Articles | Volume 23, issue 5
https://doi.org/10.5194/nhess-23-1891-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-23-1891-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Optimal probabilistic placement of facilities using a surrogate model for 3D tsunami simulations
Kenta Tozato
CORRESPONDING AUTHOR
Faculty of Engineering, Department of Engineering, Hachinohe Institute of Technology, 88-1 Ohbiraki, Myo, Hachinohe, Aomori 031-8501, Japan
Shuji Moriguchi
International Research Institute of Disaster Science, Tohoku University, Aza-Aoba 468-1, Aramaki, Aoba-ku, Sendai 980-8572, Japan
Shinsuke Takase
Faculty of Engineering, Department of Engineering, Hachinohe Institute of Technology, 88-1 Ohbiraki, Myo, Hachinohe, Aomori 031-8501, Japan
Yu Otake
Department of Civil and Environmental Engineering, Tohoku University, Aza-Aoba 6-6-06, Aramaki, Aoba-ku, Sendai 980-8579, Japan
Michael R. Motley
Civil and Environmental Engineering, University of Washington, 201 More Hall, Box 352700, Seattle, Washington 98195-2700, USA
Anawat Suppasri
International Research Institute of Disaster Science, Tohoku University, Aza-Aoba 468-1, Aramaki, Aoba-ku, Sendai 980-8572, Japan
Kenjiro Terada
International Research Institute of Disaster Science, Tohoku University, Aza-Aoba 468-1, Aramaki, Aoba-ku, Sendai 980-8572, Japan
Related authors
No articles found.
Hayley Leggett, Muhammad Daffa Al Farizi, Muhammad Rizki Purnama, Anawat Suppasri, and Fumihiko Imamura
EGUsphere, https://doi.org/10.5194/egusphere-2026-365, https://doi.org/10.5194/egusphere-2026-365, 2026
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
This study examined new multi-layered tsunami defences for Kesennuma, Japan, to find designs that protect communities while improving coastal openness and liveability. Using computer simulations of tsunami with future sea level rise, we found that a transparent and socially integrated design achieved nearly the same protection as large concrete walls, showing that safety and human-centred design can coexist in coastal planning.
An-Chi Cheng, Anawat Suppasri, Kwanchai Pakoksung, and Fumihiko Imamura
Nat. Hazards Earth Syst. Sci., 23, 447–479, https://doi.org/10.5194/nhess-23-447-2023, https://doi.org/10.5194/nhess-23-447-2023, 2023
Short summary
Short summary
Consecutive earthquakes occurred offshore of southern Taiwan on 26 December 2006. This event revealed unusual tsunami generation and propagation, as well as unexpected consequences for the southern Taiwanese coast (i.e., amplified waves and prolonged durations). This study aims to elucidate the source characteristics of the 2006 tsunami and the important behaviors responsible for tsunami hazards in Taiwan such as wave trapping and shelf resonance.
Maria Pregnolato, Andrew O. Winter, Dakota Mascarenas, Andrew D. Sen, Paul Bates, and Michael R. Motley
Nat. Hazards Earth Syst. Sci., 22, 1559–1576, https://doi.org/10.5194/nhess-22-1559-2022, https://doi.org/10.5194/nhess-22-1559-2022, 2022
Short summary
Short summary
The interaction of flow, structure and network is complex, and yet to be fully understood. This study aims to establish rigorous practices of computational fluid dynamics (CFD) for modelling hydrodynamic forces on inundated bridges, and understanding the consequences of such impacts on the surrounding network. The objectives of this study are to model hydrodynamic forces as the demand on the bridge structure, to advance a structural reliability and network-level analysis.
Kenta Tozato, Shinsuke Takase, Shuji Moriguchi, Kenjiro Terada, Yu Otake, Yo Fukutani, Kazuya Nojima, Masaaki Sakuraba, and Hiromu Yokosu
Nat. Hazards Earth Syst. Sci., 22, 1267–1285, https://doi.org/10.5194/nhess-22-1267-2022, https://doi.org/10.5194/nhess-22-1267-2022, 2022
Short summary
Short summary
This study presents a novel framework for rapid tsunami force predictions through the application of mode-decomposition-based surrogate modeling with 2D–3D coupled numerical simulations. A numerical example is presented to demonstrate the applicability of the proposed framework to one of the tsunami-affected areas during the Great East Japan Earthquake of 2011.
Chatuphorn Somphong, Anawat Suppasri, Kwanchai Pakoksung, Tsuyoshi Nagasawa, Yuya Narita, Ryunosuke Tawatari, Shohei Iwai, Yukio Mabuchi, Saneiki Fujita, Shuji Moriguchi, Kenjiro Terada, Cipta Athanasius, and Fumihiko Imamura
Nat. Hazards Earth Syst. Sci., 22, 891–907, https://doi.org/10.5194/nhess-22-891-2022, https://doi.org/10.5194/nhess-22-891-2022, 2022
Short summary
Short summary
The majority of past research used hypothesized landslides to simulate tsunamis, but they were still unable to properly explain the observed data. In this study, submarine landslides were simulated by using a slope-failure-theory-based numerical model for the first time. The findings were verified with post-event field observational data. They indicated the potential presence of submarine landslide sources in the southern part of the bay and were consistent with the observational tsunamis.
Elisa Lahcene, Ioanna Ioannou, Anawat Suppasri, Kwanchai Pakoksung, Ryan Paulik, Syamsidik Syamsidik, Frederic Bouchette, and Fumihiko Imamura
Nat. Hazards Earth Syst. Sci., 21, 2313–2344, https://doi.org/10.5194/nhess-21-2313-2021, https://doi.org/10.5194/nhess-21-2313-2021, 2021
Short summary
Short summary
In Indonesia, tsunamis represent a significant risk to coastal communities and buildings. Therefore, it is fundamental to deeply understand the tsunami source impact on buildings and infrastructure. This work provides a novel understanding of the relationship between wave period, ground shaking, liquefaction events, and potential building damage using tsunami fragility curves. This study represents the first investigation of colossal impacts increasing building damage.
Constance Ting Chua, Adam D. Switzer, Anawat Suppasri, Linlin Li, Kwanchai Pakoksung, David Lallemant, Susanna F. Jenkins, Ingrid Charvet, Terence Chua, Amanda Cheong, and Nigel Winspear
Nat. Hazards Earth Syst. Sci., 21, 1887–1908, https://doi.org/10.5194/nhess-21-1887-2021, https://doi.org/10.5194/nhess-21-1887-2021, 2021
Short summary
Short summary
Port industries are extremely vulnerable to coastal hazards such as tsunamis. Despite their pivotal role in local and global economies, there has been little attention paid to tsunami impacts on port industries. For the first time, tsunami damage data are being extensively collected for port structures and catalogued into a database. The study also provides fragility curves which describe the probability of damage exceedance for different port industries given different tsunami intensities.
Cited articles
Alhamid, A. K., Akiyama, M., Ishibashi, H., Aoki, K., Koshimura, S., and Frangopol, D. M.: Framework for probabilistic tsunami hazard assessment considering the effects of sea-level rise due to climate change,
Struct. Saf., 94, 102152, https://doi.org/10.1016/j.strusafe.2021.102152, 2022. a
Annaka, T., Satake, K., Sakakiyama, T., Yanagisawa, K., and Shuto, N.: Logic-tree approach for probabilistic tsunami hazard analysis and its applications to the Japanese coasts, Pure Appl. Geophys, 164, 577–592, https://doi.org/10.1007/s00024-006-0174-3, 2007. a
Baba, T., Kamiya, M., Tanaka, N., Sumida, Y., Yamanaka, R., Watanabe, K., and Fujiwara, H.: Probabilistic tsunami hazard assessment based on the Gutenberg–Richter law in eastern Shikoku, Nankai subduction zone, Japan, Earth Planets Space, 74, 156, https://doi.org/10.1186/s40623-022-01715-1, 2022. a
Bamer, F. and Bucher, C.: Application of the proper orthogonal decomposition for linear and nonlinear structures under transient excitations, Acta Mech., 223, 2549–2563, https://doi.org/10.1007/s00707-012-0726-9, 2012. a
Buhmann, M. D.: Multivariate cardinal interpolation with radial-basis functions, Constr. Approxim., 6, 225–255, https://doi.org/10.1007/BF01890410, 1990. a
Cavdur, F., Kose-Kucuk, M., and Sebatli, A.: Allocation of temporary disaster-response facilities for relief-supplies distribution: A stochastic optimization approach for after disaster uncertainty, Nat. Hazards Rev., 22, 05020013, https://doi.org/10.1061/(ASCE)NH.1527-6996.0000416, 2020a. a
Cavdur, F., Sebatli-Saglam, A., and Kose-Kucuk, M.: A spreadsheet-based decision support tool for temporary-disaster-response facilities allocation, Saf. Sci., 124, 104581, https://doi.org/10.1016/j.ssci.2019.104581, 2020b. a
Cornell, C. A.: Engineering seismic risk analysis, Bull. Seismol. Soc. Am., 58, 1583–1606, https://doi.org/10.1785/BSSA0580051583, 1968. a
Doerner, K. F., Gutjahr, W. J., and Nolz, P. C.: Multi-criteria location planning for public facilities in tsunami-prone coastal areas, OR Spectrum, 31, 651–678, https://doi.org/10.1007/s00291-008-0126-7, 2008. a
El-Hussain, I., Omira, R., Deif, A., Al-Habsi, Z., Al-Rawas, G., Mohamad, A., Al-Jabri K., and Baptista, M. A.: Probabilistic tsunami hazard assessment along Oman coast from submarine earthquakes in the Makran subduction zone, Arab. J. Geosci., 9, 668, https://doi.org/10.1007/s12517-016-2687-0, 2016. a
Gong, W., Duan, Q., Li, J., Wang, C., Di, Z., Ye, A., Miao, C., and Dai, Y.: Multiobjective adaptive surrogate modeling-based optimization for parameter estimation of large, complex geophysical models, Water Resour. Res., 52, 1984–2008, https://doi.org/10.1002/2015WR018230, 2016. a
Fukutani, Y., Suppasri, A., and Imamura, F.: Stochastic analysis and uncertainty assessment of tsunami wave height using a random source parameter model that targets a Tohoku-type earthquake fault, Stoch. Env. Res. Risk A., 29, 1763–1779, https://doi.org/10.1007/s00477-014-0966-4, 2015. a
Fukutani, Y., Moriguchi, S., Terada, K., and Otake, Y.: Time-dependent probabilistic tsunami inundation assessment using mode decomposition to assess uncertainty for an earthquake scenario, J. Geophys. Res.-Oceans, 126, e2021JC017250, https://doi.org/10.1029/2021JC017250, 2021. a, b, c
Geist, E. L. and Parsons, T.: Probabilistic analysis of tsunami hazards, Nat. Hazards, 37, 277–314, https://doi.org/10.1007/s11069-005-4646-z, 2006. a
Gomez, C. and Baker, J. W.: An optimization-based decision support framework for coupled pre- and post-earthquake infrastructure risk management, Struct. Saf., 77, 1–9, https://doi.org/10.1016/j.strusafe.2018.10.002, 2019. a
Gopinathan, D., Heidarzadeh, M., and Guillas, S.: Probabilistic quantification of tsunami current hazard using statistical emulation, Proc. R. Soc., 477, 20210180, https://doi.org/10.1098/rspa.2021.0180, 2021. a
Goto, C., Ogawa, Y., Shuto, N., and Imamura, F.: Numerical method of tsunami simulation with the leap-frog scheme, IUGG/IOC TIME Project, IOC Manual and Guides, 35, 1–126, 1997. a
Grezio, A., Babeyko, A., Baptista, M. A., Behrens, J., Costa, A., Davies, G., Geist, E. L., Glimsdal, S., González, F. I., Griffin, J., Harbitz, C. B., LeVeque, R. J., Lorito, S., Løvholt, F., Omira, R., Mueller, C., Paris, R., Parsons, T., Polet, J., Power, W., Selva, J., Sørensen, M. B., and Thio, H. K.: Probabilistic Tsunami Hazard Analysis: Multiple sources and global applications, Rev. Geophys., 55, 1158–1198, https://doi.org/10.1002/2017RG000579, 2017. a
Ha, D. M., Tkalich, P., and Chan, E. S.: Tsunami forecasting using proper orthogonal decomposition method, J. Geophys. Res.-Oceans, 113, C06019, https://doi.org/10.1029/2007JC004583, 2008. a
Heidarzadeh, M. and Kijko, A.: A probabilistic tsunami hazard assessment for the Makran subduction zone at the northwestern Indian Ocean, Nat. Hazards, 56, 577–593, https://doi.org/10.1007/s11069-010-9574-x, 2011. a
Hoerl, A. E. and Kennard, R. W.: Ridge regression: Biased estimation for nonorthogonal problems, Technometrics, 12, 55–67, https://doi.org/10.1080/00401706.1970.10488634, 1970. a
Holland, J. H.: Adaptation in Natural and Artificial Systems, second edition, University of Michigan Press, Ann Arbor, MI, ISBN 9780262581110, 1992. a
Hotelling, H.: Analysis of a complex of statistical variables into principal components, J. Educ. Psychol., 25, 417–441, 1933. a
Imamura, F.: Review of tsunami simulation with a finite difference method, in Long-Wave Runup Models, edited by: Yeh, H., Liu, P., and Synolakis, C., World Scientific Publishing, Hackensack, N. J, 25–42, https://doi.org/10.1142/9789814530330, 1995. a
Ishikawa, Y. and Kameda, H.: Hazard-consistent magnitude and distance for extended seismic risk analysis, Proceedings of the 9th World Conference on Earthquake Engineering, Tokyo-Kyoto, 89–94, 2–9 August 1988. a
Japan Society of Civil Engineering: The method of probabilistic tsunami hazard analysis (in Japanese), https://committees.jsce.or.jp/ceofnp/system/files/PTHA20111209_0.pdf, 2011. a
Jolliffe, I. T. and Cadima, J.: Principal component analysis: a review and recent developments, Philos. T. R. Soc. A, 374, 20150202, https://doi.org/10.1098/rsta.2015.0202, 2016. a
Karhunen, K.: Über lineare Methoden in der Wahrscheinlichkeitsrechnung, Ann. Acad. Sci. Fenn. A1, 37, 3–79, 1947. a
Kerschen, G., Golinval, J. C., Vakakis, A. F., and Bergman, L. A.: The method of proper orthogonal decomposition for dynamical characterization and order reduction of mechanical systems: An overview, Nonlinear Dyn. 41, 147–169, https://doi.org/10.1007/s11071-005-2803-2, 2005. a
Kosambi, D. D.: Statistics in function space, J. Indian Math. Soc., 7, 76–88, 1943. a
Kotani, T., Tozato, K., Takase, S., Moriguchi, S., Terada, K., Fukutani, Y., Otake, Y., Nojima, K., Sakuraba, M., and Choe, Y.: Probabilistic tsunami hazard assessment with simulation-based response surfaces, Coast. Eng., 160, 103719, https://doi.org/10.1016/j.coastaleng.2020.103719, 2020. a, b, c, d
Kubota, T., Saito, T., and Nishida, K.: Global fast-traveling tsunamis driven by atmospheric Lamb waves on the 2022 Tonga eruption, Science, 377, 91–94, https://doi.org/10.1126/science.abo4364, 2022. a
LeVeque, R. J., Waagan, K., Gonźalez, F. I., Rim, D., and Lin, G.: Generating random earthquake events for probabilistic tsunami hazard assessment, Pure Appl. Geophys., 173, 3671–3692, https://doi.org/10.1007/s00024-016-1357-1, 2016. a, b, c
Maharjan, R. and Hanaoka, S.: A credibility-based multi-objective temporary logistics hub location- allocation model for relief supply and distribution under uncertainty, Socio-Econ. Plan. Sci., 70, 100727, https://doi.org/10.1016/j.seps.2019.07.003, 2020. a
McGuire, R. K.: Seismic design spectra and mapping procedures using hazard analysis based directly on oscillator response, Earthq. Eng. Struct. Dyn., 5, 211–234, https://doi.org/10.1002/eqe.4290050302, 1977. a
Melgar, D., LeVeque, R. J., Dreger, D. S., and Allen, R. M.: Kinematic rupture scenarios and synthetic displacement data: An example application to the Cascadia Subduction Zone, J. Geophys. Res.-Sol. Ea., 121, 6658–6674, https://doi.org/10.1002/2016JB013314, 2016. a
Miller, M. and Baker, J.: Ground-motion intensity and damage map selection for probabilistic infrastructure network risk assessment using optimization, Earthq. Eng. Struct. Dyn., 44, 1139–1156, https://doi.org/10.1002/eqe.2506, 2015. a
American Society of Civil Engineers: Minimum Design Loads and Associated Criteria for Buildings and Other Structures, American Society of Civil Engineers, ASCE/sei 7-16 edition, 2017. a
Mitsoudis, D. A., Flouri, E. T., Chrysoulakis, N., Kamarianakis, Y., Okal, E. A., and Synolakis, C. E.: Tsunami hazard in the Southeast Aegean Sea, Coast. Eng., 60, 136–148, https://doi.org/10.1016/j.coastaleng.2011.09.004, 2012. a
Močkus, J.: On bayesian methods for seeking the extremum, Springer, Berlin, Heidelberg, https://doi.org/10.1007/3-540-07165-2_55, 1975. a
Mohamadi, A. and Yaghoubi, S.: A bi-objective stochastic model for emergency medical services network design with backup services for disasters under disruptions: An earthquake case study, Int. J. Disast. Risk Re., 23, 204–217, https://doi.org/10.1016/j.ijdrr.2017.05.003, 2017. a
Mori, N. and Takahashi, T.: The 2011 Tohoku Earthquake Tsunami joint survey group: Nationwide post event survey and analysis of the 2011 Tohoku earthquake tsunami, Coast. Eng. J., 54, 1250001-1–1250001-27, https://doi.org/10.1142/S0578563412500015, 2012. a
Mori, N., Goda, K., and Cox, D.: Recent process in probabilistic tsunami hazard analysis (PTHA) for mega thrust subduction earthquakes, 2011 Jap. Earthq. Tsunami Reconstr. Restor., 47, 469–485, https://doi.org/10.1007/978-3-319-58691-5_27, 2017. a
Nakano, Y.: Structural design requirements for tsunami evacuation buildings in Japan, ACI Symp. Publ., 1–12, 313, 2017. a
Nakano, M., Murphy, S., Agata, R., Igarashi, Y., Okada, M., and Hori, T.: Self-similar stochastic slip distributions on a non-planar fault for tsunami scenarios for megathrust earthquakes, Prog. Earth Planet Sci., 7, 45, https://doi.org/10.1186/s40645-020-00360-0, 2020. a, b
Nojima, N., Kuse, M., and Duc, L. Q.: Mode decomposition and simulation of strong ground motion distribution using singular value decomposition, J. Jap. Assoc. Earthq. Eng., 18, 95–114, https://doi.org/10.5610/jaee.18.2_95, 2018. a
Omira, R., Baptista, M. A., and Matias, L.: Probabilistic tsunami hazard in the Northeast Atlantic from near- and far-field tectonic sources, Pure Appl. Geophys., 172, 901–920, https://doi.org/10.1007/s00024-014-0949-x, 2015. a
Omira, R., Matias, L., and Baptista, M. A.: Developing an event-tree probabilistic tsunami inundation model for NE Atlantic coasts: Application to a case study, Pure Appl. Geophys., 173, 3775–3794, https://doi.org/10.1007/s00024-016-1367-z, 2016. a
Omira, R., Ramalho, R. S., Kim, J., González, P. J., Kadri, U., Miranda, J. M., Carrilho, F., and Baptista, M. A: Global Tonga tsunami explained by a fast-moving atmospheric source, Nature, 609, 734–740, https://doi.org/10.1038/s41586-022-04926-4, 2022. a
Park, H. and Cox, D. T.: Probabilistic assessment of near-field tsunami hazards: Inundation depth, velocity, momentum flux, arrival time, and duration applied to seaside, Oregon. Coast. Eng., 117, 79–96, https://doi.org/10.1016/j.coastaleng.2016.07.011, 2016. a
Park, S., van de Lindt, J. W., Gupta, R., and Cox, D.: Method to determine the locations of tsunami vertical evacuation shelters, Nat. Hazards, 63, 891–908, https://doi.org/10.1007/s11069-012-0196-3, 2012. a
Qin, X., Motley, M. R., and Marafi, N. A.: Three-dimensional modeling of tsunami forces on coastal communities, Coast. Eng., 140, 43–59, https://doi.org/10.1016/j.coastaleng.2018.06.008, 2018. a
Rawls, C. G. and Turnquist, M. A.: Pre-positioning of emergency supplies for disaster response, Transp. Res. B Methodol., 44, 521–534, https://doi.org/10.1016/j.trb.2009.08.003, 2010. a
Salmanidou, D. M., Beck, J., Pazak, P., and Guillas, S.: Probabilistic, high-resolution tsunami predictions in northern Cascadia by exploiting sequential design for efficient emulation, Nat. Hazards Earth Syst. Sci., 21, 3789–3807, https://doi.org/10.5194/nhess-21-3789-2021, 2021. a, b
Scala, A., Lorito, S., Romano, F., Murphy, S., Selva, J., Basili, R., Babeyko, A., Herrero, A., Hoechner, A., Løvholt, F., Maesano, F. E., Perfetti, P., Tiberti, M. M., Tonini, R., Volpe, M., Davies, G., Festa, G., Power, W., Piatanesi, A., and Cirella, A.: Effect of shallow slip amplification uncertainty on probabilistic tsunami hazard analysis in subduction zones: Use of long-term balanced stochastic slip models, Pure Appl. Geophys., 177, 1497–1520, https://doi.org/10.1007/s00024-019-02260-x, 2020. a
Sørensen, M. B., Spada, M., Babeyko, A., Wiemer, S., and Grünthal, G.: Probabilistic tsunami hazard in the Mediterranean Sea, J. Geophys. Res., 117, B01305, https://doi.org/10.1029/2010JB008169, 2012. a
Stone, M.: Cross-validatory choice and assessment of statistical predictions, J. Roy. Stat. Soc. Ser. B, 36, 111–147, https://doi.org/10.1111/j.2517-6161.1974.tb00994.x, 1947. a
Suppasri, A., Mas, E., Charvet, I., Gunasekera, R., Imai, K, Fukutani, Y., Abe, Y., and Imamura, F.: Building damage characteristics based on surveyed data and fragility curves of the 2011 great east Japan tsunami, Nat. Hazards, 66, 319–341, https://doi.org/10.1007/s11069-012-0487-8, 2013. a
Suppasri, A., Pakoksung, K., Charvet, I., Chua, C. T., Takahashi, N., Ornthammarath, T., Latcharote, P., Leelawat, N., and Imamura, F.: Load-resistance analysis: an alternative approach to tsunami damage assessment applied to the 2011 Great East Japan tsunami, Nat. Hazards Earth Syst. Sci., 19, 1807–1822, https://doi.org/10.5194/nhess-19-1807-2019, 2019. a
Takase, S., Moriguchi, S., Terada, K., Kato, J., Kyoya, T., Kashiyama, K., and Kotani, T.: 2D-3D hybrid stabilized finite element method for tsunami runup simulations, Comput. Mech., 58, 411–422, https://doi.org/10.1007/s00466-016-1300-4, 2016. a
Tozato, K.: K-Tozato/3D_tsunami_simulation: (Dataset_for_NHESS), Zenodo [data set], https://doi.org/10.5281/zenodo.6394294, 2022. a
Tozato, K., Takase, S., Moriguchi, S., Terada, K., Otake, Y., Fukutani, Y., Nojima, K., Sakuraba, M., and Yokosu, H.: Rapid tsunami force prediction by mode-decomposition-based surrogate modeling, Nat. Hazards Earth Syst. Sci., 22, 1267–1285, https://doi.org/10.5194/nhess-22-1267-2022, 2022. a, b, c, d, e, f, g, h
Tsuji, Y., Satake, K., Ishibe, T., Kusumoto, S., Harada, T., Nishiyama, A., Kim, H. Y., Ueno, T., Murotani, S., Oki, S., Sugimoto, M., Tomari, J., Heidarzadeh, M., Watada, S., Imai, K., Choi, B. H., Yoon, S. B., Bae, J. S., Kim, K. O., and Kim, H. W.: Field surveys of tsunami heights from the 2011 Off the Pacific Coast of Tohoku, Japan, earthquake, Bull. Earthq. Res. Inst. Univ. Tokyo, 86, 29–279, 2011 (in Japanese with English abstract). a
Wang, C., Duan, Q., Gong, W., Ye, A., Di, Z., and Miao, C.: An evaluation of adaptive surrogate modeling based optimization with two benchmark problems, Environ. Model. Soft., 60, 167–179, https://doi.org/10.1016/j.envsoft.2014.05.026, 2014.
a
Winter, A. O., Alam, M. S., Asce, S. M., Shekhar, K., Motley, M. R, Asce, M., Eberhard, M. O., Barbosa, A. R., Asce, A. M., Lomonaco, P., Arduino, P., and Cox, D. T.: Tsunami-like wave forces on an elevated coastal structure: Effects of flow shielding and channeling, J. Waterw. Port Coast. Ocean Eng., 146, 04020021, https://doi.org/10.1061/(ASCE)WW.1943-5460.0000581, 2020. a, b, c
Xiong, Y., Liang, Q., Park, H., Cox, D., and Wang, G.: A deterministic approach for assessing tsunami-induced building damage through quantification of hydrodynamic forces, Coast. Eng., 144, 1–14, https://doi.org/10.1016/j.coastaleng.2018.11.002, 2019. a
Zhang, W. and Yun, Y.: Multi-scale accessibility performance of shelters types with diversity layout in coastal port cities: A case study in Nagoya City, Japan, Habitat Int., 83, 55–64, https://doi.org/10.1016/j.habitatint.2018.11.002, 2019. a
Short summary
This study presents a framework that efficiently investigates the optimal placement of facilities probabilistically based on advanced numerical simulation. Surrogate models for the numerical simulation are constructed using a mode decomposition technique. Monte Carlo simulations using the surrogate models are performed to evaluate failure probabilities. Using the results of the Monte Carlo simulations and the genetic algorithm, optimal placements can be investigated probabilistically.
This study presents a framework that efficiently investigates the optimal placement of...
Altmetrics
Final-revised paper
Preprint