Articles | Volume 22, issue 12
https://doi.org/10.5194/nhess-22-4063-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-22-4063-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Hazard assessment and hydrodynamic, morphodynamic, and hydrological response to Hurricane Gamma and Hurricane Delta on the northern Yucatán Peninsula
Alec Torres-Freyermuth
CORRESPONDING AUTHOR
Laboratorio de Ingeniería y Procesos Costeros, Instituto de
Ingeniería, Universidad Nacional Autónoma de México, Sisal, Yucatán, 97835, Mexico
Laboratorio Nacional de Resiliencia Costera, Laboratorios Nacionales Conacyt, Sisal, Yucatán, 97835, Mexico
Gabriela Medellín
Laboratorio de Ingeniería y Procesos Costeros, Instituto de
Ingeniería, Universidad Nacional Autónoma de México, Sisal, Yucatán, 97835, Mexico
Laboratorio Nacional de Resiliencia Costera, Laboratorios Nacionales Conacyt, Sisal, Yucatán, 97835, Mexico
Jorge A. Kurczyn
Laboratorio de Ingeniería y Procesos Costeros, Instituto de
Ingeniería, Universidad Nacional Autónoma de México, Sisal, Yucatán, 97835, Mexico
Laboratorio Nacional de Resiliencia Costera, Laboratorios Nacionales Conacyt, Sisal, Yucatán, 97835, Mexico
Roger Pacheco-Castro
Conacyt – Laboratorio de Ingeniería y Procesos Costeros,
Instituto de Ingeniería, Universidad Nacional Autónoma de México, Sisal, Yucatán, 97835, Mexico
Laboratorio Nacional de Resiliencia Costera, Laboratorios Nacionales Conacyt, Sisal, Yucatán, 97835, Mexico
Jaime Arriaga
Conacyt – Laboratorio de Ingeniería y Procesos Costeros,
Instituto de Ingeniería, Universidad Nacional Autónoma de México, Sisal, Yucatán, 97835, Mexico
Faculty of Civil Engineering and Geosciences, Delft University of
Technology, 2628 CN Delft, the Netherlands
Christian M. Appendini
Laboratorio de Ingeniería y Procesos Costeros, Instituto de
Ingeniería, Universidad Nacional Autónoma de México, Sisal, Yucatán, 97835, Mexico
Laboratorio Nacional de Resiliencia Costera, Laboratorios Nacionales Conacyt, Sisal, Yucatán, 97835, Mexico
María Eugenia Allende-Arandía
Laboratorio de Ingeniería y Procesos Costeros, Instituto de
Ingeniería, Universidad Nacional Autónoma de México, Sisal, Yucatán, 97835, Mexico
Laboratorio Nacional de Resiliencia Costera, Laboratorios Nacionales Conacyt, Sisal, Yucatán, 97835, Mexico
Juan A. Gómez
Laboratorio de Ingeniería y Procesos Costeros, Instituto de
Ingeniería, Universidad Nacional Autónoma de México, Sisal, Yucatán, 97835, Mexico
Laboratorio Nacional de Resiliencia Costera, Laboratorios Nacionales Conacyt, Sisal, Yucatán, 97835, Mexico
Gemma L. Franklin
Conacyt – Laboratorio de Ingeniería y Procesos Costeros,
Instituto de Ingeniería, Universidad Nacional Autónoma de México, Sisal, Yucatán, 97835, Mexico
Laboratorio Nacional de Resiliencia Costera, Laboratorios Nacionales Conacyt, Sisal, Yucatán, 97835, Mexico
Jorge Zavala-Hidalgo
Instituto de Ciencias de la Atmósfera y Cambio Climático,
Universidad Nacional Autónoma de México, Coyoacán, Mexico City, 04510, Mexico
Related authors
Jairo E. Cueto, Luis J. Otero Díaz, Silvio R. Ospino-Ortiz, and Alec Torres-Freyermuth
Nat. Hazards Earth Syst. Sci., 22, 713–728, https://doi.org/10.5194/nhess-22-713-2022, https://doi.org/10.5194/nhess-22-713-2022, 2022
Short summary
Short summary
We investigate the importance of morphodynamics on flooding estimation during storms with sea level rise conditions on a microtidal beach. XBeach and SWAN were the numerical models used to test several case studies. The results indicate that numerical modeling of flooding should be approached by considering morphodynamics; ignoring them can underestimate flooding by ~ 15 %. Moreover, beach erosion and flooding are intensified by sea level rise and high tides in ~ 69 % and ~ 65 %, respectively.
Mauro Cirano, Enrique Alvarez-Fanjul, Arthur Capet, Stefania Ciliberti, Emanuela Clementi, Boris Dewitte, Matias Dinápoli, Ghada El Serafy, Patrick Hogan, Sudheer Joseph, Yasumasa Miyazawa, Ivonne Montes, Diego A. Narvaez, Heather Regan, Claudia G. Simionato, Gregory C. Smith, Joanna Staneva, Clemente A. S. Tanajura, Pramod Thupaki, Claudia Urbano-Latorre, Jennifer Veitch, and Jorge Zavala Hidalgo
State Planet, 5-opsr, 5, https://doi.org/10.5194/sp-5-opsr-5-2025, https://doi.org/10.5194/sp-5-opsr-5-2025, 2025
Short summary
Short summary
Operational ocean forecasting systems (OOFSs) are crucial for human activities, environmental monitoring, and policymaking. An assessment across eight key regions highlights strengths and gaps, particularly in coastal and biogeochemical forecasting. AI offers improvements, but collaboration, knowledge sharing, and initiatives like the OceanPrediction Decade Collaborative Centre (DCC) are key to enhancing accuracy, accessibility, and global forecasting capabilities.
Jairo E. Cueto, Luis J. Otero Díaz, Silvio R. Ospino-Ortiz, and Alec Torres-Freyermuth
Nat. Hazards Earth Syst. Sci., 22, 713–728, https://doi.org/10.5194/nhess-22-713-2022, https://doi.org/10.5194/nhess-22-713-2022, 2022
Short summary
Short summary
We investigate the importance of morphodynamics on flooding estimation during storms with sea level rise conditions on a microtidal beach. XBeach and SWAN were the numerical models used to test several case studies. The results indicate that numerical modeling of flooding should be approached by considering morphodynamics; ignoring them can underestimate flooding by ~ 15 %. Moreover, beach erosion and flooding are intensified by sea level rise and high tides in ~ 69 % and ~ 65 %, respectively.
Cited articles
Amante, C. and Eakins, B. W.: ETOPO1 1 Arc-Minute Global Relief Model:
Procedures, Data Sources and Analysis, in: NOAA Technical Memorandum NESDIS NGDC-24, National Hurricane Center, Boulder, CO, USA [data set], p. 19, https://repository.library.noaa.gov/view/noaa/1163 (last access: November 2022), 2009.
Arakawa, A. and Lamb, V. R.: Computational Design of the Basic Dynamical
Process of the UCLA General Circulation Model, Meth. Comput. Phys., 17, 173–265, 1977.
Arriaga, J., Medellin, G., Ojeda, E., and Salles, P.: Shoreline Detection
Accuracy from Video Monitoring Systems, J. Mar. Sci. Eng., 10, 95, https://doi.org/10.3390/jmse10010095, 2022.
Bentamy, A. and Croizé-Fillon, D. C.: Gridded surface wind fields from
Metop/ASCAT measurements, Int. J. Remote Sens., 33, 1729–1754, 2012.
Bhatia, K. T., Vecchi, G. A., Knutson, T. R., Murakami, H., Kossin, J., Dixon, K. W., and Whitlock, C. E.: Recent increases in tropical cyclone
intensification rates, Nat. Commun. 10, 1–9, 2019.
Blunden, J. and Boyer, T.: State of the Climate in 2020, B. Am. Meteorol. Soc., 102, S1–S475, https://doi.org/10.1175/2021BAMSStateoftheClimate.1, 2021.
Boutin, J., Vergely, J. L., Marchand, S., D'Amico, F., Hasson, A., Kolodziejczyk, N., Reul, N., Reverdin, G., and Vialard, J.: New SMOS Sea Surface Salinity with reduced systematic errors and improved variability, Remote Sens. Environ., 214, 115–134, https://doi.org/10.1016/j.rse.2018.05.022, 2018.
Bunker, A. F.: Computations of surface energy flux and annual air–sea interaction cycles of the North Atlantic Ocean, Mon. Weather Rev., 104,
1122–1140, 1976.
Cangialosi, J. P. and Berg, R.: Hurricane Delta (AL262020), National
Hurricane Center Tropical Cyclone Report, National
Hurricane Center Tropical Cyclone, 46 pp., https://www.nhc.noaa.gov/data/tcr/AL262020_Delta.pdf (last access:
December 2022), 2021.
Canul-Macario, C., Salles, P., Hernández-Espriú, A., and
Pacheco-Castro, R.: Empirical relationships of groundwater head–salinity
response to variations of sea level and vertical recharge in coastal
confined karst aquifers, Hydrogeol. J., 28, 1679–1694,
https://doi.org/10.1007/s10040-020-02151-9, 2020.
Canul-Macario, C., Pacheco-Castro, R., González-Herrera, R.,
Villasuso-Pino, M., Salles, P., and Sanchez, I.: Ecological resilience applied to storm drainage management in karst environments with shallow piezometric depth, in preparation, 2022.
Castro, R., Lavín, M. F., and Ripa, P.: Seasonal heat balance in the Gulf
of California, J. Geophys. Res.-Atmos., 99, 3249–3261, https://doi.org/10.1029/93JC02861, 1994.
Cavaleri, L. and Rizzoli, P. M.: Wind wave prediction in shallow water:
Theory and applications, J. Geophys. Res.-Oceans, 86, 10961–10973, 1981.
Cushman-Roisin, B. and Beckers, J. M.: Introduction to geophysical fluid
dynamics: physical and numerical aspects. Academic press, 2011.
DHI: Mike 21 flow model FM: hydrodynamic module, user guide, DHI Water & Environment, Hoersholm, https://manuals.mikepoweredbydhi.help/latest/Coast_and_Sea/MIKE_FM_HD_2D.pdf,
last access: 14 November 2022.
Du, J., Park, K., Dellapenna, T. M., and Clay, J. M.: Dramatic hydrodynamic
and sedimentary responses in Galveston Bay and adjacent inner shelf to
Hurricane Harvey, Sci. Total Environ., 653, 554–564, 2019.
Dudhia, J.: Numerical Study of Convection Observed during the Winter Monsoon
Experiment Using a Mesoscale Two-Dimensional Model, J. Atmos. Sci., 46,
3077–3107, 1989.
Dudhia, J.: A Multi-layer Soil Temperature Model for MM5, in: Sixth PSU/NCAR
Mesoscale Model Users' Workshop, 22–24 July 1996, Boulder, 49–50, 1996.
Egbert, G. D. and Erofeeva, S. Y.: Efficient inverse modeling of barotropic ocean tides, J. Atmos. Ocean. Tech., 19, 183–204, https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2, 2002.
Egbert, G. D. and Svetana Y. E.: Efficient inverse modeling of barotropic
ocean tides, J. Atmos. Ocean. Tech., 19, 183–204, 2002.
Emanuel, K.: Will global warming make hurricane forecasting more difficult?,
B. Am. Meteorol. Soc., 98, 495–501, 2017.
Emanuel, K.: Atlantic tropical cyclones downscaled from climate reanalys is
show increasing activity over past 150 years, Nat. Commun., 1, 1–8, 2021.
Enriquez, C., Mariño-Tapia, I. J., and Herrera-Silveira, J. A.: Dispersion in the Yucatan coastal zone: implications for red tide events, Cont. Shelf Res., 30, 127–137, 2010.
Figueroa-Espinoza, B., Salles, P., and Zavala, J.: On the Wind Power Potential in the northwest of the Yucatan Peninsula in Mexico, Atmosfera, 27, 77–89, 2014.
Franklin, G. L., Medellín, G., Appedini, C. M., Gómez, J. A.,
Torres-Freyermuth, A., López González, J., and Ruiz-Salcines, P.:
Impact of port development on the northern Yucatan Peninsula coastline, Reg. Stud. Mar. Sci., 45, 101835, https://doi.org/10.1016/j.rsma.2021.101835, 2021.
Geng, X., Heiss, J. W., Michael, H. A., Li, H., Raubenheimer, B., and Boufadel, M. C.: Geochemical fluxes in sandy beach aquifers: Modulation due
to major physical stressors, geological heterogeneity, and nearshore
morphology, Earth-Sci. Rev., 221, 103800, https://doi.org/10.1016/j.earscirev.2021.103800, 2021.
Gill, A. E.: Atmosphere-Ocean Dynamics, in: International Geophysical Series 30, 1st Edn., Academic Press, San Diego, CA, 1–662, ISBN 9780080570525, 1982.
Hasselmann, K., Barnett, T. P., Bouws, E., Carlson, H., Cartwright, D. E., Enke, K., Ewing, J. A., Gienapp, H., Hasselmann, D. E., Kruseman, P., Meerburg, A., Müller, P., Olbers, D. J., Richter, K., Sell, W., and Walden, H.: Measurements of wind-wave growth and swell decay during the joint north sea wave project (jonswap), Ergänzungsheft 8–12, https://repository.tudelft.nl/islandora/object/uuid:f204e188-13b9-49d8-a6dc-4fb7c20562fc/datastream/OBJ/download (last access: November 2022), 1973.
Hasselmann, S., Hasselmann, K., Allender, J., and Barnett, T.: Computations
and parameterizations of the nonlinear energy transfer in a gravity-wave
spectrum. Part II: Parameterizations of the nonlinear energy transfer for
application in wave models, J. Phys. Oceanogr., 15, 1378–1391, 1985.
Hong, S. Y., Noh, Y., and Dudhia, J.: A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes, Mon. Weather Rev., 134,
2318–2341, 2006.
Housego, R., Raubenheimer, B., Elgar, S., Cross, S., Legner, C., and Ryan, D.: Coastal flooding generated by ocean wave- and surge- driven groundwater
fluctuations on a sandy barrier island, J. Hydrol., 603, 126920,
https://doi.org/10.1016/j.jhydrol.2021.126920, 2021.
Irish, J. L., Frey, A. E., Rosati, J. D., Olivera, F., Dunkin, L. M., Kaihatu, J. M., Ferreira, C. M., and Edge, B. L.: Potential implications of
global warming and barrier island degradation on future hurricane
inundation, property damages, and population impacted, Ocean Coast. Manage.,
53, 645–657, 2010.
Kain, J. S.: The Kain-Fritsch convective parameterization: An update, J.
Appl. Meteorol., 43, 170–181, 2004.
Knutson, T., Xamargo, S. J., Chan, J. C. L., Emanuel, K., Ho, C.-H., Kossin,
J., Mohapatra, M., Satoh, M., Sugi, M., Walsh, K., and Wu, L.: Tropical cyclones and climate change assessment: Part II: Projected Response to Anthropogenic Warming, B. Am. Meteorol. Soc., 101, E303–E322, 2020.
Kossin, J. P., Emanuel, K. A., and Vecchi, G. A: The poleward migration of
the location of tropical cyclone maximum intensity, Nature, 509, 349–352, 2014.
Kovacs, S. E., Reinhardt, E. G., Stastna, M., Coutino, A., Werner, C.,
Collins, S. v., Devos, F., and le Maillot, C.: Hurricane Ingrid and Tropical Storm Hanna's effects on the salinity of the coastal aquifer, Quintana Roo, Mexico, J. Hydrol., 551, 703–714, https://doi.org/10.1016/j.jhydrol.2017.02.024, 2017.
Latto, A. S.: Hurricane Gamma (AL252020), National Hurricane Center Tropical
Cyclone Report, National Hurricane Center, 20 pp., https://www.nhc.noaa.gov/data/tcr/AL252020_Gamma.pdf (last access: December 2022), 2021.
Loveland, T., Reed, B., Brown, J., Ohlen, D., Zhu, Z., Yang, L., and Merchant, J.: Development of a global land cover characteristics database
and IGBP DISCover from 1 km AVHRR data, Int. J. Remote Sens., 21, 1303–1330, 2000.
McDougall, T. J. and Barker, P. M.: Getting started with TEOS-10 and the Gibbs Seawater (GSW) Oceanographic Toolbox, SCOR/IAPSO WG127 28, https://www.teos-10.org/pubs/Getting_Started.pdf (last access: December 2022), 2011.
Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., and Clough, S. A.: Radiative transfer for inhomogeneous atmosphere: RRTM, a validated
correlated-k model for the longwave, J. Geophys. Res., 102, 16663–16682, 1997.
Medellín, G. and Torres-Freyermuth, A.: Morphodynamics along a micro-tidal sea breeze dominated beach in the vicinity of coastal structures, Mar. Geol., 417, 106013, https://doi.org/10.1016/j.margeo.2019.106013, 2019.
Medellín, G. and Torres-Freyermuth, A.: Foredune formation and evolution on a prograding sea-breeze dominated beach, Cont. Shelf Res., 226, 104495, https://doi.org/10.1016/j.csr.2021.104495, 2021.
Medina-Gomez, I. and Herrera-Silveira, J.: Seasonal Responses of Phytoplankton Productivity to Water-Quality Variations in a Coastal Karst
Ecosystem of the Yucatan Peninsula, Gulf of Mexico, Science, 1, 39–51, 2009.
Meyer-Arendt, K. J.: Recreational development and shoreline modification along the north coast of Yucatán, Mexico, Tour. Geogr., 3, 87–104, 2001.
Mieras, R. S., O'Connor, C. S., and Long, J. W.: Rapid-response observations
on barriers islands along Cape Fear, North Carolina, during Hurricane
Isaias, Shore Beach, 89, 86–96, 2021.
Ocean-Atmosphere Interaction Group: Modelos, http://grupo-ioa.atmosfera.unam.mx/pronosticos/index.php (last access: December 2022), 2020.
Paré, L. and Fraga, J.: La costa de Yucatán: Desarrollo y vulnerabilidad ambiental, in: Primera ed. Cuadernos de Investigación, edited by: Gordon, S., Instituto de Investigaciones Sociales, Universidad Nacional Autónoma de México, http://ru.iis.sociales.unam.mx/jspui/handle/IIS/4989 (last access: December 2022), 1994.
Perry, E.: Geologic and environmental aspects of surface cementation, north
coast, Yucatan, Mexico, Geology, 17, 818–821, https://doi.org/10.1130/0091-7613(1989)017<0818:GAEAOS>2.3.CO;2, 1989.
Pino, M. J. V., Pinto, Y., Macario, C. C., Salazar, R. C., Escobedo, G. B.,
Cetina, J., Euán, P. P., and Argüelles, C. P.: Hydrogeology and
conceptual model of the karstic coastal aquifer in Northern Yucatan State,
Mexico, Trop. Subtrop. Agroecosyst., 13, 243–260, 2011.
Reynolds, R. W., Rayner, N. A., Smith, T. M., Stokes, D. C., and Wang, W.: An
Improved In Situ and Satellite SST Analysis for Climate, J, Climate, 15, 1609–1625, https://doi.org/10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2, 2002.
Rio, M.-H., Mulet, S., and Picot, N.: Beyond GOCE for the ocean circulation estimate: Synergetic use of altimetry, gravimetry, and in situ data provides new insight into geostrophic and Ekman currents, Geophys. Res. Lett., 41, 8918–8925, https://doi.org/10.1002/2014GL061773, 2014.
Rivera-Monroy, V. H., Farfán, L. M., Brito-Castillo, L., Cortés-Ramos, J., González-Rodríguez, E., D'Sa, E. J., and
Euán-Avila, J.: Tropical Cyclone Landfall Frequency and Large-Scale
Environmental Impacts along Karstic Coastal Regions (Yucatán Peninsula,
México), Appl. Sci., 10, 5815, https://doi.org/10.3390/app10175815, 2020.
Rutten, J., Arriaga, J. A., Montoya, L. D., Mariño-Tapia, I. J.,
Escalante-Mancera, E., Mendoza, E. T., and Appendini, C. M.: Beaching and
Natural Removal Dynamics of Pelagic Sargassum in a Fringing-Reef
Lagoon, J. Geophys. Res.-Oceans, 126, e2021JC017636, https://doi.org/10.1029/2021JC017636, 2021.
Simarro, G., Ribas, F., Álvarez, A., Guillén, J., Chic, O., and Orfila, A.: ULISES: An open source code for extrinsic calibrations and planview generations in coastal video monitoring systems, J. Coast. Res., 33,
1217–1227, 2017.
Simarro, G., Calvete, D., Souto, P., and Guillén, J.: Camera calibration for coastal monitoring using available snapshot images, Remote Sens., 12, 1840, https://doi.org/10.3390/rs12111840, 2020
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D., Duda, M.
G., and Powers, J. G.: A Description of the Advanced Research WRF Version 3, No. NCAR/TN-475+STR, University Corporation for Atmospheric Research, https://opensky.ucar.edu/islandora/object/technotes:500 (last access: December 2022), 2008.
Smith, S. D.: Coefficients for sea surface wind stress, heat flux, and wind
profiles as a function of wind velocity and temperature, J. Geophys. Res.-Oceans, 93, 15467–15472, https://doi.org/10.1029/JC093iC12p15467, 1988.
Talley, T. D., Pickard, G. L., Emery, W. J., and Swift, J. H.: Descriptive
Physical Oceanography: An Introduction, in: 6th Edn., Elsevier, Boston,
564 pp., ISBN 9780750645522, 2011.
Tolman, H. L. and Chalikov, D.: Source terms in a third-generation wind wave
model, J. Phys. Oceanogr., 26, 2497–2518, 1996.
Torres-Freyermuth, A., Puleo, J. A., DiCosmo, N., Allende-Arandia, M. E.,
Chardon-Maldonado, P., Lopez, J., Figueroa-Espinoza, B., Ruiz de
Alegría Arzabur, A., Figlus, J., Roberts Briggs, T., de la Roza, J., and
Candela, J.: Nearshore circulation on a sea breeze dominated beach during
intense wind events, Cont. Shelf Res., 151, 40–52, 2017.
Tuck, M. E., Ford, M. R., Kench, P. S., and Masselink, G.: Sediment supply
dampens the erosive effects of sea-level rise on reef islands, Sci. Rep., 11, 5523, https://doi.org/10.1038/s41598-021-85076-x, 2021.
Valle-Levinson, A., Wong, K.-C., and Bosley, K. T.: Response of the lower
Chesapeake Bay to forcing from Hurricane Floyd, Cont. Shelf Res., 22, 1715–1729, https://doi.org/10.1016/S0278-4343(02)00034-1, 2002.
Valle-Levinson, A., Mariño-Tapia, I., Enriquez, C., and Waterhouse, A:
Tidal variability of salinity and velocity fields related to intense point-source submarine groundwater discharges into the coastal ocean, Limnol. Oceanogr., 56, 1213–1224, 2011.
Valle-Levinson, A., Olabarrieta, M., and Heilman, L.: Compound flooding in
Houston-Galveston Bay during Hurricane Harvey, Sci. Total Environ., 747, 141272, https://doi.org/10.1016/j.scitotenv.2020.141272, 2020.
Villasuso Pino, M. J., Sánchez y Pinto, I. A., Canul Macario, C., Casares Salazar, R., Baldazo Escobedo, G., Souza Cetina, J., Poot Eúan, P., and Pech Argüelles, C.: Hydrogeology And Conceptual Model Of The Karstic Coastal Aquifer In Northern Yucatan State, Mexico, Trop. Subtrop.
Agroecosyst., 13, 243–260, 2011.
Wahl, T., Jain, S., Bender, J., Meyers, S. D., and Luther, M. E.: Increasing
risk of compound flooding from storm surge and rainfall for major US cities, Nat. Clim. Change, 5, 1093–1097, https://doi.org/10.1038/nclimate2736, 2015.
White, J. K. and Roberts, T. O. L.: 2. The significance of groundwater tidal
fluctuations, in: Groundwater problems in urban areas, Thomas Telford, London, 31–42, https://doi.org/10.1680/gpiua.19744.0004, 1994.
Yam-Caamal, J. and Graniel-Castro, E.: Efectos del huracán Wilma al
acuífero de la península de Yucatán, México, Tecnología y Ciencias Del Agua, V, 141–147, 2014.
Zavala-Hidalgo, J., Morey, S. L., and O'Brien, J. O.: Seasonal circulation
on the western shelf of the Gulf of Mexico using a high-resolution numerical
model, J. Geophys. Res., 108, 3389, https://doi.org/10.1029/2003JC001879, 2003.
Zinnert, J. C., Stallins, J. A., Brantley, S. T., and Young, D. R.: Crossing
Scales: The Complexity of Barrier-Island Processes for Predicting Future
Change, BioScience, 67, 39–52, 2017.
Short summary
Barrier islands in tropical regions are prone to coastal flooding and erosion during hurricane events. The Yucatán coast was impacted by hurricanes Gamma and Delta. Inner shelf, coastal, and inland observations were acquired. Beach morphology changes show alongshore gradients. Flooding occurred on the back barrier due to heavy inland rain and the coastal aquifer's confinement. Modeling systems failed to reproduce the coastal hydrodynamic response due to uncertainties in the boundary conditions.
Barrier islands in tropical regions are prone to coastal flooding and erosion during hurricane...
Altmetrics
Final-revised paper
Preprint