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Abstract. This study proposes a framework for utilizing
results obtained from advanced numerical simulations and
performing probabilistic tsunami hazard assessment for in-
vestigating optimal facility placement. A set of numerical
simulations of the tsunami off the Pacific coast caused by
the 2011 Tohoku earthquake are performed considering un-
certainties in fault parameters. Both inundation depths and
tsunami forces acting on buildings are numerically simulated
and defined as tsunami hazard indices. Proper orthogonal de-
composition is then applied to numerical results for extract-
ing characteristic spatial modes, which can be used to con-
struct surrogate models. Monte Carlo simulations (MCSs)
were performed at a low computational cost using surrogate
models. The optimal placement of facilities was probabilis-
tically investigated with the help of genetic algorithms us-
ing the MCS results along with the concept of system failure
probability. The results indicate that the proposed framework
allows determining the optimal placement of facilities by ap-
plying different strategies at low computational costs while
effectively reflecting the results of advanced tsunami simula-
tions.

1 Introduction

A tsunami is a natural disaster that has a large geological im-
pact, with a recent example of the global 2022 Tonga tsunami
(Omira et al., 2022; Kubota et al., 2022). Hazard prediction
using numerical methods is essential for reducing the dam-
age caused by tsunamis. Numerical analysis techniques for
tsunamis have developed considerably over the years, and
high-accuracy hazard assessments and predictions have now
become possible (Qin et al., 2018; Xiong et al., 2019). Nat-
ural disasters such as tsunamis have numerous uncertainties
(Grezio et al., 2017), and therefore, conducting probabilis-
tic hazard assessments that consider such factors is of high
importance. Advanced numerical analyses are often unsuit-
able for probabilistic hazard assessment because they require
a large number of calculation cases. Therefore, it is necessary
to develop a framework that effectively uses few but reliable
numerical simulation results for a probabilistic assessment.
Probabilistic analyses of natural disasters have been per-
formed for many years in the fields of seismology. Among
these, the study by Cornell (Cornell, 1968) is considered
groundbreaking. Many research results have been reported
on probabilistic seismic hazard analyses (PSHAs) (McGuire,
1977, Ishikawa and Kameda, 1988). Probabilistic tsunami
hazard analyses (PTHAs) have been performed based on
PSHAs, to investigate the relationship between tsunami
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heights and their exceedance probabilities in a specified pe-
riod (Geist and Parsons, 2006; Annaka et al., 2007; Fukutani
et al., 2015; Mori et al., 2017; Omira et al., 2016). Some
other studies focused on actual regions such as the south-
east Aegean Sea (Mitsoudis et al., 2012), Makran subduc-
tion zone (Heidarzadeh and Kinjo, 2011; El-Hussain et al.,
2016), Cascadia subduction zone (Park and Cox, 2016; LeV-
eque et al., 2016; Salmanidou et al., 2021), Nankai Trough
subduction zone (Nakano et al., 2020; Baba et al., 2022), and
other regions (Sgrensen et al., 2012; Omira et al., 2015). In
addition, slip distributions have been investigated based on
probabilistic approaches (LeVeque et al., 2016; Nakano et
al., 2020; Scala et al., 2020). Moreover, numerous studies
have been conducted to efficiently utilize numerical simu-
lations by constructing surrogate models and utilizing them
in PTHAs. For example, response surface-based approaches
that use a polynomial functions (Kotani et al., 2020), a ra-
dial basis function (Gopinathan et al., 2021), and Gaussian
process regression (Salmanidou et al., 2021; Alhamid et al.,
2022) have been reported. A surrogate model constructed
based on the concept of the singular value decomposition
is noteworthy because spatial modes are utilized efficiently
(Fukutani et al., 2021).

The appropriate placement of infrastructure and evacua-
tion facilities is important to mitigate the tsunami impact on
coastal communities. Several studies have used a probabilis-
tic approach for the optimal placement of network systems
and facilities considering the uncertainties of disasters such
as earthquakes or tsunamis. These studies focused on risk
assessments for infrastructure system networks (Gomez and
Baker, 2019; Miller and Baker, 2015), optimization of relief
supply bases and their delivery (Cavdur et al., 2020a, b; Ma-
harjan and Hanapla, 2020), optimal placement of public and
evacuation facilities (Park et al., 2012; Zhang and Yun, 2019;
Doerner et al., 2008), emergency medical service networks
(Mohamadi and Yaghoubi, 2017), and optimal allocation of
budgets for disaster countermeasures (Rawls and Turnquist,
2010).

As discussed above, many research studies exist on
PTHASs and the probabilistic optimal placement of facilities;
however, only a few studies efficiently used the results ob-
tained from advanced numerical analysis. In this study, we
applied mode decomposition using proper orthogonal de-
composition (POD) (Kerschen et al., 2005) to enable effec-
tive use of data by extracting data characteristics or reduc-
ing data dimensions. The POD is often treated as an equiv-
alent of the Karhunen-Loeve decomposition developed by
Karhunen (1947) or Kosambi (1943), or the principal com-
ponent analysis (PCA) (Jolliffe and Cadima, 2016) devel-
oped by Hotelling (1933). POD has numerous applications
in a wide range of fields, and there are various application
examples in the fields of both seismic and tsunami engineer-
ing. For example, Ha et al. (2008) applied POD for reducing
computational costs to construct a tsunami surrogate model.
LeVeque et al. (2016) and Melgar et al. (2016) applied the
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Karhunen-Logeve expansion for considering the fault slip dis-
tribution under various scenarios. In addition, Nojima et al.
(2018) conducted research on the combination of singular
value decomposition and numerical simulations to predict
the distribution of strong motion; Bamer and Bucher (2012)
used nonlinear finite element methods to construct a surro-
gate model using POD for predicting the behavior of build-
ings. Moreover, Fukutani et al. (2021) constructed a surro-
gate model that used POD to implement probabilistic inun-
dation assessments. POD can extract features of spatial and
temporal distributions of risk indices, and therefore it is suit-
able for constructing surrogate models for disaster hazard as-
sessment.

Given this context, we constructed a surrogate model by
applying POD to advanced three-dimensional (3D) tsunami
simulations. We propose a method in which this surrogate
model is used to efficiently investigate the optimal place-
ment of facilities such as infrastructure facilities, relief sup-
ply bases, and evacuation shelters based on the probability
theory. Research examples of PTHAS using surrogate models
of numerical simulations include the previously mentioned
approach of using mode decomposition by Fukutani et al.
(2021) and the approach of using response surfaces by Kotani
et al. (2020). However, to the best of our knowledge, there is
no study that investigates the optimal placement of facilities
based on probability theory using a surrogate model. We con-
structed a surrogate model using mode decomposition based
on the results obtained from advanced numerical simulations.
We also developed a method that can efficiently investigate
the optimal placement of facilities based on the probability
theory using this surrogate model.

The rest of this paper is organized as follows. Section 2
describes the framework and methods used in this study. In
Sect. 3, we applied the proposed method to the Great East
Japan Earthquake (Tsuji et al., 2011) as an application ex-
ample that considers the actual damage, and we validated the
constructed surrogate model. We also implemented Monte
Carlo simulations to conduct probabilistic risk assessments.
Furthermore, the Monte Carlo simulation results and a ge-
netic algorithm were integrated to investigate the optimal
placement of facilities, and the usefulness of the proposed
method was discussed. Finally, Sect. 4 describes the conclu-
sions.

2 Search method for the probabilistic optimal
placement using a surrogate model

A combined two-dimensional (2D) and 3D tsunami analysis
was conducted for multiple scenarios with different fault pa-
rameters. The maximum tsunami fluid force and maximum
inundation depth were adopted as the assessment indicators.
The POD was applied to results obtained from these anal-
yses to extract the spatial modes of the tsunami force and
inundation depth; these spatial modes were used to construct

https://doi.org/10.5194/nhess-23-1891-2023



K. Tozato et al.: Optimal probabilistic placement of facilities using a surrogate model

Tsunami Simulation | (Section 2.1)

1893

2D analysis

Nonlinear shallow water equations

"

B

¥

Connection between 2D and 3D analysis

2

3D analysis area

‘ﬁc.

Spatial distribution of
tsunami hazard indices
for arbitrary
uncertainty parameters

5
&

‘Monte Carlo Simulation ‘

Tsunami hazard indices: Tsunami force and Inundation

3D analysis

Navier-Stokes equation

2D analysis|
area

Mode Decomposition Based Surrogate Model | (Section 2.2)

(B: uncertainty parameters)

Probability density of tsunami force and inundation at each point
Maps of exceedance probability

|Optimal Arrangement with Exceedance Probability ‘ (Section 2.3)

Exceedance

Optimization by Genetic Algorithm

Map

Probability ,‘%E

Initialization

—->

[ Selection | [ Crossover | [ Mutation |
Fitness
0.9
0.7

0.5

!

A
ﬂ%y (% : Placement of facilities)
b

Figure 1. Flowchart of probabilistic tsunami hazard analysis using the mode-decomposition-based surrogate model.

a surrogate model. Based on this model, the spatial distri-
bution of the tsunami hazard index for an arbitrary scenario
can be calculated with a low computational cost. This surro-
gate model and the uncertainty parameter fluctuation infor-
mation were combined to implement a Monte Carlo simula-
tion, and the probability distribution of the tsunami force and
inundation depth was computed at each assessment point. A
threshold value was set to create an exceedance probability
map. Finally, the Monte Carlo simulation results and a ge-
netic algorithm were integrated to investigate the optimal fa-
cility placement. Figure 1 shows a flowchart of this study.
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2.1 Tsunami simulation method

Numerical analyses were conducted to construct a surrogate
model of each tsunami hazard index in the target region. A
numerical analysis that combined 2D and 3D analyses was
conducted. First, a wide-area 2D tsunami analysis was per-
formed; then, the time history of the tsunami wave height
and flow velocity observed offshore of the target area were
acquired. In this study, the analyses were conducted using
TUNAMI-N2 (Imamura, 1995; Goto et al., 1997). The fol-
lowing continuity and nonlinear longwave equations were
solved in the 2D analysis:
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at

N

T (1)

Nat. Hazards Earth Syst. Sci., 23, 1891-1909, 2023



1894 K. Tozato et al.: Optimal probabilistic placement of facilities using a surrogate model

8M+8 M2+8 MN
at  ax| D ay| D

9 2
+eD 2+ 8 ME N2 =0 o)
0x D3
8N+ 9 [MN N 3 [N?
ot  dx| D dy | D
9 2
+ D 4 &N M N2 =0, 3)
dy D3

where M, N, n, D, g, and n represent the flow rate in the x
direction, flow rate in the y direction, water level, total wa-
ter depth, gravitational acceleration, and Manning roughness
coefficient, respectively.

The obtained tsunami wave height and flow velocity were
set as boundary conditions, and the tsunami waves reach-
ing the target area were analyzed. The method proposed by
Takase et al. (2016) is used for the boundary conditions of the
2D and 3D analyses. The time-series data of the wave height
and flow velocity obtained from the 2D wide-area analysis
were stored and transferred to the 3D numerical analysis by
linear interpolation in space. The interpolated values were
input to the 3D analysis as input data.

A 3D analysis was performed to assess the fluid force act-
ing on the buildings in the target area. We employed the fol-
lowing set of 3D Navier—Stokes and continuity equations in
the analysis domain Qs € R3

p(aa—l;~|—u-Vu—f>—V~a=0 )
Vou=0, )

where p, u, o, and f represent the mass density, velocity
vector, stress tensor, and body force vector, respectively. Fur-
ther, assuming a Newtonian fluid, the stress is calculated as

o=—pl+2ue(u), (6)

where p, u, and e(u) represent the pressure, coefficient of
viscosity, and velocity gradient tensor, respectively. &(u) is
defined as

e(u) = % (w + (Vu)T) . )

A stabilized finite element method (SFEM) is used to solve
the governing equations of the 3D simulation. The detailed
explanation of the numerical method used in this study is
described in the relevant paper (Tozato et al., 2022). For
the tsunami uncertainty, two fault parameters were adopted
as uncertainty parameters, and the numerical analyses were
conducted for several scenarios in which these parameters
were changed. The specific analysis area setting conditions
are presented in Sect. 3.
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2.2 Construction of the surrogate model using mode
decomposition

POD was used to extract the spatial characteristic modes
from the results of the numerical analysis. To apply POD,
a column vector x; (called a data vector) was defined to ac-
commodate a tsunami hazard index, for which we selected
the spatial distribution of either the maximum impact force
acting on the buildings or the maximum inundation depth ob-
tained from a numerical simulation for scenario i. If there are
n evaluation points, x; has n components. Then, a data ma-
trix was created by arranging all data vectors according to a
certain rule to be used for a target of POD.

| |
X = X1 o XN , (8)

where N refers to the number of scenarios. Furthermore, the
vertical line in Eq. (8) was used to indicate that the data vec-
tor is a column vector. Using this matrix, the covariance ma-
trix of the data was expressed in the form of C = XX7. The
eigenvalues and eigenvectors represent the variances and spa-
tial modes. We assumed that eigenvalues were arranged in
the descending order from the first mode; the eigenvalue and
eigenvector corresponding to the jth mode were expressed
as A; and uj, respectively. Furthermore, in POD, the con-
tribution rate of each mode is often used as a criterion for
determining the number of dimensions to be reduced. The
contribution rate is an index that shows how much each mode
explains the data. The contribution rate of the jth mode d; is

expressed using the eigenvalues Ax(k =1, ...,n) as
di= — ©)
! ZZ:Mk .

Singular value decomposition was used to express the data
matrix using the eigenvalue A ; and eigenvector u:

| | N
X=UxV'=| u - u, ( )
| | Vip
— v -
=UA", (10)
-

where U, X, V, p, and AT =xvT represent a matrix in
which modes are arranged in the column direction, a matrix
in which the square roots of the eigenvalues are arranged in
diagonal terms, a matrix in which the eigenvectors of X7 X
are arranged, the number of eigenvalues greater than zero,
and a matrix in which the POD coefficients are arranged, re-
spectively. The relationship of singular value decomposition
for the result of one scenario is given as

P
Xi= Y ol =oqiuy -+ aiplty, Y
k=1
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where ¢ donates the ik component of matrix A in which the
POD coefficients are arranged. When removing modes with
low explainability for data, the data vector was expressed ap-
proximately as a linear combination that excludes the modes
with a low contribution rate by determining the number of
modes r to be reduced from the contribution rate or other
indices.

QiU =i U]+ + ity (12)

r
X; =

k=1
A reduction in dimensions results in a loss of information
contained in the omitted modes. If these data x; are the re-
sult of the uncertainty parameter f;, the POD coefficients
of any uncertainty parameter 8 can be expressed. Therefore,
next, the POD coefficients «;; are expressed as functions
fx(B)(k =1, ..., r) of the uncertainty parameter. The surro-

gate model can be expressed as a function of the uncertainty
parameter for each corresponding mode.

RB) =) fiBux (13)
k=1

Radial basis functions (RBFs) (Buhmann, 1990) were used
as interpolation functions to handle cases where analysis sce-
narios were not evenly arranged in the parameter space. The
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function fj(B) corresponding to mode k can be expressed as

N N
KB =D wip(B.B) = wiexp(—y|IB—B;II*)

i=1 i=1
k=1,....,r), (14)

where f; w, ¢(B, B;), and y represent the input parameter
group for scenario i, weight, basis function, and a parame-
ter that determines the smoothness of the function, respec-
tively. The weights of RBF interpolation can be obtained by
substituting the correspondence between the known input pa-
rameter 8; and POD coefficient o that expresses the output
result.

a1k ¢(B1.B1) ¢(B1.BN) wi
Nk ¢By.B1) ¢(Bn.Bn) wWN
k=1,...,r)
15)
They can be expressed in their respective bold forms as
ar=0w, (k=1,...,r), (16)

where a represents a vector in which the coefficients of the
kth mode are arranged and wy represents a vector in which
the weights of f;(B) are arranged. The function using the
weight obtained in Eq. (15) is expressed as an interpola-
tion that passes through all referenced data points. However,
cases in which referenced data points change or oscillate at
a local level can result in interpolation with a minor physical
meaning. To resolve such issues, we introduced a regulariza-
tion term for computing the weights. We introduced L2 regu-
larization called ridge regression (Hoerl and Kennard, 1970);
weight w; was obtained by solving the following optimiza-
tion problem.

arg min((le — ®wil; + 4l wil ) a7

k

This process is used in the field of machine learning to pre-
vent overfitting. Here, A indicates the degree of regulariza-
tion. Introducing the regularization term allows suppress-
ing the local oscillations and enabling smooth interpolations.
However, care must be taken for cases in which regulariza-
tion is introduced because this may not pass through all data
points. Furthermore, the accuracy of interpolation depends
on the RBF parameter y and regularization parameter A,
and therefore, these parameters must be determined appro-
priately. In this study, a combination of these parameters was
determined by cross-validation (Stone, 1947) and Bayesian
optimization (Mockus, 1975).

2.3 Search for optimal placement using a genetic
algorithm

A genetic algorithm (Holland, 1992) was used to search
for the optimal placement. Genetic algorithms search for
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Table 1. Names of calculation cases (Tozato et al., 2022).
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Rake
[°1T -=20 —15 —10 -5 0 +5 + 10 +15 +20 +25
[%] Normalized 0.753 0.815 0.877 0.938 1 1.062 1.123 1.185 1.247 1.309
value

70 0.7 SI1IR1 SIR2 SIR3 SIR4 SIR5 S1R6 S1R7 SIR8 SIR9 SIRI10

85 0.85 S2R1 S2R2 S2R3 S2R4 S2R5 S2R6 S2R7 S2R8 S2R9  S2R10

Slip 100 1 S3R1 S3R2 S3R3 S3R4 S3R5 S3R6 S3R7 S3R8 S3R9 S3RI10
120 1.2 S4R1 S4R2 S4R3 S4R4 S4R5 S4R6  S4R7 S4R8 S4R9  S4R10

140 14 S5R1 S5R2 S5R3 S5R4 S5R5 S5R6  S5R7  S5R8 S5R9  S5RI10
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Figure 3. Illustration of the fault parameters (adapted from Kotani
et al., 2020).

approximate solutions of data, where multiple individuals
whose solution candidates are expressed with genes are
prepared, individuals with high fitness are preferentially
selected, and the solutions are searched for by repeating
crossover and mutation operations. The problem targeted in
this study includes an extremely large number of assessment
points; furthermore, checking all combinations is extremely
inefficient. We adopted the genetic algorithm for the combi-
nation optimization problem.

Figure 2 shows an overview of the genetic algorithm. In
this study, the assessment point number was placed in the
component of each individual, and these combinations were
optimized using a genetic algorithm. First, the number of in-
dividuals was determined, and a combination of points to be
selected was randomly determined for the initial individuals.
Second, the fitness was calculated for the generated individ-
uals. Two individuals that will be the parents of the next gen-
eration were then selected based on the obtained fitness. The
parent selection method involves selecting high-fitness in-
dividuals as parents and eliminating low-fitness individuals.

Nat. Hazards Earth Syst. Sci., 23, 1891-1909, 2023
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Figure 4. Boundary between 2D and 3D analysis areas. Points A
to H are used to compare the inundation depths between the obser-
vational data and simulation results (© Google Maps, Tozato et al.,
2022).

The next generation of individuals is generated by randomly
exchanging each component for the two selected parents. The
location and number of exchanges are determined randomly;
this is repeated until the number of individuals in the next
generation reaches the initially set number. We adopted an
elite conservation strategy to avoid the deterioration of fitness
during generational change, with settings such that some top
individuals with high fitness can pass on to the next genera-
tion. The final next-generation individuals were determined
by mutating each component of each individual with a cer-
tain probability. In this process, the point number may be du-
plicated within one individual. In such cases, the duplicated
point is re-selected randomly. This process was repeated un-
til the fitness converged, and an optimal point combination
was determined.
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Figure 5. Snapshots of the tsunami runup obtained through 3D analysis (Tozato et al., 2022).
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Figure 6. Comparison of the inundation between observational data
and numerical simulation (observation data are provided by field
survey results, The 2011 Tohoku Earthquake Tsunami Joint Survey
Group, 2012; Tozato et al., 2022).

3 Application to case studies with a recent tsunami

The method described in the previous section was applied
to a problem in which an actual tsunami was assumed. We
conducted a set of numerical analyses that considered uncer-
tainties with the 2011 earthquake off the coast of Tohoku as
the target event. We applied mode decomposition on these
results to construct a surrogate model of the numerical anal-
ysis and implemented Monte Carlo simulations to investigate
the optimal placement of facilities probabilistically.

3.1 Tsunami simulation

We used the same numerical analysis results as those re-
ported in the previous research (Tozato et al., 2022). The
reader is referred to the study by (Tozato et al., 2022) for
details regarding the computational conditions. This study

https://doi.org/10.5194/nhess-23-1891-2023

considers the slip and rake as uncertainty parameters (Fig. 3)
because these parameters are supposed to have a deep rela-
tionship with the characteristics of a fault stagger. Parameters
at the time of the earthquake off the coast of Tohoku were set
as mean values, with the slip varying between 0.7 and 1.4
times and the rake varying between —20 and +25°. The fault
parameters are shown in Fig. 3, and Table 1 summarizes all
analysis cases. In this study, the validity of the constructed
surrogate model was verified using £10° rake cases among
the 50 cases presented in Table 1. The remaining 40 cases
were used to construct the surrogate model.

Figures 4 and 5 show the target area and snapshots of
the analysis results of the inundation area for the mean case
(S3R5). The simulation result for case S3R5, which corre-
sponds to the actual tsunami condition, is compared with the
observed data to confirm the validity of the numerical simu-
lations (The 2011 Tohoku Earthquake Tsunami Joint Survey
Group, 2012; Mori et al., 2012). Figure 6 shows the simu-
lated and observed inundation depths at points A to H indi-
cated in Fig. 4. These results show that observation values
were reproduced in areas around the shore, although there
were some differences between the numerical analysis re-
sults and observed results at locations far away from the
shore. The difference between the numerical analysis results
and observed values in locations away from the shore was
considered because the outflows of the buildings were not
considered. Hence, the waves did not reach the locations far
away from the shore.

Both the impact force acting on the buildings and the in-
undation depth were adopted as tsunami hazard indices. The
effects of the tsunami fluid force were considered in the re-
cent design criteria (American Society of Civil Engineers,
2017; Nakano, 2017), and therefore, we considered the fluid

Nat. Hazards Earth Syst. Sci., 23, 1891-1909, 2023
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Figure 7. Image of a mesh for evaluating tsunami force (Tozato et
al., 2022).

force acting on buildings as a tsunami hazard index. A 3D
simulation was conducted to construct a surrogate model of
the tsunami fluid force. However, the tsunami fluid force is
strongly influenced by the direction that the building faces,
and it is difficult to assess the fluid force for each point. Thus,
the tsunami fluid force was assessed with a 2D mesh consist-
ing of approximately 10m x 10m grids in this study, each
of which is a unit for force evaluation. The tsunami impact
force is calculated by synthesizing all pressures acting on the
surfaces of buildings within each grid in the two horizontal
directions and averaged over the grid. Then, each grid is con-
sidered a point associated with this averaged force. In addi-
tion, for each point, the maximum impact force is represented
by evaluating the maximum value over the analysis time. An
image of a mesh for evaluating the tsunami force is shown in
Fig. 7. The target area is 2145 x 2600 m; hence, the number
of assessment points in the POD is n = 214 x 260 = 55 640.

3.2 Construction of a surrogate model with POD

POD was applied to the numerical analysis results for con-
structing a surrogate model. The data at each point were nor-
malized in advance to mean values of 0 and standard devia-
tions of 1 when applying the POD. Figure 8 shows the spa-
tial modes extracted by the POD from the first mode to the
third mode. The values shown in the figure are those of the
eigenvectors u ;; these values were adjusted so that the max-
imum absolute value of the components in the eigenvectors
was 1. The characteristics of the spatial distribution could
be read for each tsunami hazard index from the extracted
modes. A comparison of the spatial modes of the maximum
impact force and maximum inundation depth confirmed that
the three modes shown in Fig. 8 have similar spatial char-
acteristics. For example, in the first mode, the sign was the
same overall, and the value on the coast side was large; there-
fore, the mode showed an overall tendency where the coast

Nat. Hazards Earth Syst. Sci., 23, 1891-1909, 2023

side was the most affected by the tsunami, with the effect
becoming smaller and moving away from the coast. In the
second mode, a tendency could be seen where the maximum
impact force and maximum inundation depth were opposite
at the east and west sides. In the third mode, a tendency
could be seen where the maximum impact force and maxi-
mum inundation depth were opposite at the north and south
sides. These modes were considered to be related to the in-
flow direction of the tsunami. The higher-dimension modes
included the characteristics of the local sections.

Figure 9 shows the contribution rates of the modes. The
contribution rate of the first mode was high for both the max-
imum impact force and maximum inundation depth.

The coefficients of each mode were expressed as a func-
tion of uncertainty parameters. The RBF interpolation shown
in Eq. (14) is used. The regularization shown in Eq. (17) is
introduced in the calculation to obtain the weight. The accu-
racy of the surrogate model changed according to the RBF
smoothness and regularization parameters, and therefore, it
is important to determine these parameters appropriately. In
this study, these parameters were determined using cross-
validation.

Learning and verification cases used for cross-validation
were obtained by considering 40 cases used in the construc-
tion of the surrogate model, removing 4 cases that correspond
to the corners of the parameter space (SIR1, SIR10, S5R1,
S5R10), and dividing the remaining cases between learning
and verification cases for cross-validation. Corner data were
not used for verification cases because these data were ex-
trapolated. In this example, the number of divisions between
the learning and verification cases was set to 12. The model
was constructed using 37 cases for a single validation, which
was conducted using 3 cases. Further, the cross-validation
error was calculated by comparing the reconstructed results
using the spatial mode and considering the ratio of the mean
absolute error to the mean value as

1 N .
_ AN Doie1 2 it Xij — il

1 N
mZ?’zlzjzlxij

, (18)

where n, x;;, Xi j» and e, represent the number of assessment
points, number of scenarios, numerical analysis result for
scenario i and point j, value for scenario i and point j when
reconstructed with the surrogate model, and error when the
number of modes is r, respectively.

Figure 10 shows the cross-validation error of the maxi-
mum impact force and the maximum inundation depth for
each number of modes. Cases in which no regularization
term is present (Eq. 15) are also shown in Fig. 10. Bayesian
optimization was used for the search in the parameter space.
The number of searches was set to 80, and the upper con-
fidence bound (UCB) strategy was used for the acquisition
function. The error comparison confirmed that the accuracy
of the surrogate model was improved by introducing the
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Figure 8. Spatial modes for each tsunami hazard index extracted by POD. Left: first mode, middle: second mode, and right: third mode
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Figure 9. Contribution rates for each tsunami hazard index.

regularization term. A robust surrogate model can be con-
structed by introducing the regularization term.

Finally, the validity of the surrogate model was verified
by comparing the numerical simulation results for scenarios
not used for the constructed surrogate model with the re-
sults of the constructed surrogate model. Figure 11 shows
a comparison between the numerical simulation and surro-
gate model results for the S3R3 scenario. For the number
of modes used in the surrogate model, the maximum impact

https://doi.org/10.5194/nhess-23-1891-2023
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Figure 10. Cross-validation error for each number of modes.

force was set to 8 and the maximum inundation depth was
set to 11. Figure 12 shows the mean absolute errors calcu-
lated by Eq. (18) in the calculations for the 10 scenarios used
for validation. Figure 11 shows that the constructed surrogate
models can roughly represent the targeted spatial distribu-
tion of the maximum impact force and maximum inundation
depth. Figure 12 shows that 10 % or higher errors occur in
some validation scenarios, and the areas of large error are lo-
calized because there is a possibility that spatial modes used
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Figure 11. Comparison between the results of the numerical simulation and the surrogate model (scenario: S3R3) (© Google Maps).
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Figure 12. Errors between the numerical simulation and surrogate
model for each validation scenario.
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for surrogate models cannot properly capture the local char-
acteristics.

3.3 Monte Carlo simulation

We conducted probabilistic tsunami hazard assessments us-
ing a constructed surrogate model. The surrogate model en-
ables the computation of the spatial distribution of hazard in-
dices at a low computational cost. Hence, many trials can be
secured at a relatively low computational cost. Thus, a risk
assessment that efficiently utilizes the advanced numerical
simulation results is conducted.

We conducted a probabilistic assessment of the tsunami
hazard by applying Monte Carlo simulations. The variation
of uncertainty parameters must be quantitatively assessed
probabilistically for Monte Carlo simulations. We assumed
that the slip and rake followed a normal distribution, and the
probability distribution parameters were set as summarized

https://doi.org/10.5194/nhess-23-1891-2023
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Figure 13. Spatial distribution for the exceedance probability (© Google Maps).

Table 2. Information on the variation of uncertainty parameters.

Parameter Mean  Standard deviation
Slip 1.0 0.1
Rake 1.0 0.04

in Table 2. Normalized values were used as the input param-
eters for the mean values, and therefore, these were set as
1.0. For the standard deviation of the slip, a value of 0.1 was
used, which indicated a standard deviation value 10 % of the
mean value. For a normal distribution, the spread of approxi-
mately three times the given standard deviation was present;
therefore, the value of three times the standard deviation was
set as this value to cover the range listed in Table 1. For the
standard deviation of the rake, Japan Society of Civil En-
gineering (2011) conducted probabilistic assessments where
the rake was varied by +10°. We considered this degree of
variation and used a value of 0.04, which resulted in a varia-
tion of approximately 3 times the standard deviation.

Monte Carlo simulations were conducted using uncer-
tainty parameters listed in Table 2 and the surrogate model.
The information of each uncertainty parameter was used to
randomly generate a combination of the slip and rake; then,
this value was assigned to the mode coefficient functions
of the surrogate model. The spatial distribution of the haz-
ard index was calculated by multiplying the coefficients and
modes. This was repeated for all 10000 trials. The probabil-
ity density distributions of the maximum impact force and
maximum inundation depth at each point were calculated.

The maps of exceedance probability were obtained from
the results of Monte Carlo simulations. The exceedance

https://doi.org/10.5194/nhess-23-1891-2023

probability at each evaluation point was calculated assum-
ing the failure that can be defined by the criteria of each
hazard index. According to the previous studies (Suppasri
et al., 2013, 2019), we defined the following criteria: the
maximum impact force = 176 kN and the maximum inunda-
tion depth = 3 m. The obtained exceedance probability maps
for both hazard indices are shown in Fig. 13. In both maps,
there is a tendency that high exceedance probabilities arise
near the coast and low exceedance probabilities occur farther
away from the coast. There are some differences between the
maps. For example, the exceedance probability of the maxi-
mum impact force tends to be high in areas where there are
many buildings. The computational cost of surrogate models
is considerably low, and therefore such probabilistic maps
can be obtained easily.

3.4 Optimal placement of facilities using genetic
algorithms

Results of the Monte Carlo simulation are used to investi-
gate an optimal placement of facilities. The optimal place-
ment is examined for both parallel and series systems, and
the results are compared. In a parallel system, system fail-
ure occurs when all facilities have failed; in contrast, a series
system fails when any facility fails. The failure of the facility
is defined as exceeding the failure criterion for each hazard
index.

The optimization problem is defined as selecting the com-
ponents of the system from the evaluation points for hazard
indices. The areas that have 25 % or higher exceedance prob-
abilities for each failure criterion are set as the target areas.
The points of the system were selected only in these high-
risk areas because a point with an exceedance probability of

Nat. Hazards Earth Syst. Sci., 23, 1891-1909, 2023
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Figure 14. Optimal placements obtained from the genetic algorithm for each hazard index (© Google Maps). Points selected by minimum
exceedance probability show the results of placements determined in the order of decreasing exceedance probability at each evaluation point.

Only search areas are colored in this figure.

0 % should always be selected if there are such points in the
target area; this does not result in an optimal problem. Al-
though this condition is not realistic, we employed it as a
calculation condition to clearly represent the performance of
the proposed method.

The number of individuals for the genetic algorithm was
set to 200, and the mutation probability was set to 10% for
each component of each individual. We adopted an elite con-
servation strategy, wherein solutions with high fitness values
are likely to be selected for the crossover operation. The so-
lution was said to converge when the solution individuals do

Nat. Hazards Earth Syst. Sci., 23, 1891-1909, 2023

not change over 2000 steps. We investigated cases in which
the number of facilities was four for each failure criterion and
system. Since the solution may depend on initial conditions,
we conducted three trials under the same conditions for each
case.

The results of the optimal placements based on the con-
cepts of the parallel and series systems for each hazard index
are illustrated in Fig. 14. The results are compared with the
placements determined based on a simple strategy in which
the placement of the facilities is selected in the order of lower
exceedance probability. The system failure probabilities for
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Table 3. System failure probability for each hazard index and each system.

Impact force ‘ Inundation
Parallel ~ Series ‘ Parallel ~ Series
Minimum failure probability [%]  20.94 29.62 22.50 28.03
Genetic algorithm [%] 19.40 28.09 0.10 25.50
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Figure 15. The scatter plot of the uncertainty parameters colored by the number of failure points for each placement.

each placement are summarized in Table 3. The system fail-
ure probabilities are expressed as the probability of failure of
all facilities for parallel systems and the probability of failure
of one or more facilities for the series system.

The results shown in Fig. 14 indicate that the selected
points are placed away from the coastline. This tendency is
attributed to the low failure probability points being located
away from the coastal region. Different placements were ob-
tained for the maximum impact force and inundation depth.
Comparing the parallel and series systems shows that the
points are selected by focusing on similar locations in the
series system (whereas they are spatially distributed in the

https://doi.org/10.5194/nhess-23-1891-2023

parallel system). In the series system, the points are concen-
trated in an arrangement such that the probability of the ex-
ceedance is small. In contrast, one or more facilities need
to be safe in the parallel system, which is why the selected
points are spatially distributed.

Comparing the placement selected by the genetic algo-
rithms and those selected in the order of lower exceedance
probabilities shows that some selected locations are differ-
ent. System failure probabilities shown in Table 3 indicate
that the lower failure probability tends to be obtained by the
genetic algorithm. Therefore, the genetic algorithm is indeed
suitable in this optimal placement problem.

Nat. Hazards Earth Syst. Sci., 23, 1891-1909, 2023
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Figure 16. Scatter plot of the uncertainty parameters colored by failure or non-failure for the parallel system.

The placements selected for each system were analyzed in
detail. Figure 15 shows the scatter plots of the uncertainty
parameters (slip and rake) considered in the Monte Carlo
simulation, and the number of failure points was colored.
The placement for the parallel system is optimized around a
smaller light-blue area, and the placement for the series sys-
tem optimizes around a larger black area. Figure 15 shows
that the slip contributes to the failure of each point and the
system for all placements because failure occurs only in the
high-slip case. The rake contributes to the parallel system
placement because the number of failure points changes in
the same slip values for the parallel system.

In the series system, the scenarios are separated into two
situations: all safe and all failed. In contrast, the parallel sys-
tem presents a more complex placement pattern. Figure 16
shows a colored scenario in the uncertainty parameter space.
The optimal points for the maximum impact force are se-
lected such that they do not fail depending on the rake. The
inundation depth confirms that point 4 has a unique tendency
compared to those of the other points. This numerical ex-
ample indicates that the optimal placement is discussed effi-
ciently by the proposed method.

Optimal facility placements can be investigated in a prob-
abilistic manner based on the information obtained from the
advanced numerical simulation using the results of the Monte
Carlo simulation with the surrogate models. This method can
be used to solve the problem of the optimal placement of fa-
cilities such as relief bases, shelters, and infrastructure facil-
ities during disasters.

Nat. Hazards Earth Syst. Sci., 23, 1891-1909, 2023

4 Conclusions

We proposed a method that enables investigating the optimal
facility placement probabilistically by efficiently utilizing the
information obtained from advanced numerical simulations.
The placement was investigated probabilistically using ge-
netic algorithms and Monte Carlo simulation (MCS) results
obtained from the surrogate model. The surrogate models of
two tsunami hazard indices (tsunami force and inundation
depth) were constructed based on 3D tsunami simulation re-
sults. The placements of the parallel and series systems that
minimize system failure probability were investigated. The
results indicate that the facilities were placed by concentrat-
ing on similar locations in the series system; however, they
were spatially distributed in the parallel system. The place-
ments can be searched at a low computational cost using the
surrogate models and genetic algorithm.

The uncertainty parameters in this study were limited to
two when conducting PTHAs; however, there are many un-
certainties in actual tsunami. Therefore, it is important to
conduct a probabilistic hazard assessment that considers the
uncertainties. The extent to which each uncertainty parame-
ter will fluctuate must be assessed in advance to determine
cases in which the numerical simulations or Monte Carlo
simulations are to be conducted. The surrogate model con-
structed with the proposed method can represent tsunami
hazard indices with sufficient accuracy for interpolation
(within the range of uncertainty parameters for which nu-
merical simulations were conducted). The accuracy often de-
creases for cases of extrapolation (outside the range of uncer-
tainty parameters for which the numerical simulations were
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conducted); thus, it is important to assess uncertainty fluctua-
tion. In addition, because the accuracy of the surrogate model
changes with the amount of training data and the number of
spatial modes used in the surrogate model, it is necessary
to establish a method to properly determine them in future
studies. We used the simulation data set created in a previous
study and therefore could not investigate their effect on sur-
rogate modeling. However, an appropriate amount of training
data should be determined considering accuracy. Therefore,
it may be necessary to consider adopting an approach like
adaptive surrogate modeling (Wang et al., 2014; Gong et al.,
2016) to improve the accuracy of surrogate models. We cal-
culated the exceedance probability with the failure criterion
as a constant when investigating the exceedance probability
and optimal placement. However, the failure criteria vary ac-
cording to the building properties. Thus, using the building
property information would enable a more advanced proba-
bilistic risk assessment and optimal placement of facilities.

Appendix A: Verifying the validity of the numerical
analysis method

We verified the validity of the 3D analysis method adopted in
this study by comparing the experimental results with those
of the study by Winter et al. (2020), in which experiments
were conducted on the fluid force acting on the structure
while changing the structural placement. We conducted a
comparison between the experimental results under the con-
ditions shown in Fig. Al with the analysis results. Details
of the experiment are as shown in the study by Winter et
al. (2020). Comparisons between the experimental results
and the numerical analysis results were performed regard-
ing the temporal changes in the water level on the front side
of the structure and the fluid force acting on the structure.
Figure A2 shows the comparison results for the fluid force
and water level. The validity of the adopted numerical analy-
sis was confirmed because the experimental results for fluid
force and water depth were captured by the numerical simu-
lations. Figure A3 shows a snapshot of the simulation results.

~—1.321m 1.016 m

*’ 1.016 m L

Test Structure
3.658 m

t

Wave 2

Figure A1. Configuration of the test structure (adapted from Winter
et al., 2020).

https://doi.org/10.5194/nhess-23-1891-2023

Nat. Hazards Earth Syst. Sci., 23, 1891-1909, 2023



1906

—— Experiment
S —— Numerical simulation
S
(=3
=
*el
s
§ )
s}
P [=3
=
<
(=3
=
Q
(=1
26 28 30 32 34 36 38
Time (s)
(a) Force

K. Tozato et al.: Optimal probabilistic placement of facilities using a surrogate model

—— Experiment
—— Numerical simulation

Free-Surface Elev. (m)
0.00 0.05 0.10 0.15 0.20 0.25 0.30

10 15 20 25 30 35
Time (s)
(b) Free-surface elevation

Figure A2. Comparison between experimental results and numerical simulation results (a force and b free-surface elevation).

Figure A3. Snapshot of the numerical simulation result.

of the
tsunami simulation were sourced from Kotani et al. (2020)
(https://doi.org/10.1016/j.coastaleng.2020.103719). Outputs of the
simulations are available at the Zenodo open-access repository at
https://doi.org/10.5281/zenodo.6394294 (Tozato, 2022).
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