Articles | Volume 23, issue 7
https://doi.org/10.5194/nhess-23-2531-2023
https://doi.org/10.5194/nhess-23-2531-2023
Research article
 | 
17 Jul 2023
Research article |  | 17 Jul 2023

Meteotsunami in the United Kingdom: the hidden hazard

Clare Lewis, Tim Smyth, David Williams, Jess Neumann, and Hannah Cloke

Related authors

Proposal for a new meteotsunami intensity index
Clare Lewis, Tim Smyth, Jess Neumann, and Hannah Cloke
Nat. Hazards Earth Syst. Sci., 24, 121–131, https://doi.org/10.5194/nhess-24-121-2024,https://doi.org/10.5194/nhess-24-121-2024, 2024
Short summary

Related subject area

Sea, Ocean and Coastal Hazards
Modelling tsunami initial conditions due to rapid coseismic seafloor displacement: efficient numerical integration and a tool to build unit source databases
Alice Abbate, José M. González Vida, Manuel J. Castro Díaz, Fabrizio Romano, Hafize Başak Bayraktar, Andrey Babeyko, and Stefano Lorito
Nat. Hazards Earth Syst. Sci., 24, 2773–2791, https://doi.org/10.5194/nhess-24-2773-2024,https://doi.org/10.5194/nhess-24-2773-2024, 2024
Short summary
Estuarine hurricane wind can intensify surge-dominated extreme water level in shallow and converging coastal systems
Mithun Deb, James J. Benedict, Ning Sun, Zhaoqing Yang, Robert D. Hetland, David Judi, and Taiping Wang
Nat. Hazards Earth Syst. Sci., 24, 2461–2479, https://doi.org/10.5194/nhess-24-2461-2024,https://doi.org/10.5194/nhess-24-2461-2024, 2024
Short summary
Revisiting regression methods for estimating long-term trends in sea surface temperature
Ming-Huei Chang, Yen-Chen Huang, Yu-Hsin Cheng, Chuen-Teyr Terng, Jinyi Chen, and Jyh Cherng Jan
Nat. Hazards Earth Syst. Sci., 24, 2481–2494, https://doi.org/10.5194/nhess-24-2481-2024,https://doi.org/10.5194/nhess-24-2481-2024, 2024
Short summary
Global application of a regional frequency analysis to extreme sea levels
Thomas P. Collings, Niall D. Quinn, Ivan D. Haigh, Joshua Green, Izzy Probyn, Hamish Wilkinson, Sanne Muis, William V. Sweet, and Paul D. Bates
Nat. Hazards Earth Syst. Sci., 24, 2403–2423, https://doi.org/10.5194/nhess-24-2403-2024,https://doi.org/10.5194/nhess-24-2403-2024, 2024
Short summary
Tsunami hazard assessment in the South China Sea based on geodetic locking of the Manila subduction zone
Guangsheng Zhao and Xiaojing Niu
Nat. Hazards Earth Syst. Sci., 24, 2303–2313, https://doi.org/10.5194/nhess-24-2303-2024,https://doi.org/10.5194/nhess-24-2303-2024, 2024
Short summary

Cited articles

Bechle, A. J., Wu, C. H., Kristovich, D. A. R., Anderson, E. J., Schwab, D. J., and Rabinovich, A. B.: Meteotsunamis in the Laurentian Great Lakes, Sci. Rep.-UK, 6, 37832, https://doi.org/10.1038/srep37832, 2016. 
Borlase, W.: The natural history of Cornwall, Oxford, 53–54, https://archive.org/details/naturalhistoryc00borl (last acces: 12 July 2023), 1758. 
British Oceanographic Data Centre: https://www.bodc.ac.uk/, last access: 19 February 2022. 
Burt, S.: Multiple airwaves crossing Britain and Ireland following the eruption of Hunga Tongaa.fiHunga Ha'apai on 15 January 2022. Volcanic airwaves crossing Britain and Ireland, January 2022, Weather, 77, 76–81, https://doi.org/10.1002/wea.4182, 2022. 
CEDA Archive: 5 km Resolution UK Composite Rainfall Data from the Met Office Nimrod System, Dataset [data set], https://catalogue.ceda.ac.uk/uuid/f91b2c5399c5bf689e29bb15ab45da8a (last access: 13 July 2023), 2018. 
Download
Short summary
Meteotsunami are globally occurring water waves initiated by atmospheric disturbances. Previous research has suggested that in the UK, meteotsunami are a rare phenomenon and tend to occur in the summer months. This article presents a revised and updated catalogue of 98 meteotsunami that occurred between 1750 and 2022. Results also demonstrate a larger percentage of winter events and a geographical pattern highlighting the hotspot regions that experience these events.
Altmetrics
Final-revised paper
Preprint