Manuals/u43544q/636F617374616C20656E67696E656572696E67206D616E75616C/ (last access: 7 June 2024), 2002.
van Ormondt, M., Roelvink, D., and van Dongeren, A.: A Model-Derived Empirical Formulation for Wave Run-Up on Naturally Sloping Beaches, J. Mar. Sci. Eng., 9, 1185, https://doi.org/10.3390/jmse9111185, 2021.
Verma, S., Verma, M. K., Prasad, A. D., Mehta, D., Azamathulla, H. M., Muttil, N., and Rathnayake, U.: Simulating the Hydrological Processes under Multiple Land Use/Land Cover and Climate Change Scenarios in the Mahanadi Reservoir Complex, Chhattisgarh, India, Water, 15, 3068, https://doi.org/10.3390/w15173068, 2023.
Vitousek, S., Barnard, P. L., Fletcher, C. H., Frazer, N., Erikson, L., and Storlazzi, C. D.: Doubling of coastal flooding frequency within decades due to sea-level rise, Sci. Rep., 7, 1399, https://doi.org/10.1038/s41598-017-01362-7, 2017.
Vousdoukas, M., Voukouvalas, E., Annunziato, A., Giardino, A., and Feyen, L.: Projections of extreme storm surge levels along Europe, Clim. Dynam., 47, 3171–3190, https://doi.org/10.1007/s00382-016-3019-5, 2016.
Vousdoukas, M. I.: LISCoAsT, http://data.jrc.ec.europa.eu/collection/LISCOAST (last access: 29 May 2024), 2024.
Vousdoukas, M. I., Mentaschi, L., Voukouvalas, E., Verlaan, M., and Feyen, L.: Extreme sea levels on the rise along Europe's coasts, Earth's Future, 5, 304–323, https://doi.org/10.1002/2016EF000505, 2017.
Vousdoukas, M. I., Mentaschi, L., Voukouvalas, E., Verlaan, M., Jevrejeva, S., Jackson, L. P., and Feyen, L.: Global probabilistic projections of extreme sea levels show intensification of coastal flood hazard, Nat. Commun., 9, 2360, https://doi.org/10.1038/s41467-018-04692-w, 2018a.
Vousdoukas, M. I., Mentaschi, L., Voukouvalas, E., Verlaan, M., Jevrejeva, S., Jackson, L., and Feyen, L.: Global Extreme Sea Level projections. European Commission, Joint Research Centre (JRC) [data set], http://data.europa.eu/89h/jrc-liscoast-10012 (last access: 29 May 2024), http://data.europa.eu/89h/jrc-liscoast-10012 (last access: 29 May 2024), https://doi.org/10.2905/jrc-liscoast-10012, 2018b.
Waycott, M., Duarte, C. M., Carruthers, T. J. B., Orth, R. J., Dennison, W. C., Olyarnik, S., Calladine, A., Fourqurean, J. W., Heck, K. L., Hughes, A. R., Kendrick, G. A., Kenworthy, W. J., Short, F. T., and Williams, S. L.: Accelerating loss of seagrasses across the globe threatens coastal ecosystems, P. Natl. Acad. Sci. USA, 106, 12377–12381, 2009.
Webb, A. P. and Kench, P. S.: The dynamic response of reef islands to sea level rise: Evidence from multi-decadal analysis of island change in the Central Pacific, Global Planet. Change, 72, 234–246, 2010.
Weisse, R., von Storch, H., Niemeyer, H. D., and Knaack, H.: Changing North Sea storm surge climate: an increasing hazard?, Ocean Coast Manage., 68, 58–68, 2012.
Wong, P. P., Losada, I. J., Gattuso, J.-P., Hinkel, J., Khattabi, A., McInnes, K. L., Saito, Y., and Sallenger, A.: Coastal systems and low-lying areas, in: Climate Change 2014: Impacts, Adaptation, and Vulnerability, Part A: Global and Sectoral Aspects, Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Field, C. B., Barros, V. R., Dokken, D. J., Mach, K. J., Mastrandrea, M. D., Bilir, T. E., Chatterjee, M., Ebi, K. L., Estrada, Y. O., Genova, R. C., Girma, B., Kissel, E. S., Levy, A. N., MacCracken, S., Mastrandrea, P. R., and White, L. L., Cambridge University Press, Cambridge, UK and New York, NY, USA, 361–409, https://doi.org/10.1017/CBO9781107415379.010, 2014.
Yates, M., Le Cozannet, G., Garcin, M., Salaï, E., and Walker, P.: Multi-decadal shoreline change on Manihi and Manuae, French Polynesia, J. Coast. Res., 29, 870–882, https://doi.org/10.2112/JCOASTRES-D-12-00129.1, 2013.
Zahibo, N., Pelinovsky, E., Talipova, T., Rabinovich, A., Kurkin, A., and Nikolkina, I.: Statistical analysis of cyclone hazard for Guadeloupe, Lesser Antilles, Atmos. Res., 84, 13–29, 2007.
Short summary
Changes in sea levels alone do not determine the evolution of coastal hazards. Coastal hazard changes should be assessed using additional factors describing geomorphological configurations, metocean event types (storms, cyclones, long swells, and tsunamis), and the marine environment (e.g., coral reef state and sea ice extent). The assessment completed here, at regional scale including the coasts of mainland and overseas France, highlights significant differences in hazard changes.
Changes in sea levels alone do not determine the evolution of coastal hazards. Coastal hazard...
Similar articles
Advancing nearshore and onshore tsunami...
Ragu Ramalingam et al.
Untangling the waves: decomposing extreme...
Lorenz et al.
Accelerating compound flood risk...
Terlinden-Ruhl et al.