Articles | Volume 23, issue 2
https://doi.org/10.5194/nhess-23-601-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-23-601-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Spatio-temporal analysis of slope-type debris flow activity in Horlachtal, Austria, based on orthophotos and lidar data since 1947
Chair of Physical Geography, Catholic University of
Eichstätt-Ingolstadt, 85072 Eichstätt, Germany
Florian Haas
Chair of Physical Geography, Catholic University of
Eichstätt-Ingolstadt, 85072 Eichstätt, Germany
Tobias Heckmann
Chair of Physical Geography, Catholic University of
Eichstätt-Ingolstadt, 85072 Eichstätt, Germany
Moritz Altmann
Chair of Physical Geography, Catholic University of
Eichstätt-Ingolstadt, 85072 Eichstätt, Germany
Fabian Fleischer
Chair of Physical Geography, Catholic University of
Eichstätt-Ingolstadt, 85072 Eichstätt, Germany
Camillo Ressl
Department of Geodesy and Geoinformation, Technische Universität Wien, 1040 Vienna, Austria
Sarah Betz-Nutz
Chair of Physical Geography, Catholic University of
Eichstätt-Ingolstadt, 85072 Eichstätt, Germany
Michael Becht
Chair of Physical Geography, Catholic University of
Eichstätt-Ingolstadt, 85072 Eichstätt, Germany
Related authors
Moritz Altmann, Madlene Pfeiffer, Florian Haas, Jakob Rom, Fabian Fleischer, Tobias Heckmann, Livia Piermattei, Michael Wimmer, Lukas Braun, Manuel Stark, Sarah Betz-Nutz, and Michael Becht
Earth Surf. Dynam., 12, 399–431, https://doi.org/10.5194/esurf-12-399-2024, https://doi.org/10.5194/esurf-12-399-2024, 2024
Short summary
Short summary
We show a long-term erosion monitoring of several sections on Little Ice Age lateral moraines with derived sediment yield from historical and current digital elevation modelling (DEM)-based differences. The first study period shows a clearly higher range of variability of sediment yield within the sites than the later periods. In most cases, a decreasing trend of geomorphic activity was observed.
Livia Piermattei, Tobias Heckmann, Sarah Betz-Nutz, Moritz Altmann, Jakob Rom, Fabian Fleischer, Manuel Stark, Florian Haas, Camillo Ressl, Michael H. Wimmer, Norbert Pfeifer, and Michael Becht
Earth Surf. Dynam., 11, 383–403, https://doi.org/10.5194/esurf-11-383-2023, https://doi.org/10.5194/esurf-11-383-2023, 2023
Short summary
Short summary
Alpine rivers have experienced strong changes over the last century. In the present study, we explore the potential of historical multi-temporal elevation models, combined with recent topographic data, to quantify 66 years (from 1953 to 2019) of river changes in the glacier forefield of an Alpine catchment. Thereby, we quantify the changes in the river form as well as the related sediment erosion and deposition.
Fabian Fleischer, Florian Haas, Livia Piermattei, Madlene Pfeiffer, Tobias Heckmann, Moritz Altmann, Jakob Rom, Manuel Stark, Michael H. Wimmer, Norbert Pfeifer, and Michael Becht
The Cryosphere, 15, 5345–5369, https://doi.org/10.5194/tc-15-5345-2021, https://doi.org/10.5194/tc-15-5345-2021, 2021
Short summary
Short summary
We investigate the long-term (1953–2017) morphodynamic changes in rock glaciers in Kaunertal valley, Austria. Using a combination of historical aerial photographs and laser scanning data, we derive information on flow velocities and surface elevation changes. We observe a loss of volume and an acceleration from the late 1990s onwards. We explain this by changes in the meteorological forcing. Individual rock glaciers react to these changes to varying degrees.
Michael Grömer, Benjamin Wild, Camillo Ressl, Johannes Otepka, and Gottfried Mandlburger
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-2-W10-2025, 95–100, https://doi.org/10.5194/isprs-archives-XLVIII-2-W10-2025-95-2025, https://doi.org/10.5194/isprs-archives-XLVIII-2-W10-2025-95-2025, 2025
Thirawat Bannakulpiphat, Wilfried Karel, Camillo Ressl, and Norbert Pfeifer
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-2-W7-2024, 17–24, https://doi.org/10.5194/isprs-archives-XLVIII-2-W7-2024-17-2024, https://doi.org/10.5194/isprs-archives-XLVIII-2-W7-2024-17-2024, 2024
Reuma Arav, Camillo Ressl, Robert Weiss, Thomas Artz, and Gottfried Mandlburger
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-2-2024, 9–16, https://doi.org/10.5194/isprs-archives-XLVIII-2-2024-9-2024, https://doi.org/10.5194/isprs-archives-XLVIII-2-2024-9-2024, 2024
Moritz Altmann, Madlene Pfeiffer, Florian Haas, Jakob Rom, Fabian Fleischer, Tobias Heckmann, Livia Piermattei, Michael Wimmer, Lukas Braun, Manuel Stark, Sarah Betz-Nutz, and Michael Becht
Earth Surf. Dynam., 12, 399–431, https://doi.org/10.5194/esurf-12-399-2024, https://doi.org/10.5194/esurf-12-399-2024, 2024
Short summary
Short summary
We show a long-term erosion monitoring of several sections on Little Ice Age lateral moraines with derived sediment yield from historical and current digital elevation modelling (DEM)-based differences. The first study period shows a clearly higher range of variability of sediment yield within the sites than the later periods. In most cases, a decreasing trend of geomorphic activity was observed.
Katharina Ramskogler, Bettina Knoflach, Bernhard Elsner, Brigitta Erschbamer, Florian Haas, Tobias Heckmann, Florentin Hofmeister, Livia Piermattei, Camillo Ressl, Svenja Trautmann, Michael H. Wimmer, Clemens Geitner, Johann Stötter, and Erich Tasser
Biogeosciences, 20, 2919–2939, https://doi.org/10.5194/bg-20-2919-2023, https://doi.org/10.5194/bg-20-2919-2023, 2023
Short summary
Short summary
Primary succession in proglacial areas depends on complex driving forces. To concretise the complex effects and interaction processes, 39 known explanatory variables assigned to seven spheres were analysed via principal component analysis and generalised additive models. Key results show that in addition to time- and elevation-dependent factors, also disturbances alter vegetation development. The results are useful for debates on vegetation development in a warming climate.
Livia Piermattei, Tobias Heckmann, Sarah Betz-Nutz, Moritz Altmann, Jakob Rom, Fabian Fleischer, Manuel Stark, Florian Haas, Camillo Ressl, Michael H. Wimmer, Norbert Pfeifer, and Michael Becht
Earth Surf. Dynam., 11, 383–403, https://doi.org/10.5194/esurf-11-383-2023, https://doi.org/10.5194/esurf-11-383-2023, 2023
Short summary
Short summary
Alpine rivers have experienced strong changes over the last century. In the present study, we explore the potential of historical multi-temporal elevation models, combined with recent topographic data, to quantify 66 years (from 1953 to 2019) of river changes in the glacier forefield of an Alpine catchment. Thereby, we quantify the changes in the river form as well as the related sediment erosion and deposition.
Sarah Betz-Nutz, Tobias Heckmann, Florian Haas, and Michael Becht
Earth Surf. Dynam., 11, 203–226, https://doi.org/10.5194/esurf-11-203-2023, https://doi.org/10.5194/esurf-11-203-2023, 2023
Short summary
Short summary
The geomorphic activity of LIA lateral moraines is of high interest due to its implications for the sediment fluxes and hazards within proglacial areas. We derived multitemporal models from historical aerial images and recent drone images to investigate the morphodynamics on moraine slopes over time. We found that the highest erosion rates occur on the steepest moraine slopes, which stay active for decades, and that the slope angle explains morphodynamics better than the time since deglaciation.
G. Verhoeven, B. Wild, J. Schlegel, M. Wieser, N. Pfeifer, S. Wogrin, L. Eysn, M. Carloni, B. Koschiček-Krombholz, A. Molada-Tebar, J. Otepka-Schremmer, C. Ressl, M. Trognitz, and A. Watzinger
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVI-2-W1-2022, 513–520, https://doi.org/10.5194/isprs-archives-XLVI-2-W1-2022-513-2022, https://doi.org/10.5194/isprs-archives-XLVI-2-W1-2022-513-2022, 2022
Fabian Fleischer, Florian Haas, Livia Piermattei, Madlene Pfeiffer, Tobias Heckmann, Moritz Altmann, Jakob Rom, Manuel Stark, Michael H. Wimmer, Norbert Pfeifer, and Michael Becht
The Cryosphere, 15, 5345–5369, https://doi.org/10.5194/tc-15-5345-2021, https://doi.org/10.5194/tc-15-5345-2021, 2021
Short summary
Short summary
We investigate the long-term (1953–2017) morphodynamic changes in rock glaciers in Kaunertal valley, Austria. Using a combination of historical aerial photographs and laser scanning data, we derive information on flow velocities and surface elevation changes. We observe a loss of volume and an acceleration from the late 1990s onwards. We explain this by changes in the meteorological forcing. Individual rock glaciers react to these changes to varying degrees.
J. Otepka, G. Mandlburger, W. Karel, B. Wöhrer, C. Ressl, and N. Pfeifer
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-2-2021, 35–42, https://doi.org/10.5194/isprs-annals-V-2-2021-35-2021, https://doi.org/10.5194/isprs-annals-V-2-2021-35-2021, 2021
Kerstin Wegner, Florian Haas, Tobias Heckmann, Anne Mangeney, Virginie Durand, Nicolas Villeneuve, Philippe Kowalski, Aline Peltier, and Michael Becht
Nat. Hazards Earth Syst. Sci., 21, 1159–1177, https://doi.org/10.5194/nhess-21-1159-2021, https://doi.org/10.5194/nhess-21-1159-2021, 2021
Short summary
Short summary
In mountainous regions rockfall is a common geomorphic process. We selected four study sites that feature different rock types. High-resolution terrestrial laser scanning data were acquired to measure the block size and block shape (axial ratio) of rockfall particles on the scree deposits. Laser scanning data were also used to characterize the morphology of these landforms. Our results show that hill slope and rock particle properties govern rock particle runout in a complex manner.
Cited articles
Altmann, M., Piermattei, L., Haas, F., Heckmann, T., Fleischer, F., Rom, J.,
Betz-Nutz, S., Knoflach, B., Müller, S., Ramskogler, K., Pfeiffer, M.,
Hofmeister, F., Ressl, C., and Becht, M.: Long-Term Changes of
Morphodynamics on Little Ice Age Lateral Moraines and the Resulting Sediment
Transfer into Mountain Streams in the Upper Kauner Valley, Austria, Water,
12, 3375, https://doi.org/10.3390/w12123375, 2020.
Anderson, S. W.: Uncertainty in quantitative analyses of topographic change:
error propagation and the role of thresholding,
Earth Surf. Proc. Land., 44, 1015–1033, https://doi.org/10.1002/esp.4551, 2019.
Bakker, M. and Lane, S. N.: Archival photogrammetric analysis of
river-floodplain systems using Structure from Motion (SfM) methods, Earth Surf. Proc. Land., 42, 1274–1286, https://doi.org/10.1002/esp.4085, 2017.
Bates, D. M. and Watts, D. G. (Eds.): Nonlinear Regression Analysis and Its
Applications, Wiley Series in Probability and Statistics, John Wiley &
Sons, Inc, Hoboken, NJ, USA, https://doi.org/10.1002/9780470316757, 1988.
Baty, F., Ritz, C., Charles, S., Brutsche, M., Flandrois, J.-P., and
Delignette-Muller, M.-L.: A Toolbox for Nonlinear Regression in R The
Package nlstools, J. Stat. Soft., 66, 1–21, https://doi.org/10.18637/jss.v066.i05,
2015.
Bayle, A.: A recent history of deglaciation and vegetation establishment in
a contrasted geomorphological context, Glacier Blanc, French Alps, J. Maps, 16, 766–775, https://doi.org/10.1080/17445647.2020.1829115, 2020.
Becht, M.: Untersuchungen zur aktuellen Reliefentwicklung in alpinen
Einzugsgebieten: Mit 40 Tabellen, Zugl.: München, Univ., Habil.-Schr,
Münchener Universitätsschriften/Fakultät für
Geowissenschaften, 47, Geobuch-Verl., München, 187 pp., ISBN 3-925308-69-5, 1995.
Becht, M. and Rieger, D.: Debris flows on alpine slopes (eastern
Alps)/Coulées de débris sur des versants des Alpes Orientales,
Géomorphologie, 3, 33–41, https://doi.org/10.3406/morfo.1997.899, 1997.
Beniston, M.: Climatic Change in Mountain Regions: A Review of Possible
Impacts, in: Climate Variability and Change in High Elevation Regions: Past,
Present & Future, Springer, Dordrecht, 5–31,
https://doi.org/10.1007/978-94-015-1252-7_2, 2003.
Beniston, M.: Mountain Climates and Climatic Change: An Overview of
Processes Focusing on the European Alps, Pure Appl. Geophys., 162,
1587–1606, https://doi.org/10.1007/s00024-005-2684-9, 2005.
Bennett, G. L., Molnar, P., Eisenbeiss, H., and McArdell, B. W.: Erosional
power in the Swiss Alps: characterization of slope failure in the Illgraben,
Earth Surf. Proc. Land., 37, 1627–1640, https://doi.org/10.1002/esp.3263, 2012.
Berger, C., McArdell, B. W., and Schlunegger, F.: Sediment transfer patterns
at the Illgraben catchment, Switzerland: Implications for the time scales of
debris flow activities, Geomorphology, 125, 421–432,
https://doi.org/10.1016/j.geomorph.2010.10.019, 2011.
Bernard, M., Underwood, S. J., Berti, M., Simoni, A., and Gregoretti, C.:
Observations of the atmospheric electric field preceding intense rainfall
events in the Dolomite Alps near Cortina d'Ampezzo, Italy, Meteorol. Atmos.
Phys., 132, 99–111, https://doi.org/10.1007/s00703-019-00677-6, 2020.
Berti, M., Bernard, M., Gregoretti, C., and Simoni, A.: Physical
Interpretation of Rainfall Thresholds for Runoff-Generated Debris Flows, J.
Geophys. Res. Earth Surf., 125, https://doi.org/10.1029/2019JF005513, 2020.
Bollschweiler, M. and Stoffel, M.: Changes and trends in debris-flow
frequency since AD 1850: Results from the Swiss Alps, Holocene, 20,
907–916, https://doi.org/10.1177/0959683610365942, 2010.
Bollschweiler, M., Stoffel, M., and Schneuwly, D. M.: Dynamics in
debris-flow activity on a forested cone – A case study using different
dendroecological approaches, CATENA, 72, 67–78,
https://doi.org/10.1016/j.catena.2007.04.004, 2008.
Brunetti, M. T., Guzzetti, F., and Rossi, M.: Probability distributions of landslide volumes, Nonlin. Processes Geophys., 16, 179–188, https://doi.org/10.5194/npg-16-179-2009, 2009.
Chen, J.-C., Lin, C.-W., and Wang, L.-C.: Geomorphic characteristics of
hillslope and channelized debris flows: A case study in the Shitou area of
central Taiwan, J. Mt. Sci., 6, 266–273, https://doi.org/10.1007/s11629-009-0250-0, 2009.
Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L., Wehberg, J., Wichmann, V., and Böhner, J.: System for Automated Geoscientific Analyses (SAGA) v. 2.1.4, Geosci. Model Dev., 8, 1991–2007, https://doi.org/10.5194/gmd-8-1991-2015, 2015.
Curry, A. M., Cleasby, V., and Zukowskyj, P.: Paraglacial response of steep,
sediment-mantled slopes to post-“Little Ice Age” glacier recession in the
central Swiss Alps, J. Quaternary Sci., 21, 211–225,
https://doi.org/10.1002/jqs.954, 2006.
D'Agostino, V. and Marchi, L.: Debris Flows Magnitude in the Eastern Italian
Alps: Data Collection and Analysis, Phys. Chem. Earth, 26, 657–663, 2001.
De Haas, T. and Densmore, A. L.: Debris-flow volume quantile prediction from
catchment morphometry, Geology, 47, 791–794, https://doi.org/10.1130/G45950.1, 2019.
Dietrich, A. and Krautblatter, M.: Evidence for enhanced debris-flow
activity in the Northern Calcareous Alps since the 1980s (Plansee, Austria),
Geomorphology, 287, 144–158, https://doi.org/10.1016/j.geomorph.2016.01.013, 2017.
Dietrich, A. and Krautblatter, M.: Deciphering controls for debris-flow
erosion derived from a LiDAR-recorded extreme event and a calibrated
numerical model (Roßbichelbach, Germany), Earth Surf. Proc. Land., 44, 1346–1361, https://doi.org/10.1002/esp.4578, 2019.
Dikau, R., Eibisch, K., Eichel, J., Meßenzehl, K., and Schlummer-Held,
M.: Geomorphologie, Springer Berlin Heidelberg, Berlin, Heidelberg, 487 pp., https://doi.org/10.1007/978-3-662-59402-5, 2019.
Dowling, C. A. and Santi, P. M.: Debris flows and their toll on human life:
a global analysis of debris-flow fatalities from 1950 to 2011, Nat. Hazards,
71, 203–227, https://doi.org/10.1007/s11069-013-0907-4, 2014.
Fleischer, F., Haas, F., Piermattei, L., Pfeiffer, M., Heckmann, T., Altmann, M., Rom, J., Stark, M., Wimmer, M. H., Pfeifer, N., and Becht, M.: Multi-decadal (1953–2017) rock glacier kinematics analysed by high-resolution topographic data in the upper Kaunertal, Austria, The Cryosphere, 15, 5345–5369, https://doi.org/10.5194/tc-15-5345-2021, 2021.
Freeman, T.: Calculating catchment area with divergent flow based on a
regular grid, Comput. Geosci., 17, 413–422, https://doi.org/10.1016/0098-3004(91)90048-I, 1991.
Gao, L., Zhang, L. M., and Cheung, R. W. M.: Relationships between natural
terrain landslide magnitudes and triggering rainfall based on a large
landslide inventory in Hong Kong, Landslides, 15, 727–740,
https://doi.org/10.1007/s10346-017-0904-x, 2018.
Geitner, C.: Sedimentologische und vegetationsgeschichtliche Untersuchungen
an fluvialen Sedimenten in den Hochlagen des Horlachtales (Stubaier
Alpen/Tirol), Münchener Geographische Abhandlungen, Geobuch-Verlag,
München, ISBN 3-925308-52-0, 1999.
Gillespie, C. S.: Fitting heavy tailed distributions: the poweRlaw package,
J. Stat. Softw., 64, 1–16, https://doi.org/10.18637/jss.v064.i02, 2015.
Glira, P., Pfeifer, N., Briese, C., and Ressl, C.: RIGOROUS STRIP ADJUSTMENT OF AIRBORNE LASERSCANNING DATA BASED ON THE ICP ALGORITHM, ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., II-3/W5, 73–80, https://doi.org/10.5194/isprsannals-II-3-W5-73-2015, 2015.
Glira, P., Pfeifer, N., and Mandlburger, G.: Rigorous Strip Adjustment of
UAV-based Laserscanning Data Including Time-Dependent Correction of
Trajectory Errors, Photogram. Engng. Rem. Sens., 82, 945–954,
https://doi.org/10.14358/PERS.82.12.945, 2016.
Griswold, J. P. and Iverson, R. M.: Mobility Statistics and Automated Hazard
Mapping for Debris Flows and Rock Avalanches, Scientific Investigations
Report 2007–5276, US Geological Survey, https://doi.org/10.3133/sir20075276, 2008.
Guzzetti, F., Ardizzone, F., Cardinali, M., Rossi, M., and Valigi, D.:
Landslide volumes and landslide mobilization rates in Umbria, central Italy,
Earth Planet. Sc. Lett., 279, 222–229, https://doi.org/10.1016/j.epsl.2009.01.005, 2009.
Haas, F., Heckmann, T., Wichmann, V., and Becht, M.: Runout analysis of a
large rockfall in the Dolomites/Italian Alps using LIDAR derived particle
sizes and shapes, Earth Surf. Proc. Land., 37, 1444–1455,
https://doi.org/10.1002/esp.3295, 2012.
Heckmann, T. and Schwanghart, W.: Geomorphic coupling and sediment
connectivity in an alpine catchment — Exploring sediment cascades using
graph theory, Geomorphology, 182, 89–103, https://doi.org/10.1016/j.geomorph.2012.10.033, 2013.
Heckmann, T., Haas, F., Morche, D., Schmidt, K., Rohn, J., Moser, M.,
Leopold, M., Kuhn, M., Briese, C., Pfeifer, N., and Becht, M.: Investigating
an Alpine proglacial sediment budget using field measurements, airborne and
terrestrial LiDAR data, IAHS-AISH P., 356, 438–447, 2012.
Heckmann, T., Gegg, K., Gegg, A., and Becht, M.: Sample size matters: investigating the effect of sample size on a logistic regression susceptibility model for debris flows, Nat. Hazards Earth Syst. Sci., 14, 259–278, https://doi.org/10.5194/nhess-14-259-2014, 2014.
Helsen, M. M., Koop, P. J. M., and van Steijn, H.: Magnitude-frequency
relationship for debris flows on the fan of the Chalance torrent,
Valgaudemar (French Alps), Earth Surf. Proc. Land., 27, 1299–1307,
https://doi.org/10.1002/esp.412, 2002.
Hilger, L.: Quantification and regionalization of geomorphic processes using
spatial models and high-resolution topographic data: A sediment budget of
the Upper Kauner Valley, Ötztal Alps, PhD thesis, Katholische
Universität Eichstätt-Ingolstadt, Eichstätt-Ingolstadt, URN urn:nbn:de:bvb:824-opus4-3814, 2017.
Hirschberg, J., Fatichi, S., Bennett, G. L., McArdell, B. W., Peleg, N.,
Lane, S. N., Schlunegger, F., and Molnar, P.: Climate Change Impacts on
Sediment Yield and Debris-Flow Activity in an Alpine Catchment, J. Geophys.
Res.-Earth, 126, e2020JF005739, https://doi.org/10.1029/2020JF005739, 2021.
Hungr, O., McDougall, S., Wise, M., and Cullen, M.: Magnitude-frequency
relationships of debris flows and debris avalanches in relation to slope
relief, Geomorphology, 96, 355–365, https://doi.org/10.1016/j.geomorph.2007.03.020, 2008.
Hydrographischer Dienst Vorarlberg: Meteorological data for Tschagguns station, eHYD [data set], https://ehyd.gv.at, last access: 7 February 2023.
Innes, J. L.: Lichenometric dating of debris-flow deposits in the Scottish
Highlands, Earth Surf. Proc. Land., 8, 579–588, https://doi.org/10.1002/esp.3290080609, 1983.
Iverson, R. M.: Elementary theory of bed-sediment entrainment by debris
flows and avalanches, J. Geophys. Res., 117, F03006, https://doi.org/10.1029/2011JF002189, 2012.
Jaboyedoff, M., Carrea, D., Derron, M.-H., Oppikofer, T., Penna, I. M., and
Rudaz, B.: A review of methods used to estimate initial landslide failure
surface depths and volumes, Eng. Geol., 267, 105478,
https://doi.org/10.1016/j.enggeo.2020.105478, 2020.
Jakob, M., Bovis, M., and Oden, M.: The significance of channel recharge
rates for estimating debris-flow magnitude and frequency, Earth Surf. Proc. Land., 30, 755–766, https://doi.org/10.1002/esp.1188, 2005.
Jakob, M., Mark, E., McDougall, S., Friele, P., Lau, C.-A., and Bale, S.:
Regional debris-flow and debris-flood frequency–magnitude relationships,
Earth Surf. Proc. Land., 45, 2954–2964, https://doi.org/10.1002/esp.4942, 2020.
Jomelli, V., Brunstein, D., Chochillon, C., and Pech, P.: Hillslope
debris-flow frequency since the beginning of the 20th century in the Massif
des Ecrins (French Alps), in: Debris-Flow Hazards Mitigation: Mechanics,
Prediction, and Assessment, edited by: Rickenmann, D. and Chen, C.,
Millpress, Rotterdam, 127–137, ISBN 978-90-77017-78-4, 2003.
Jomelli, V., Grancher, D., Naveau, P., Cooley, D., and Brunstein, D.:
Assessment study of lichenometric methods for dating surfaces,
Geomorphology, 86, 131–143, https://doi.org/10.1016/j.geomorph.2006.08.010,
2007.
Kiefer, C., Oswald, P., Moernaut, J., Fabbri, S. C., Mayr, C., Strasser, M., and Krautblatter, M.: A 4000-year debris flow record based on amphibious investigations of fan delta activity in Plansee (Austria, Eastern Alps), Earth Surf. Dynam., 9, 1481–1503, https://doi.org/10.5194/esurf-9-1481-2021, 2021.
Lane, S. N., Westaway, R. M., and Murray Hicks, D.: Estimation of erosion
and deposition volumes in a large, gravel-bed, braided river using synoptic
remote sensing, Earth Surf. Proc. Land., 28, 249–271,
https://doi.org/10.1002/esp.483, 2003.
Larsen, I. J., Montgomery, D. R., and Korup, O.: Landslide erosion
controlled by hillslope material, Nat. Geosci., 3, 247–251,
https://doi.org/10.1038/ngeo776, 2010.
Li, L., Yu, B., Zhu, Y., Chu, S., and Wu, Y.: Topographical factors in the
formation of gully-type debris flows in Longxi River catchment, Sichuan,
China, Environ. Earth Sci., 73, 4385–4398, https://doi.org/10.1007/s12665-014-3722-7, 2015.
Lopez Saez, J., Corona, C., Stoffel, M., Gotteland, A., Berger, F., and Liébault, F.: Debris-flow activity in abandoned channels of the Manival torrent reconstructed with LiDAR and tree-ring data, Nat. Hazards Earth Syst. Sci., 11, 1247–1257, https://doi.org/10.5194/nhess-11-1247-2011, 2011.
Magirl, C. S., Griffiths, P. G., and Webb, R. H.: Analyzing debris flows
with the statistically calibrated empirical model LAHARZ in southeastern
Arizona, USA, Geomorphology, 119, 111–124,
https://doi.org/10.1016/j.geomorph.2010.02.022, 2010.
Marchi, L. and Tecca, P. R.: Some Observations on the Use of Data from
Historical Documents in Debris-Flow Studies, Nat. Hazards, 38, 301–320,
https://doi.org/10.1007/s11069-005-0264-z, 2006.
Marchi, L., Brunetti, M. T., Cavalli, M., and Crema, S.: Debris-flow volumes
in northeastern Italy: Relationship with drainage area and size probability,
Earth Surf. Proc. Land., 44, 933–943, https://doi.org/10.1002/esp.4546, 2019.
McGlone, J. C., Mikhail, E., and Bethel, J. (Eds.): Manual of
Photogrammetry, 5th edn., ASPRS American Soc. for Photogrammetry and Remote
Sensing, Bethesda, Md., ISBN 1570830711, 2004.
Melton, M.: An analysis of the relations among elements of climate, surface
properties, and geomorphology, Technical Report No. 11, Department of
Geology, Columbia University, New York, https://doi.org/10.21236/ad0148373, 1957.
Nogués-Bravo, D., Araújo, M. B., Errea, M. P., and
Martínez-Rica, J. P.: Exposure of global mountain systems to climate
warming during the 21st Century, Global Environ. Chang., 17, 420–428,
https://doi.org/10.1016/j.gloenvcha.2006.11.007, 2007.
Nuth, C. and Kääb, A.: Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change, The Cryosphere, 5, 271–290, https://doi.org/10.5194/tc-5-271-2011, 2011.
Pelfini, M. and Santilli, M.: Frequency of debris flows and their relation
with precipitation: A case study in the Central Alps, Italy, Geomorphology,
101, 721–730, https://doi.org/10.1016/j.geomorph.2008.04.002, 2008.
Petrini-Monteferri, F., Wichmann, V., Georges, C., Mantovani, D., and
Stötter, J.: Erweiterung der GIS Software SAGA zur Verarbeitung von
Laserscanning-Daten der Autonomen Provinz Bozen-Südtirol, in: Angewandte
Geoinformatik 2009: Beiträge zum 21. AGIT-Symposium Salzburg, edited by:
Strobl, J. and Blaschke, T., Wichmann, Heidelberg, 47–52, ISBN 3879074801, 2009.
Pfeifer, N., Mandlburger, G., Otepka, J., and Karel, W.: OPALS – A
framework for Airborne Laser Scanning data analysis, Comput. Environ. Urban, 45, 125–136, https://doi.org/10.1016/j.compenvurbsys.2013.11.002, 2014.
Rainato, R., Mao, L., García-Rama, A., Picco, L., Cesca, M., Vianello,
A., Preciso, E., Scussel, G. R., and Lenzi, M. A.: Three decades of
monitoring in the Rio Cordon instrumented basin: Sediment budget and
temporal trend of sediment yield, Geomorphology, 291, 45–56,
https://doi.org/10.1016/j.geomorph.2016.03.012, 2017.
Ravanel, L. and Deline, P.: Climate influence on rockfalls in high-Alpine
steep rockwalls: The north side of the Aiguilles de Chamonix (Mont Blanc
massif) since the end of the “Little Ice Age”, Holocene, 21, 357–365,
https://doi.org/10.1177/0959683610374887, 2011.
Rickenmann, D. and Zimmermann, M.: The 1987 debris flows in Switzerland:
documentation and analysis, Geomorphology, 8, 175–189,
https://doi.org/10.1016/0169-555X(93)90036-2, 1993.
Rieger, D.: Bewertung der naturräumlichen Rahmenbedingungen für die
Entstehung von Hangmuren: Möglichkeiten zur Modellierung des
Murpotentials; mit 21 Tabellen, Zugl.: München, Univ., Diss., 1998,
Münchener Universitätsschriften/Fakultät für
Geowissenschaften, 51, Geobuch-Verl., München, 149 pp., ISBN 3925308733, 1999.
Riley, K. L., Bendick, R., Hyde, K. D., and Gabet, E. J.:
Frequency–magnitude distribution of debris flows compiled from global data,
and comparison with post-fire debris flows in the western U.S.,
Geomorphology, 191, 118–128, https://doi.org/10.1016/j.geomorph.2013.03.008, 2013.
Rom, J., Haas, F., Stark, M., Dremel, F., Becht, M., Kopetzky, K., Schwall,
C., Wimmer, M., Pfeifer, N., Mardini, M., and Genz, H.: Between Land and
Sea: An Airborne LiDAR Field Survey to Detect Ancient Sites in the Chekka
Region/Lebanon Using Spatial Analyses, Open Archaeology, 6, 248–268,
https://doi.org/10.1515/opar-2020-0113, 2020.
Sassa, K.: The mechanism to initiate debris flows as undrained shear of
loose sediments, Internationales Symposion Interpraevent – Villach
Tagespublikation, 2, 73–87, http://www.interpraevent.at/palm-cms/upload_files/Publikationen/Tagungsbeitraege/1984_2_73.pdf (last access: 6 February 2023), 1984.
Segoni, S., Piciullo, L., and Gariano, S. L.: A review of the recent
literature on rainfall thresholds for landslide occurrence, Landslides, 15,
1483–1501, https://doi.org/10.1007/s10346-018-0966-4, 2018.
Shen, C.-W., Lo, W.-C., and Chen, C.-Y.: Evaluating Susceptibility of Debris
Flow Hazard using Multivariate Statistical Analysis in Hualien County,
Disaser Advances, vol. 5, http://hdl.handle.net/11536/20889 (last access: 6 February 2023), 2012.
Spiess, A.-N. and Neumeyer, N.: An evaluation of R2 as an inadequate measure
for nonlinear models in pharmacological and biochemical research: a Monte
Carlo approach, BMC Pharmacol., 10, 6, https://doi.org/10.1186/1471-2210-10-6, 2010.
Stoffel, M.: Magnitude–frequency relationships of debris flows – A case
study based on field surveys and tree-ring records, Geomorphology, 116,
67–76, https://doi.org/10.1016/j.geomorph.2009.10.009, 2010.
Stoffel, M., Lièvre, I., Conus, D., Grichting, M. A., Raetzo, H.,
Gärtner, H. W., and Monbaron, M.: 400 Years of Debris-Flow Activity and
Triggering Weather Conditions: Ritigraben, Valais, Switzerland, Arct.
Antarct. Alp. Res., 37, 387–395, https://doi.org/10.1657/1523-0430(2005)037[0387:YODAAT]2.0.CO;2, 2005.
Stoffel, M., Mendlik, T., Schneuwly-Bollschweiler, M., and Gobiet, A.:
Possible impacts of climate change on debris-flow activity in the Swiss
Alps, Climatic Change, 122, 141–155, https://doi.org/10.1007/s10584-013-0993-z, 2014.
Tanyaş, H., Westen, C. J., Allstadt, K. E., and Jibson, R. W.: Factors
controlling landslide frequency–area distributions, Earth Surf. Proc. Land., 44, 900–917, https://doi.org/10.1002/esp.4543, 2019.
Theule, J. I., Liébault, F., Loye, A., Laigle, D., and Jaboyedoff, M.: Sediment budget monitoring of debris-flow and bedload transport in the Manival Torrent, SE France, Nat. Hazards Earth Syst. Sci., 12, 731–749, https://doi.org/10.5194/nhess-12-731-2012, 2012.
Thiel, M.: Quantifizierung der Konnektivität von Sedimentkaskaden in
alpinen Geosystemen, PhD thesis, Katholische Universität
Eichstätt-Ingolstadt, Eichstätt-Ingolstadt, 186 pp., URN urn:nbn:de:bvb:824-opus4-1081, 2013.
Tropeano, D. and Turconi, L.: Using Historical Documents for Landslide,
Debris Flow and Stream Flood Prevention. Applications in Northern Italy,
Nat. Hazards, 31, 663–679, https://doi.org/10.1023/B:NHAZ.0000024897.71471.f2, 2004.
Turnbull, B., Bowman, E. T., and McElwaine, J. N.: Debris flows: Experiments
and modelling, C. R. Phys., 16, 86–96, https://doi.org/10.1016/j.crhy.2014.11.006, 2015.
Underwood, S. J., Schultz, M. D., Berti, M., Gregoretti, C., Simoni, A., Mote, T. L., and Saylor, A. M.: Atmospheric circulation patterns, cloud-to-ground lightning, and locally intense convective rainfall associated with debris flow initiation in the Dolomite Alps of northeastern Italy, Nat. Hazards Earth Syst. Sci., 16, 509–528, https://doi.org/10.5194/nhess-16-509-2016, 2016.
Varnes, D. J.: Slope Movement Types and Processes, in: Landslides, analysis
and control (Special report-Transportation Research Board), edited by:
Schuster, R. L. and Krizek, R. J., National Academy of Sciences, Washington,
DC, 11–33, ISBN 9780309028042, 1978.
Wichmann, V.: Modellierung geomorphologischer Prozesse in einem alpinen
Einzugsgebiet: Abgrenzung und Klassifizierung der Wirkungsräume von
Sturzprozessen und Muren mit einem GIS, Zugl.: Eichstätt, Katholische
Univ., Diss., 2005 u.d.T.: Wichmann, Volker: Entwicklung von
prozessorientierten Modellen zur flächenverteilten Abgrenzung und
Klassifizierung der Wirkungsräume von Sturzprozessen und Muren mit einem
GIS – dargestellt am Einzugsgebiet des Lahnenwiesgrabens Ammergebirge,
Eichstätter Geographische Arbeiten, 15, Profil-Verl., München, Wien,
231 pp., ISBN 3-89019-605-5, 2006.
Wichmann, V.: The Gravitational Process Path (GPP) model (v1.0) – a GIS-based simulation framework for gravitational processes, Geosci. Model Dev., 10, 3309–3327, https://doi.org/10.5194/gmd-10-3309-2017, 2017.
Wilford, D. J., Sakals, M. E., Innes, J. L., Sidle, R. C., and Bergerud, W.
A.: Recognition of debris flow, debris flood and flood hazard through
watershed morphometrics, Landslides, 1, 61–66,
https://doi.org/10.1007/s10346-003-0002-0, 2004.
Winter, M. G.: Debris flows, in: Geological hazards in the UK: Their
occurrence, monitoring and mitigation Engineering Group working party
report, edited by: Giles, D. P. and Griffiths, J. S., The Geological
Society, London, 163–185, https://doi.org/10.1144/EGSP29.5, 2020.
Wu, W.: Recent Advances in Modeling Landslides and Debris Flows, Springer
International Publishing, Cham, Heidelberg, New York, Dordrecht, London, 318 pp., ISBN 978-3-319-11052-3, 2015.
Zhao, Y., Meng, X., Qi, T., Qing, F., Xiong, M., Li, Y., Guo, P., and Chen,
G.: AI-based identification of low-frequency debris flow catchments in the
Bailong River basin, China, Geomorphology, 359, 107125,
https://doi.org/10.1016/j.geomorph.2020.107125, 2020.
Zhou, W., Tang, C., van Asch, T. W. J., and Chang, M.: A rapid method to
identify the potential of debris flow development induced by rainfall in the
catchments of the Wenchuan earthquake area, Landslides, 13, 1243–1259,
https://doi.org/10.1007/s10346-015-0631-0, 2016.
Zimmermann, M.: Debris flows 1987 in Switzerland: geomorphological and
meteorological aspects, IAHS, Hydrol. Mountainous Regions, 2, 387–393,
https://iahs.info/uploads/dms/iahs_194_0387.pdf (last access: 6 February 2023), 1990.
Short summary
In this study, an area-wide slope-type debris flow record has been established for Horlachtal, Austria, since 1947 based on historical and recent remote sensing data. Spatial and temporal analyses show variations in debris flow activity in space and time in a high-alpine region. The results can contribute to a better understanding of past slope-type debris flow dynamics in the context of extreme precipitation events and their possible future development.
In this study, an area-wide slope-type debris flow record has been established for Horlachtal,...
Altmetrics
Final-revised paper
Preprint