Articles | Volume 22, issue 12
https://doi.org/10.5194/nhess-22-4011-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-22-4011-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Brief communication: An autonomous UAV for catchment-wide monitoring of a debris flow torrent
Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland
Laboratory of Hydraulics, Hydrology and Glaciology, ETH Zurich, 8093 Zurich, Switzerland
Elias Hodel
Laboratory of Hydraulics, Hydrology and Glaciology, ETH Zurich, 8093 Zurich, Switzerland
Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland
Erik S. Mannerfelt
Laboratory of Hydraulics, Hydrology and Glaciology, ETH Zurich, 8093 Zurich, Switzerland
Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland
Kristen Cook
GFZ German Research Centre for Geosciences, 14473 Potsdam, Germany
Michael Dietze
Faculty of Geosciences and Geography, Georg-August-Universität Göttingen, 37077 Göttingen, Germany
GFZ German Research Centre for Geosciences, 14473 Potsdam, Germany
Livia Estermann
Institute of Environmental Engineering, ETH Zurich, 8093 Zurich, Switzerland
Michaela Wenner
Laboratory of Hydraulics, Hydrology and Glaciology, ETH Zurich, 8093 Zurich, Switzerland
Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland
Daniel Farinotti
Laboratory of Hydraulics, Hydrology and Glaciology, ETH Zurich, 8093 Zurich, Switzerland
Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland
Martin Fengler
Meteomatics AG, 9014 St. Gallen, Switzerland
Lukas Hammerschmidt
Meteomatics AG, 9014 St. Gallen, Switzerland
Flavia Hänsli
Institute of Environmental Engineering, ETH Zurich, 8093 Zurich, Switzerland
Jacob Hirschberg
Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland
Institute of Environmental Engineering, ETH Zurich, 8093 Zurich, Switzerland
Brian McArdell
Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland
Peter Molnar
Institute of Environmental Engineering, ETH Zurich, 8093 Zurich, Switzerland
Related authors
Małgorzata Chmiel, Fabian Walter, Lukas Preiswerk, Martin Funk, Lorenz Meier, and Florent Brenguier
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2021-205, https://doi.org/10.5194/nhess-2021-205, 2021
Preprint withdrawn
Short summary
Short summary
The hanging glacier on Switzerland’s Mount Eiger regularly produces ice avalanches which threaten tourist activity and nearby infrastructure. Reliable forecasting remains a challenge as physical processes leading to ice rupture are not fully understood yet. We propose a new method for hanging glacier monitoring using repeating englacial seismic signals. Our approach allows monitoring temperature and meltwater driven changes occurring in the hanging glacier at seasonal and diurnal timescales.
Eef C. H. van Dongen, Guillaume Jouvet, Shin Sugiyama, Evgeny A. Podolskiy, Martin Funk, Douglas I. Benn, Fabian Lindner, Andreas Bauder, Julien Seguinot, Silvan Leinss, and Fabian Walter
The Cryosphere, 15, 485–500, https://doi.org/10.5194/tc-15-485-2021, https://doi.org/10.5194/tc-15-485-2021, 2021
Short summary
Short summary
The dynamic mass loss of tidewater glaciers is strongly linked to glacier calving. We study calving mechanisms under a thinning regime, based on 5 years of field and remote-sensing data of Bowdoin Glacier. Our data suggest that Bowdoin Glacier ungrounded recently, and its calving behaviour changed from calving due to surface crevasses to buoyancy-induced calving resulting from basal crevasses. This change may be a precursor to glacier retreat.
Michaela Wenner, Clément Hibert, Alec van Herwijnen, Lorenz Meier, and Fabian Walter
Nat. Hazards Earth Syst. Sci., 21, 339–361, https://doi.org/10.5194/nhess-21-339-2021, https://doi.org/10.5194/nhess-21-339-2021, 2021
Short summary
Short summary
Mass movements constitute a risk to property and human life. In this study we use machine learning to automatically detect and classify slope failure events using ground vibrations. We explore the influence of non-ideal though commonly encountered conditions: poor network coverage, small number of events, and low signal-to-noise ratios. Our approach enables us to detect the occurrence of rare events of high interest in a large data set of more than a million windowed seismic signals.
Ugo Nanni, Florent Gimbert, Christian Vincent, Dominik Gräff, Fabian Walter, Luc Piard, and Luc Moreau
The Cryosphere, 14, 1475–1496, https://doi.org/10.5194/tc-14-1475-2020, https://doi.org/10.5194/tc-14-1475-2020, 2020
Short summary
Short summary
Our study addresses key questions on the subglacial drainage system physics through a novel observational approach that overcomes traditional limitations. We conducted, over 2 years, measurements of the subglacial water-flow-induced seismic noise and of glacier basal sliding speeds. We then inverted for the subglacial channel's hydraulic pressure gradient and hydraulic radius and investigated the links between the equilibrium state of subglacial channels and glacier basal sliding.
Amandine Sergeant, Małgorzata Chmiel, Fabian Lindner, Fabian Walter, Philippe Roux, Julien Chaput, Florent Gimbert, and Aurélien Mordret
The Cryosphere, 14, 1139–1171, https://doi.org/10.5194/tc-14-1139-2020, https://doi.org/10.5194/tc-14-1139-2020, 2020
Short summary
Short summary
This study explores the capacity to apply ambient noise interferometry to passive seismic recordings in glaciers. Green's function between two seismometers represents the impulse response of the elastic medium. It can be approximated from cross-correlation of random seismic wave fields. For glaciers, its recovery is notoriously difficult due to weak ice seismic scattering. We propose three methods to bridge the gap and show the potential for passive seismic imaging and monitoring of glaciers.
Fabian Lindner, Fabian Walter, Gabi Laske, and Florent Gimbert
The Cryosphere, 14, 287–308, https://doi.org/10.5194/tc-14-287-2020, https://doi.org/10.5194/tc-14-287-2020, 2020
Fabian Walter, Arnaud Burtin, Brian W. McArdell, Niels Hovius, Bianca Weder, and Jens M. Turowski
Nat. Hazards Earth Syst. Sci., 17, 939–955, https://doi.org/10.5194/nhess-17-939-2017, https://doi.org/10.5194/nhess-17-939-2017, 2017
Short summary
Short summary
Debris flows are naturally occuring mass motion events, which mobilize loose material in steep Alpine torrents. The destructive potential of debris flows is well known and demands early warning. Here we apply the amplitude source location (ASL) method to seismic ground vibrations induced by a debris flow event in Switzerland. The method efficiently detects the initiation of the event and traces its front propagation down the torrent channel.
Jessica Droujko, Srividya Hariharan Sudha, Gabriel Singer, and Peter Molnar
Earth Surf. Dynam., 11, 881–897, https://doi.org/10.5194/esurf-11-881-2023, https://doi.org/10.5194/esurf-11-881-2023, 2023
Short summary
Short summary
We combined data from satellite images with data measured from a kayak in order to understand the propagation of fine sediment in the Vjosa River. We were able to find some storm-activated and some permanent sources of sediment. We also estimated how much fine sediment is carried into the Adriatic Sea by the Vjosa River: approximately 2.5 Mt per year, which matches previous findings. With our work, we hope to show the potential of open-access satellite images.
Daniel Bolliger, Fritz Schlunegger, and Brian W. McArdell
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-126, https://doi.org/10.5194/nhess-2023-126, 2023
Preprint under review for NHESS
Short summary
Short summary
We analyzed data from the Illgraben debris flow monitoring station, Switzerland, and we modelled these flows with a debris flow runout model. We found that no correlation exists between the grain size distribution, the mineralogical composition of the matrix, and the debris flow properties. Rather, the flow properties appear to be determined by the flow volume, from which most other parameters can be derived.
Lander Van Tricht, Harry Zekollari, Matthias Huss, Daniel Farinotti, and Philippe Huybrechts
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-87, https://doi.org/10.5194/tc-2023-87, 2023
Manuscript not accepted for further review
Short summary
Short summary
Detailed 3D models can be applied for well-studied glaciers, whereas simplified approaches are used for regional/global assessments. We conducted a comparison of six Tien Shan glaciers employing different models and investigated the impact of in-situ measurements. Our results reveal that the choice of mass balance and ice flow model as well as calibration have minimal impact on the projected volume. The initial ice thickness exerts the greatest influence on the future remaining ice volume.
Aaron Cremona, Matthias Huss, Johannes Marian Landmann, Joël Borner, and Daniel Farinotti
The Cryosphere, 17, 1895–1912, https://doi.org/10.5194/tc-17-1895-2023, https://doi.org/10.5194/tc-17-1895-2023, 2023
Short summary
Short summary
Summer heat waves have a substantial impact on glacier melt as emphasized by the extreme summer of 2022. This study presents a novel approach for detecting extreme glacier melt events at the regional scale based on the combination of automatically retrieved point mass balance observations and modelling approaches. The in-depth analysis of summer 2022 evidences the strong correspondence between heat waves and extreme melt events and demonstrates their significance for seasonal melt.
Natalie Barbosa, Johannes Leinauer, Juilson Jubanski, Michael Dietze, Ulrich Münzer, Florian Siegert, and Michael Krautblatter
Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2023-10, https://doi.org/10.5194/esurf-2023-10, 2023
Preprint under review for ESurf
Short summary
Short summary
Massive sediment pulses in catchments are a key alpine multi-risks component. Combining high-resolution aerial imagery and seismic information, we decipher a multi-stage >150.000 m3 rockfall and subsequent sediment pulses over 4 years, reflecting sediment deposition up to 10 m, redistribution in the basin, and finally debouchure to the outlet. This study provides generic information on spatial and temporal patterns of massive sediment pulses in highly-charged alpine catchments.
Christian H. Mohr, Michael Dietze, Violeta Tolorza, Erwin Gonzalez, Benjamin Sotomayor, Andres Iroume, Sten Gilfert, and Frieder Tautz
EGUsphere, https://doi.org/10.5194/egusphere-2023-789, https://doi.org/10.5194/egusphere-2023-789, 2023
Short summary
Short summary
Coastal temperate rainforests are underrepresented in the Critical Zone Observatory (CZO) catalogue, despite their outstanding ecological role. Here, we introduce the Pumalín CZO within the Patagonian Rainforest to explore carbon sink functioning, landscape evolution, matter and energy fluxes, and disturbance understanding using environmental seismology. First results highlight the Patagonian rainforest as particularly biomass rich and confirms the suitability of our blend of sensing techniques.
Tobias Siegfried, Aziz Ul Haq Mujahid, Beatrice Sabine Marti, Peter Molnar, Dirk Nikolaus Karger, and Andrey Yakovlev
EGUsphere, https://doi.org/10.5194/egusphere-2023-520, https://doi.org/10.5194/egusphere-2023-520, 2023
Preprint archived
Short summary
Short summary
Our study investigates climate change impacts on water resources in Central Asia's high-mountain regions. Using new data and a stochastic soil moisture model, we found increased precipitation and higher temperatures in the future, leading to higher water discharge despite decreasing glacier melt contributions. These findings are crucial for understanding and preparing for climate change effects on Central Asia's water resources, with further research needed on extreme weather event impacts.
Qinggang Gao, Christian Zeman, Jesus Vergara-Temprado, Daniela C. A. Lima, Peter Molnar, and Christoph Schär
Weather Clim. Dynam., 4, 189–211, https://doi.org/10.5194/wcd-4-189-2023, https://doi.org/10.5194/wcd-4-189-2023, 2023
Short summary
Short summary
We developed a vortex identification algorithm for realistic atmospheric simulations. The algorithm enabled us to obtain a climatology of vortex shedding from Madeira Island for a 10-year simulation period. This first objective climatological analysis of vortex streets shows consistency with observed atmospheric conditions. The analysis shows a pronounced annual cycle with an increasing vortex shedding rate from April to August and a sudden decrease in September.
Erik Schytt Mannerfelt, Amaury Dehecq, Romain Hugonnet, Elias Hodel, Matthias Huss, Andreas Bauder, and Daniel Farinotti
The Cryosphere, 16, 3249–3268, https://doi.org/10.5194/tc-16-3249-2022, https://doi.org/10.5194/tc-16-3249-2022, 2022
Short summary
Short summary
How glaciers have responded to climate change over the last 20 years is well-known, but earlier data are much more scarce. We change this in Switzerland by using 22 000 photographs taken from mountain tops between the world wars and find a halving of Swiss glacier volume since 1931. This was done through new automated processing techniques that we created. The data are interesting for more than just glaciers, such as mapping forest changes, landslides, and human impacts on the terrain.
Silvan Ragettli, Tabea Donauer, Peter Molnar, Ron Delnoije, and Tobias Siegfried
Earth Surf. Dynam., 10, 797–815, https://doi.org/10.5194/esurf-10-797-2022, https://doi.org/10.5194/esurf-10-797-2022, 2022
Short summary
Short summary
This paper presents a novel methodology to identify and quantitatively analyze deposition and erosion patterns in ephemeral ponds or in perennial lakes with strong water level fluctuations. We apply this method to unravel the water and sediment balance of Lac Wégnia, a designated Ramsar site in Mali. The study can be a showcase for monitoring Sahelian lakes using remote sensing data, as it sheds light on the actual drivers of change in Sahelian lakes.
Lea Geibel, Matthias Huss, Claudia Kurzböck, Elias Hodel, Andreas Bauder, and Daniel Farinotti
Earth Syst. Sci. Data, 14, 3293–3312, https://doi.org/10.5194/essd-14-3293-2022, https://doi.org/10.5194/essd-14-3293-2022, 2022
Short summary
Short summary
Glacier monitoring in Switzerland started in the 19th century, providing exceptional data series documenting snow accumulation and ice melt. Raw point observations of surface mass balance have, however, never been systematically compiled so far, including complete metadata. Here, we present an extensive dataset with more than 60 000 point observations of surface mass balance covering 60 Swiss glaciers and almost 140 years, promoting a better understanding of the drivers of recent glacier change.
Tim Steffen, Matthias Huss, Rebekka Estermann, Elias Hodel, and Daniel Farinotti
Earth Surf. Dynam., 10, 723–741, https://doi.org/10.5194/esurf-10-723-2022, https://doi.org/10.5194/esurf-10-723-2022, 2022
Short summary
Short summary
Climate change is rapidly altering high-alpine landscapes. The formation of new lakes in areas becoming ice free due to glacier retreat is one of the many consequences of this process. Here, we provide an estimate for the number, size, time of emergence, and sediment infill of future glacier lakes that will emerge in the Swiss Alps. We estimate that up to ~ 680 potential lakes could form over the course of the 21st century, with the potential to hold a total water volume of up to ~ 1.16 km3.
Aaron Bufe, Kristen L. Cook, Albert Galy, Hella Wittmann, and Niels Hovius
Earth Surf. Dynam., 10, 513–530, https://doi.org/10.5194/esurf-10-513-2022, https://doi.org/10.5194/esurf-10-513-2022, 2022
Short summary
Short summary
Erosion modulates Earth's carbon cycle by exposing a variety of lithologies to chemical weathering. We measured water chemistry in streams on the eastern Tibetan Plateau that drain either metasedimentary or granitoid rocks. With increasing erosion, weathering shifts from being a CO2 sink to being a CO2 source for both lithologies. However, metasedimentary rocks typically weather 2–10 times faster than granitoids, with implications for the role of lithology in modulating the carbon cycle.
Michael Dietze, Sebastian Kreutzer, Margret C. Fuchs, and Sascha Meszner
Geochronology, 4, 323–338, https://doi.org/10.5194/gchron-4-323-2022, https://doi.org/10.5194/gchron-4-323-2022, 2022
Short summary
Short summary
The R package sandbox is a collection of functions that allow the creation, sampling and analysis of fully virtual sediment sections, like having a virtual twin of real-world deposits. This article introduces the concept, features, and workflows required to use sandbox. It shows how a real-world sediment section can be mapped into the model and subsequently addresses a series of theoretical and practical questions, exploiting the flexibility of the model framework.
Michael Dietze, Rainer Bell, Ugur Ozturk, Kristen L. Cook, Christoff Andermann, Alexander R. Beer, Bodo Damm, Ana Lucia, Felix S. Fauer, Katrin M. Nissen, Tobias Sieg, and Annegret H. Thieken
Nat. Hazards Earth Syst. Sci., 22, 1845–1856, https://doi.org/10.5194/nhess-22-1845-2022, https://doi.org/10.5194/nhess-22-1845-2022, 2022
Short summary
Short summary
The flood that hit Europe in July 2021, specifically the Eifel, Germany, was more than a lot of fast-flowing water. The heavy rain that fell during the 3 d before also caused the slope to fail, recruited tree trunks that clogged bridges, and routed debris across the landscape. Especially in the upper parts of the catchments the flood was able to gain momentum. Here, we discuss how different landscape elements interacted and highlight the challenges of holistic future flood anticipation.
Loris Compagno, Matthias Huss, Evan Stewart Miles, Michael James McCarthy, Harry Zekollari, Amaury Dehecq, Francesca Pellicciotti, and Daniel Farinotti
The Cryosphere, 16, 1697–1718, https://doi.org/10.5194/tc-16-1697-2022, https://doi.org/10.5194/tc-16-1697-2022, 2022
Short summary
Short summary
We present a new approach for modelling debris area and thickness evolution. We implement the module into a combined mass-balance ice-flow model, and we apply it using different climate scenarios to project the future evolution of all glaciers in High Mountain Asia. We show that glacier geometry, volume, and flow velocity evolve differently when modelling explicitly debris cover compared to glacier evolution without the debris-cover module, demonstrating the importance of accounting for debris.
Christophe Ogier, Mauro A. Werder, Matthias Huss, Isabelle Kull, David Hodel, and Daniel Farinotti
The Cryosphere, 15, 5133–5150, https://doi.org/10.5194/tc-15-5133-2021, https://doi.org/10.5194/tc-15-5133-2021, 2021
Short summary
Short summary
Glacier-dammed lakes are prone to draining rapidly when the ice dam breaks and constitute a serious threat to populations downstream. Such a lake drainage can proceed through an open-air channel at the glacier surface. In this study, we present what we believe to be the most complete dataset to date of an ice-dammed lake drainage through such an open-air channel. We provide new insights for future glacier-dammed lake drainage modelling studies and hazard assessments.
Elena Leonarduzzi, Brian W. McArdell, and Peter Molnar
Hydrol. Earth Syst. Sci., 25, 5937–5950, https://doi.org/10.5194/hess-25-5937-2021, https://doi.org/10.5194/hess-25-5937-2021, 2021
Short summary
Short summary
Landslides are a dangerous natural hazard affecting alpine regions, calling for effective warning systems. Here we consider different approaches for the prediction of rainfall-induced shallow landslides at the regional scale, based on open-access datasets and operational hydrological forecasting systems. We find antecedent wetness useful to improve upon the classical rainfall thresholds and the resolution of the hydrological model used for its estimate to be a critical aspect.
Johannes Marian Landmann, Hans Rudolf Künsch, Matthias Huss, Christophe Ogier, Markus Kalisch, and Daniel Farinotti
The Cryosphere, 15, 5017–5040, https://doi.org/10.5194/tc-15-5017-2021, https://doi.org/10.5194/tc-15-5017-2021, 2021
Short summary
Short summary
In this study, we (1) acquire real-time information on point glacier mass balance with autonomous real-time cameras and (2) assimilate these observations into a mass balance model ensemble driven by meteorological input. For doing so, we use a customized particle filter that we designed for the specific purposes of our study. We find melt rates of up to 0.12 m water equivalent per day and show that our assimilation method has a higher performance than reference mass balance models.
Jacob Hirschberg, Alexandre Badoux, Brian W. McArdell, Elena Leonarduzzi, and Peter Molnar
Nat. Hazards Earth Syst. Sci., 21, 2773–2789, https://doi.org/10.5194/nhess-21-2773-2021, https://doi.org/10.5194/nhess-21-2773-2021, 2021
Short summary
Short summary
Debris-flow prediction is often based on rainfall thresholds, but uncertainty assessments are rare. We established rainfall thresholds using two approaches and find that 25 debris flows are needed for uncertainties to converge in an Alpine basin and that the suitable method differs for regional compared to local thresholds. Finally, we demonstrate the potential of a statistical learning algorithm to improve threshold performance. These findings are helpful for early warning system development.
Małgorzata Chmiel, Fabian Walter, Lukas Preiswerk, Martin Funk, Lorenz Meier, and Florent Brenguier
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2021-205, https://doi.org/10.5194/nhess-2021-205, 2021
Preprint withdrawn
Short summary
Short summary
The hanging glacier on Switzerland’s Mount Eiger regularly produces ice avalanches which threaten tourist activity and nearby infrastructure. Reliable forecasting remains a challenge as physical processes leading to ice rupture are not fully understood yet. We propose a new method for hanging glacier monitoring using repeating englacial seismic signals. Our approach allows monitoring temperature and meltwater driven changes occurring in the hanging glacier at seasonal and diurnal timescales.
Loris Compagno, Sarah Eggs, Matthias Huss, Harry Zekollari, and Daniel Farinotti
The Cryosphere, 15, 2593–2599, https://doi.org/10.5194/tc-15-2593-2021, https://doi.org/10.5194/tc-15-2593-2021, 2021
Short summary
Short summary
Recently, discussions have focused on the difference in limiting the increase in global average temperatures to below 1.0, 1.5, or 2.0 °C compared to preindustrial levels. Here, we assess the impacts that such different scenarios would have on both the future evolution of glaciers in the European Alps and the water resources they provide. Our results show that the different temperature targets have important implications for the changes predicted until 2100.
Benedetta Dini, Georgina L. Bennett, Aldina M. A. Franco, Michael R. Z. Whitworth, Kristen L. Cook, Andreas Senn, and John M. Reynolds
Earth Surf. Dynam., 9, 295–315, https://doi.org/10.5194/esurf-9-295-2021, https://doi.org/10.5194/esurf-9-295-2021, 2021
Short summary
Short summary
We use long-range smart sensors connected to a network based on the Internet of Things to explore the possibility of detecting hazardous boulder movements in real time. Prior to the 2019 monsoon season we inserted the devices in 23 boulders spread over debris flow channels and a landslide in northeastern Nepal. The data obtained in this pilot study show the potential of this technology to be used in remote hazard-prone areas in future early warning systems.
Eef C. H. van Dongen, Guillaume Jouvet, Shin Sugiyama, Evgeny A. Podolskiy, Martin Funk, Douglas I. Benn, Fabian Lindner, Andreas Bauder, Julien Seguinot, Silvan Leinss, and Fabian Walter
The Cryosphere, 15, 485–500, https://doi.org/10.5194/tc-15-485-2021, https://doi.org/10.5194/tc-15-485-2021, 2021
Short summary
Short summary
The dynamic mass loss of tidewater glaciers is strongly linked to glacier calving. We study calving mechanisms under a thinning regime, based on 5 years of field and remote-sensing data of Bowdoin Glacier. Our data suggest that Bowdoin Glacier ungrounded recently, and its calving behaviour changed from calving due to surface crevasses to buoyancy-induced calving resulting from basal crevasses. This change may be a precursor to glacier retreat.
Michaela Wenner, Clément Hibert, Alec van Herwijnen, Lorenz Meier, and Fabian Walter
Nat. Hazards Earth Syst. Sci., 21, 339–361, https://doi.org/10.5194/nhess-21-339-2021, https://doi.org/10.5194/nhess-21-339-2021, 2021
Short summary
Short summary
Mass movements constitute a risk to property and human life. In this study we use machine learning to automatically detect and classify slope failure events using ground vibrations. We explore the influence of non-ideal though commonly encountered conditions: poor network coverage, small number of events, and low signal-to-noise ratios. Our approach enables us to detect the occurrence of rare events of high interest in a large data set of more than a million windowed seismic signals.
Ethan Welty, Michael Zemp, Francisco Navarro, Matthias Huss, Johannes J. Fürst, Isabelle Gärtner-Roer, Johannes Landmann, Horst Machguth, Kathrin Naegeli, Liss M. Andreassen, Daniel Farinotti, Huilin Li, and GlaThiDa Contributors
Earth Syst. Sci. Data, 12, 3039–3055, https://doi.org/10.5194/essd-12-3039-2020, https://doi.org/10.5194/essd-12-3039-2020, 2020
Short summary
Short summary
Knowing the thickness of glacier ice is critical for predicting the rate of glacier loss and the myriad downstream impacts. To facilitate forecasts of future change, we have added 3 million measurements to our worldwide database of glacier thickness: 14 % of global glacier area is now within 1 km of a thickness measurement (up from 6 %). To make it easier to update and monitor the quality of our database, we have used automated tools to check and track changes to the data over time.
Marius G. Floriancic, Wouter R. Berghuijs, Tobias Jonas, James W. Kirchner, and Peter Molnar
Hydrol. Earth Syst. Sci., 24, 5423–5438, https://doi.org/10.5194/hess-24-5423-2020, https://doi.org/10.5194/hess-24-5423-2020, 2020
Short summary
Short summary
Low river flows affect societies and ecosystems. Here we study how precipitation and potential evapotranspiration shape low flows across a network of 380 Swiss catchments. Low flows in these rivers typically result from below-average precipitation and above-average potential evapotranspiration. Extreme low flows result from long periods of the combined effects of both drivers.
Elena Leonarduzzi and Peter Molnar
Nat. Hazards Earth Syst. Sci., 20, 2905–2919, https://doi.org/10.5194/nhess-20-2905-2020, https://doi.org/10.5194/nhess-20-2905-2020, 2020
Short summary
Short summary
Landslides are a natural hazard that affects alpine regions. Here we focus on rainfall-induced shallow landslides and one of the most widely used approaches for their predictions: rainfall thresholds. We design several comparisons utilizing a landslide database and rainfall records in Switzerland. We find that using daily rather than hourly rainfall might be a better option in some circumstances, and mean annual precipitation and antecedent wetness can improve predictions at the regional scale.
Giulia Battista, Peter Molnar, and Paolo Burlando
Earth Surf. Dynam., 8, 619–635, https://doi.org/10.5194/esurf-8-619-2020, https://doi.org/10.5194/esurf-8-619-2020, 2020
Short summary
Short summary
Suspended sediment load in rivers is highly uncertain because of spatial and temporal variability. By means of a hydrology and suspended sediment transport model, we investigated the effect of spatial variability in precipitation and surface erodibility on catchment sediment fluxes in a mesoscale river basin.
We found that sediment load depends on the spatial variability in erosion drivers, as this affects erosion rates and the location and connectivity to the channel of the erosion areas.
Álvaro Ayala, David Farías-Barahona, Matthias Huss, Francesca Pellicciotti, James McPhee, and Daniel Farinotti
The Cryosphere, 14, 2005–2027, https://doi.org/10.5194/tc-14-2005-2020, https://doi.org/10.5194/tc-14-2005-2020, 2020
Short summary
Short summary
We reconstruct past glacier changes (1955–2016) and estimate the committed ice loss in the Maipo River basin (semi-arid Andes of Chile), with a focus on glacier runoff. We found that glacier volume has decreased by one-fifth since 1955 and that glacier runoff shows a sequence of decreasing maxima starting in a severe drought in 1968. As meltwater originating from the Andes plays a key role in this dry region, our results can be useful for developing adaptation or mitigation strategies.
Tjalling de Haas, Wiebe Nijland, Brian W. McArdell, and Maurice W. M. L. Kalthof
Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2020-43, https://doi.org/10.5194/esurf-2020-43, 2020
Preprint withdrawn
Short summary
Short summary
High-quality digital surface models generated by automated photogrammetry techniques on aerial images captured with drones are increasingly used for topographic change detection. We demonstrate that co-aligning the images from multiple surveys strongly enhances the accuracy of topographic change detection. We find that co-alignment leads to particularly large improvements in the accuracy of poorly aligned surveys that have severe offsets when processed individually.
Ugo Nanni, Florent Gimbert, Christian Vincent, Dominik Gräff, Fabian Walter, Luc Piard, and Luc Moreau
The Cryosphere, 14, 1475–1496, https://doi.org/10.5194/tc-14-1475-2020, https://doi.org/10.5194/tc-14-1475-2020, 2020
Short summary
Short summary
Our study addresses key questions on the subglacial drainage system physics through a novel observational approach that overcomes traditional limitations. We conducted, over 2 years, measurements of the subglacial water-flow-induced seismic noise and of glacier basal sliding speeds. We then inverted for the subglacial channel's hydraulic pressure gradient and hydraulic radius and investigated the links between the equilibrium state of subglacial channels and glacier basal sliding.
Amandine Sergeant, Małgorzata Chmiel, Fabian Lindner, Fabian Walter, Philippe Roux, Julien Chaput, Florent Gimbert, and Aurélien Mordret
The Cryosphere, 14, 1139–1171, https://doi.org/10.5194/tc-14-1139-2020, https://doi.org/10.5194/tc-14-1139-2020, 2020
Short summary
Short summary
This study explores the capacity to apply ambient noise interferometry to passive seismic recordings in glaciers. Green's function between two seismometers represents the impulse response of the elastic medium. It can be approximated from cross-correlation of random seismic wave fields. For glaciers, its recovery is notoriously difficult due to weak ice seismic scattering. We propose three methods to bridge the gap and show the potential for passive seismic imaging and monitoring of glaciers.
Fabian Lindner, Fabian Walter, Gabi Laske, and Florent Gimbert
The Cryosphere, 14, 287–308, https://doi.org/10.5194/tc-14-287-2020, https://doi.org/10.5194/tc-14-287-2020, 2020
Nadav Peleg, Chris Skinner, Simone Fatichi, and Peter Molnar
Earth Surf. Dynam., 8, 17–36, https://doi.org/10.5194/esurf-8-17-2020, https://doi.org/10.5194/esurf-8-17-2020, 2020
Short summary
Short summary
Extreme rainfall is expected to intensify with increasing temperatures, which will likely affect rainfall spatial structure. The spatial variability of rainfall can affect streamflow and sediment transport volumes and peaks. The sensitivity of the hydro-morphological response to changes in the structure of heavy rainfall was investigated. It was found that the morphological components are more sensitive to changes in rainfall spatial structure in comparison to the hydrological components.
Kristen L. Cook and Michael Dietze
Earth Surf. Dynam., 7, 1009–1017, https://doi.org/10.5194/esurf-7-1009-2019, https://doi.org/10.5194/esurf-7-1009-2019, 2019
Short summary
Short summary
UAVs have become popular tools for detecting topographic changes. Traditionally, detecting small amounts of change between two UAV surveys requires each survey to be highly accurate. We take an alternative approach and present a simple processing workflow that produces survey pairs or sets that are highly consistent with each other, even when the overall accuracy is relatively low. This greatly increases our ability to detect changes in settings where ground control is not possible.
Elisabeth Dietze and Michael Dietze
E&G Quaternary Sci. J., 68, 29–46, https://doi.org/10.5194/egqsj-68-29-2019, https://doi.org/10.5194/egqsj-68-29-2019, 2019
Short summary
Short summary
Sedimentary deposits provide insights into past Earth surface dynamics via the size distribution of mineral grains documenting the erosion, transport and deposition history. This study introduces structured procedures to decipher the distinct grain-size distributions of sediment samples that were mixed during/after deposition, using the free statistical tool EMMAgeo. Compared with other algorithms, EMMAgeo is unique as it provides uncertainty estimates and allows expert knowledge to be included.
Harry Zekollari, Matthias Huss, and Daniel Farinotti
The Cryosphere, 13, 1125–1146, https://doi.org/10.5194/tc-13-1125-2019, https://doi.org/10.5194/tc-13-1125-2019, 2019
Short summary
Short summary
Glaciers in the European Alps play an important role in the hydrological cycle, act as a source for hydroelectricity and have a large touristic importance. We model the future evolution of all glaciers in the Alps with a novel model that combines both ice flow and melt processes. We find that under a limited warming scenario about one-third of the present-day ice volume will still be present by the end of the century, while under strong warming more than 90 % of the volume will be lost by 2100.
Michael Dietze
Earth Surf. Dynam., 6, 669–686, https://doi.org/10.5194/esurf-6-669-2018, https://doi.org/10.5194/esurf-6-669-2018, 2018
Short summary
Short summary
Environmental seismology is the study of the seismic signals emitted by Earth surface processes. This emerging research field is at the intersection of many Earth science disciplines. The overarching scope requires free integrative software that is accepted across scientific disciplines, such as R. The article introduces the R package "eseis" and illustrates its conceptual structure, available functions, and worked examples.
Anna Costa, Daniela Anghileri, and Peter Molnar
Hydrol. Earth Syst. Sci., 22, 3421–3434, https://doi.org/10.5194/hess-22-3421-2018, https://doi.org/10.5194/hess-22-3421-2018, 2018
Short summary
Short summary
We analyse the control of hydroclimatic factors – erosive rainfall, ice melt, and snowmelt – on suspended sediment concentration (SSC) of Alpine catchments regulated by hydropower, and we develop a multivariate hydroclimatic–informed rating curve. We show that while erosive rainfall determines the variability of SSC, ice melt generates the highest contribution to SSC per unit of runoff. This approach allows the exploration of climate–driven changes in fine sediment dynamics in Alpine catchments.
Martin Beniston, Daniel Farinotti, Markus Stoffel, Liss M. Andreassen, Erika Coppola, Nicolas Eckert, Adriano Fantini, Florie Giacona, Christian Hauck, Matthias Huss, Hendrik Huwald, Michael Lehning, Juan-Ignacio López-Moreno, Jan Magnusson, Christoph Marty, Enrique Morán-Tejéda, Samuel Morin, Mohamed Naaim, Antonello Provenzale, Antoine Rabatel, Delphine Six, Johann Stötter, Ulrich Strasser, Silvia Terzago, and Christian Vincent
The Cryosphere, 12, 759–794, https://doi.org/10.5194/tc-12-759-2018, https://doi.org/10.5194/tc-12-759-2018, 2018
Short summary
Short summary
This paper makes a rather exhaustive overview of current knowledge of past, current, and future aspects of cryospheric issues in continental Europe and makes a number of reflections of areas of uncertainty requiring more attention in both scientific and policy terms. The review paper is completed by a bibliography containing 350 recent references that will certainly be of value to scholars engaged in the fields of glacier, snow, and permafrost research.
Anna Costa, Peter Molnar, Laura Stutenbecker, Maarten Bakker, Tiago A. Silva, Fritz Schlunegger, Stuart N. Lane, Jean-Luc Loizeau, and Stéphanie Girardclos
Hydrol. Earth Syst. Sci., 22, 509–528, https://doi.org/10.5194/hess-22-509-2018, https://doi.org/10.5194/hess-22-509-2018, 2018
Short summary
Short summary
We explore the signal of a warmer climate in the suspended-sediment dynamics of a regulated and human-impacted Alpine catchment. We demonstrate that temperature-driven enhanced melting of glaciers, which occurred in the mid-1980s, played a dominant role in suspended sediment concentration rise, through increased runoff from sediment-rich proglacial areas, increased contribution of sediment-rich meltwater, and increased sediment supply in proglacial areas due to glacier recession.
Nadine Feiger, Matthias Huss, Silvan Leinss, Leo Sold, and Daniel Farinotti
Geogr. Helv., 73, 1–9, https://doi.org/10.5194/gh-73-1-2018, https://doi.org/10.5194/gh-73-1-2018, 2018
Short summary
Short summary
This contribution presents two updated bedrock topographies and ice thickness distributions with a new uncertainty assessment for Gries- and Findelengletscher, Switzerland. The results are based on ground-penetrating radar (GPR) measurements and the
ice thickness estimation method (ITEM). The results show a total glacier volume of 0.28 ± 0.06 and 1.00 ± 0.34 km3 for Gries- and Findelengletscher, respectively, with corresponding average ice thicknesses of 56.8 ± 12.7 and 56.3 ± 19.6 m.
Michael Dietze, Jens M. Turowski, Kristen L. Cook, and Niels Hovius
Earth Surf. Dynam., 5, 757–779, https://doi.org/10.5194/esurf-5-757-2017, https://doi.org/10.5194/esurf-5-757-2017, 2017
Short summary
Short summary
Rockfall is an essential geomorphic process and a hazard in steep landscapes which is hard to constrain with traditional approaches. Seismic methods allow for the detection, location, characterisation and linking of events to triggers by lag times. This new technique reveals 49 rockfalls in 6 months with seasonally varying locations. Freeze–thaw action accounts for only 5 events, whereas 19 rockfalls were caused by rain with a 1 h peak lag time, and 17 events were due to diurnal thermal forcing.
Albrecht von Boetticher, Jens M. Turowski, Brian W. McArdell, Dieter Rickenmann, Marcel Hürlimann, Christian Scheidl, and James W. Kirchner
Geosci. Model Dev., 10, 3963–3978, https://doi.org/10.5194/gmd-10-3963-2017, https://doi.org/10.5194/gmd-10-3963-2017, 2017
Short summary
Short summary
The open-source fluid dynamic solver presented in v. Boetticher et al. (2016) combines a Coulomb viscosplastic rheological model with a Herschel–Bulkley model based on material properties for 3-D debris flow simulations. Here, we validate the solver and illustrate the model sensitivity to water content, channel curvature, content of fine material and channel bed roughness. We simulate both laboratory-scale and large-scale debris-flow experiments, using only one of the two calibration parameters.
Michael Dietze, Solmaz Mohadjer, Jens M. Turowski, Todd A. Ehlers, and Niels Hovius
Earth Surf. Dynam., 5, 653–668, https://doi.org/10.5194/esurf-5-653-2017, https://doi.org/10.5194/esurf-5-653-2017, 2017
Short summary
Short summary
We use a seismometer network to detect and locate rockfalls, a key process shaping steep mountain landscapes. When tested against laser scan surveys, all seismically detected events could be located with an average deviation of 81 m. Seismic monitoring provides insight to the dynamics of individual rockfalls, which can be as small as 0.0053 m3. Thus, seismic methods provide unprecedented temporal, spatial and kinematic details about this important process.
Martin Hoelzle, Erlan Azisov, Martina Barandun, Matthias Huss, Daniel Farinotti, Abror Gafurov, Wilfried Hagg, Ruslan Kenzhebaev, Marlene Kronenberg, Horst Machguth, Alexandr Merkushkin, Bolot Moldobekov, Maxim Petrov, Tomas Saks, Nadine Salzmann, Tilo Schöne, Yuri Tarasov, Ryskul Usubaliev, Sergiy Vorogushyn, Andrey Yakovlev, and Michael Zemp
Geosci. Instrum. Method. Data Syst., 6, 397–418, https://doi.org/10.5194/gi-6-397-2017, https://doi.org/10.5194/gi-6-397-2017, 2017
Anna Costa, Daniela Anghileri, and Peter Molnar
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-419, https://doi.org/10.5194/hess-2017-419, 2017
Manuscript not accepted for further review
Short summary
Short summary
We develop a novel rating curve to simulate suspended sediment concentration (SSC) in Alpine catchments (Process-Based Rating Curve, PBRC). Instead of relating SSC to discharge, as in traditional approaches, we model SSC by differentiating the potential contributions of the main erosional and transport processes of Alpine environments: erosive rainfall, snowmelt, and icemelt. We show that PBRC significantly improves predictions of SSC, especially when analysing climate-induced changes.
Fabian Walter, Arnaud Burtin, Brian W. McArdell, Niels Hovius, Bianca Weder, and Jens M. Turowski
Nat. Hazards Earth Syst. Sci., 17, 939–955, https://doi.org/10.5194/nhess-17-939-2017, https://doi.org/10.5194/nhess-17-939-2017, 2017
Short summary
Short summary
Debris flows are naturally occuring mass motion events, which mobilize loose material in steep Alpine torrents. The destructive potential of debris flows is well known and demands early warning. Here we apply the amplitude source location (ASL) method to seismic ground vibrations induced by a debris flow event in Switzerland. The method efficiently detects the initiation of the event and traces its front propagation down the torrent channel.
Florian Frank, Brian W. McArdell, Nicole Oggier, Patrick Baer, Marc Christen, and Andreas Vieli
Nat. Hazards Earth Syst. Sci., 17, 801–815, https://doi.org/10.5194/nhess-17-801-2017, https://doi.org/10.5194/nhess-17-801-2017, 2017
Short summary
Short summary
This study describes a sensitivity analysis of the RAMMS debris-flow entrainment model, which is intended to help solve problems related to predicting the runout of debris flows. The results indicate that the entrainment model predicts plausible erosion volumes in comparison with field data. These eroded volumes are sensitive to the initial landslide volume, suggesting that this tool may be useful for both reconstruction of historical events and modeling of debris flow scenarios.
Daniel Farinotti, Douglas J. Brinkerhoff, Garry K. C. Clarke, Johannes J. Fürst, Holger Frey, Prateek Gantayat, Fabien Gillet-Chaulet, Claire Girard, Matthias Huss, Paul W. Leclercq, Andreas Linsbauer, Horst Machguth, Carlos Martin, Fabien Maussion, Mathieu Morlighem, Cyrille Mosbeux, Ankur Pandit, Andrea Portmann, Antoine Rabatel, RAAJ Ramsankaran, Thomas J. Reerink, Olivier Sanchez, Peter A. Stentoft, Sangita Singh Kumari, Ward J. J. van Pelt, Brian Anderson, Toby Benham, Daniel Binder, Julian A. Dowdeswell, Andrea Fischer, Kay Helfricht, Stanislav Kutuzov, Ivan Lavrentiev, Robert McNabb, G. Hilmar Gudmundsson, Huilin Li, and Liss M. Andreassen
The Cryosphere, 11, 949–970, https://doi.org/10.5194/tc-11-949-2017, https://doi.org/10.5194/tc-11-949-2017, 2017
Short summary
Short summary
ITMIX – the Ice Thickness Models Intercomparison eXperiment – was the first coordinated performance assessment for models inferring glacier ice thickness from surface characteristics. Considering 17 different models and 21 different test cases, we show that although solutions of individual models can differ considerably, an ensemble average can yield uncertainties in the order of 10 ± 24 % the mean ice thickness. Ways forward for improving such estimates are sketched.
Nadav Peleg, Frank Blumensaat, Peter Molnar, Simone Fatichi, and Paolo Burlando
Hydrol. Earth Syst. Sci., 21, 1559–1572, https://doi.org/10.5194/hess-21-1559-2017, https://doi.org/10.5194/hess-21-1559-2017, 2017
Short summary
Short summary
We investigated the relative contribution of the spatial versus climatic rainfall variability for flow peaks by applying an advanced stochastic rainfall generator to simulate rainfall for a small urban catchment and simulate flow dynamics in the sewer system. We found that the main contribution to the total flow variability originates from the natural climate variability. The contribution of spatial rainfall variability to the total flow variability was found to increase with return periods.
Søren Thorndahl, Thomas Einfalt, Patrick Willems, Jesper Ellerbæk Nielsen, Marie-Claire ten Veldhuis, Karsten Arnbjerg-Nielsen, Michael R. Rasmussen, and Peter Molnar
Hydrol. Earth Syst. Sci., 21, 1359–1380, https://doi.org/10.5194/hess-21-1359-2017, https://doi.org/10.5194/hess-21-1359-2017, 2017
Short summary
Short summary
This paper reviews how weather radar data can be used in urban hydrological applications. It focuses on three areas of research: (1) temporal and spatial resolution of rainfall data, (2) rainfall estimation, radar data adjustment and data quality, and (3) nowcasting of radar rainfall and real-time applications. Moreover, the paper provides examples of urban hydrological applications which can benefit from radar rainfall data in comparison to tradition rain gauge measurements of rainfall.
Claudio I. Meier, Jorge Sebastián Moraga, Geri Pranzini, and Peter Molnar
Hydrol. Earth Syst. Sci., 20, 4177–4190, https://doi.org/10.5194/hess-20-4177-2016, https://doi.org/10.5194/hess-20-4177-2016, 2016
Short summary
Short summary
We show that the derived distribution approach is able to characterize the interannual variability of precipitation much better than fitting a probabilistic model to annual rainfall totals, as long as continuously gauged data are available. The method is a useful tool for describing temporal changes in the distribution of annual rainfall, as it works for records as short as 5 years, and therefore does not require any stationarity assumption over long periods.
Bahareh Kianfar, Simone Fatichi, Athansios Paschalis, Max Maurer, and Peter Molnar
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-536, https://doi.org/10.5194/hess-2016-536, 2016
Revised manuscript has not been submitted
Short summary
Short summary
Raingauge observations show a large variability in extreme rainfall depths in the current climate. Climate model predictions of extreme rainfall in the future have to be compared with this natural variability. Our work shows that predictions of future extreme rainfall often lie within the range of natural variability of present-day climate, and therefore predictions of change are highly uncertain. We demonstrate this by using stochastic rainfall models and 10-min rainfall data in Switzerland.
Albrecht von Boetticher, Jens M. Turowski, Brian W. McArdell, Dieter Rickenmann, and James W. Kirchner
Geosci. Model Dev., 9, 2909–2923, https://doi.org/10.5194/gmd-9-2909-2016, https://doi.org/10.5194/gmd-9-2909-2016, 2016
Short summary
Short summary
Debris flows are characterized by unsteady flows of water with different content of clay, silt, sand, gravel, and large particles, resulting in a dense moving mixture mass. Here we present a three-dimensional fluid dynamic solver that simulates the flow as a mixture of a pressure-dependent rheology model of the gravel mixed with a Herschel–Bulkley rheology of the fine material suspension. We link rheological parameters to the material composition. The user must specify two free model parameters.
Matteo Saletti, Peter Molnar, Marwan A. Hassan, and Paolo Burlando
Earth Surf. Dynam., 4, 549–566, https://doi.org/10.5194/esurf-4-549-2016, https://doi.org/10.5194/esurf-4-549-2016, 2016
Short summary
Short summary
This study presents a new reduced-complexity model with few parameters linked to basic physical processes, which aims to reproduce the transport of sediment as bed load and the formation and stability of channel morphology in steep mountain streams. The model is able to simulate the formation and stability of steps, bed structures commonly encountered in steep channels, by assuming that their formation is due to intense sediment transport during high flows causing jamming of particles.
F. Frank, B. W. McArdell, C. Huggel, and A. Vieli
Nat. Hazards Earth Syst. Sci., 15, 2569–2583, https://doi.org/10.5194/nhess-15-2569-2015, https://doi.org/10.5194/nhess-15-2569-2015, 2015
Short summary
Short summary
The sudden onset of large and erosive debris flows has been observed recently in different catchments in Switzerland, implicating the importance of erosion for debris flow modelling. Therefore, an erosion model was established based on field data (relationship between maximum shear stress and erosion depth and rate) of several debris flows measured at the Illgraben. Erosion model tests at the Spreitgraben showed considerable improvements in runout pattern as well as hydrograph propagation.
A. von Boetticher, J. M. Turowski, B. W. McArdell, D. Rickenmann, M. Hürlimann, C. Scheidl, and J. W. Kirchner
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmdd-8-6379-2015, https://doi.org/10.5194/gmdd-8-6379-2015, 2015
Preprint withdrawn
K. Schraml, B. Thomschitz, B. W. McArdell, C. Graf, and R. Kaitna
Nat. Hazards Earth Syst. Sci., 15, 1483–1492, https://doi.org/10.5194/nhess-15-1483-2015, https://doi.org/10.5194/nhess-15-1483-2015, 2015
Short summary
Short summary
In this paper we used two different numerical simulation models to replicate two debris-flow events in Austria and compare the range and sensitivity of the model input parameters. We expect that our results contribute to a better application of simulation models for hazard and risk assessment in alpine regions.
J. Hall, B. Arheimer, G. T. Aronica, A. Bilibashi, M. Boháč, O. Bonacci, M. Borga, P. Burlando, A. Castellarin, G. B. Chirico, P. Claps, K. Fiala, L. Gaál, L. Gorbachova, A. Gül, J. Hannaford, A. Kiss, T. Kjeldsen, S. Kohnová, J. J. Koskela, N. Macdonald, M. Mavrova-Guirguinova, O. Ledvinka, L. Mediero, B. Merz, R. Merz, P. Molnar, A. Montanari, M. Osuch, J. Parajka, R. A. P. Perdigão, I. Radevski, B. Renard, M. Rogger, J. L. Salinas, E. Sauquet, M. Šraj, J. Szolgay, A. Viglione, E. Volpi, D. Wilson, K. Zaimi, and G. Blöschl
Proc. IAHS, 370, 89–95, https://doi.org/10.5194/piahs-370-89-2015, https://doi.org/10.5194/piahs-370-89-2015, 2015
M. Stähli, M. Sättele, C. Huggel, B. W. McArdell, P. Lehmann, A. Van Herwijnen, A. Berne, M. Schleiss, A. Ferrari, A. Kos, D. Or, and S. M. Springman
Nat. Hazards Earth Syst. Sci., 15, 905–917, https://doi.org/10.5194/nhess-15-905-2015, https://doi.org/10.5194/nhess-15-905-2015, 2015
Short summary
Short summary
This review paper describes the state of the art in monitoring and predicting rapid mass movements for early warning. It further presents recent innovations in observation technologies and modelling to be used in future early warning systems (EWS). Finally, the paper proposes avenues towards successful implementation of next-generation EWS.
P. Molnar, S. Fatichi, L. Gaál, J. Szolgay, and P. Burlando
Hydrol. Earth Syst. Sci., 19, 1753–1766, https://doi.org/10.5194/hess-19-1753-2015, https://doi.org/10.5194/hess-19-1753-2015, 2015
Short summary
Short summary
We present an empirical study of the rates of increase in precipitation intensity with air temperature using high-resolution 10 min precipitation records in Switzerland. We estimated the scaling rates for lightning (convective) and non-lightning event subsets and show that scaling rates are between 7 and 14%/C for convective rain and that mixing of storm types exaggerates the relations to air temperature. Doubled CC rates reported by other studies are an exception in our data set.
A. Gafurov, S. Vorogushyn, D. Farinotti, D. Duethmann, A. Merkushkin, and B. Merz
The Cryosphere, 9, 451–463, https://doi.org/10.5194/tc-9-451-2015, https://doi.org/10.5194/tc-9-451-2015, 2015
Short summary
Short summary
Spatially distributed snow-cover data are available only for the recent past from remote sensing. Sometimes we need snow-cover data over a longer period for climate impact analysis for the calibration/validation of hydrological models. In this study we present a methodology to reconstruct snow cover in the past using available long-term in situ data and recently available remote sensing snow-cover data. The results show about 85% accuracy although only a limited number of stations (7) were used.
K. Džubáková, P. Molnar, K. Schindler, and M. Trizna
Hydrol. Earth Syst. Sci., 19, 195–208, https://doi.org/10.5194/hess-19-195-2015, https://doi.org/10.5194/hess-19-195-2015, 2015
Short summary
Short summary
We use a high-resolution ground-based camera system with near-infrared sensitivity to quantify the response of riparian vegetation in an Alpine river to floods with the use of vegetation indices. The vegetation showed both damage and enhancement within 1 week following floods, with a selective impact determined by pre-flood vegetation vigour, morphological setting and intensity of flood forcing. The tested vegetation indices differed in the direction of predicted change in the range 0.7-35.8%.
J. Hall, B. Arheimer, M. Borga, R. Brázdil, P. Claps, A. Kiss, T. R. Kjeldsen, J. Kriaučiūnienė, Z. W. Kundzewicz, M. Lang, M. C. Llasat, N. Macdonald, N. McIntyre, L. Mediero, B. Merz, R. Merz, P. Molnar, A. Montanari, C. Neuhold, J. Parajka, R. A. P. Perdigão, L. Plavcová, M. Rogger, J. L. Salinas, E. Sauquet, C. Schär, J. Szolgay, A. Viglione, and G. Blöschl
Hydrol. Earth Syst. Sci., 18, 2735–2772, https://doi.org/10.5194/hess-18-2735-2014, https://doi.org/10.5194/hess-18-2735-2014, 2014
M. Huss and D. Farinotti
The Cryosphere, 8, 1261–1273, https://doi.org/10.5194/tc-8-1261-2014, https://doi.org/10.5194/tc-8-1261-2014, 2014
L. Gaál, P. Molnar, and J. Szolgay
Hydrol. Earth Syst. Sci., 18, 1561–1573, https://doi.org/10.5194/hess-18-1561-2014, https://doi.org/10.5194/hess-18-1561-2014, 2014
A. Burtin, N. Hovius, B. W. McArdell, J. M. Turowski, and J. Vergne
Earth Surf. Dynam., 2, 21–33, https://doi.org/10.5194/esurf-2-21-2014, https://doi.org/10.5194/esurf-2-21-2014, 2014
Related subject area
Landslides and Debris Flows Hazards
A new analytical method for stability analysis of rock blocks with basal erosion in sub-horizontal strata by considering the eccentricity effect
Rockfall monitoring with a Doppler radar on an active rockslide complex in Brienz/Brinzauls (Switzerland)
Landslide initiation thresholds in data-sparse regions: application to landslide early warning criteria in Sitka, Alaska, USA
Lessons learnt from a rockfall time series analysis: data collection, statistical analysis, and applications
The concept of event-size-dependent exhaustion and its application to paraglacial rockslides
Coastal earthquake-induced landslide susceptibility during the 2016 Mw 7.8 Kaikōura earthquake, New Zealand
Characteristics of debris flows recorded in the Shenmu area of central Taiwan between 2004 and 2021
Semi-automatic mapping of shallow landslides using free Sentinel-2 images and Google Earth Engine
The role of thermokarst evolution in debris flow initiation (Hüttekar Rock Glacier, Austrian Alps)
Accounting for the effect of forest and fragmentation in probabilistic rockfall hazard
Comprehensive landslide susceptibility map of Central Asia
The influence of large woody debris on post-wildfire debris flow sediment storage
Statistical modeling of sediment supply in torrent catchments of the northern French Alps
Probabilistic Hydrological Estimation of LandSlides (PHELS): global ensemble landslide hazard modelling
Slope Unit Maker (SUMak): an efficient and parameter-free algorithm for delineating slope units to improve landslide susceptibility modeling
A data-driven evaluation of post-fire landslide susceptibility
Deciphering seasonal effects of triggering and preparatory precipitation for improved shallow landslide prediction using generalized additive mixed models
Brief communication: The northwest Himalaya towns slipping towards potential disaster
Dynamic response and breakage of trees subject to a landslide-induced air blast
Debris-flow surges of a very active alpine torrent: a field database
Rainfall thresholds estimation for shallow landslides in Peru from gridded daily data
Instantaneous limit equilibrium back analyses of major rockslides triggered during the 2016–2017 central Italy seismic sequence
Deadly disasters in southeastern South America: flash floods and landslides of February 2022 in Petrópolis, Rio de Janeiro
Multi-event assessment of typhoon-triggered landslide susceptibility in the Philippines
Antecedent rainfall as a critical factor for the triggering of debris flows in arid regions
Sensitivity analysis of a built environment exposed to the synthetic monophasic viscous debris flow impacts with 3-D numerical simulations
Simulation analysis of 3D stability of a landslide with a locking segment: A case study of Tizicao landslide in Maoxian County, Southwest China
Characteristics and causes of natural and human-induced landslides in a tropical mountainous region: the rift flank west of Lake Kivu (Democratic Republic of the Congo)
Spatio-temporal analysis of slope-type debris flow activity in Horlachtal, Austria, based on orthophotos and lidar data since 1947
Assessing the relationship between weather conditions and rockfall using terrestrial laser scanning to improve risk management
Using principal component analysis to incorporate multi-layer soil moisture information in hydrometeorological thresholds for landslide prediction: an investigation based on ERA5-Land reanalysis data
Assessing uncertainties in landslide susceptibility predictions in a changing environment (Styrian Basin, Austria)
How volcanic stratigraphy constrains headscarp collapse scenarios: the Samperre cliff case study (Martinique island, Lesser Antilles)
Landslide susceptibility assessment in the rocky coast subsystem of Essaouira, Morocco
Landsifier v1.0: a Python library to estimate likely triggers of mapped landslides
Timing landslide and flash flood events from SAR satellite: a regionally applicable methodology illustrated in African cloud-covered tropical environments
Potential of satellite-derived hydro-meteorological information for landslide initiation thresholds in Rwanda
Earthquake-induced landslides in Haiti: analysis of seismotectonic and possible climatic influences
Pre-collapse motion of the February 2021 Chamoli rock–ice avalanche, Indian Himalaya
Physically based modeling of co-seismic landslide, debris flow, and flood cascade
Finite-hillslope analysis of landslides triggered by excess pore water pressure: the roles of atmospheric pressure and rainfall infiltration during typhoons
Estimating global landslide susceptibility and its uncertainty through ensemble modeling
Terrain visibility impact on the preparation of landslide inventories: a practical example in Darjeeling district (India)
Using Sentinel-1 radar amplitude time series to constrain the timings of individual landslides: a step towards understanding the controls on monsoon-triggered landsliding
Introducing SlideforMAP: a probabilistic finite slope approach for modelling shallow-landslide probability in forested situations
Augmentation of WRF-Hydro to simulate overland-flow- and streamflow-generated debris flow susceptibility in burn scars
What drives landslide risk? Disaggregating risk analyses, an example from the Franz Josef Glacier and Fox Glacier valleys, New Zealand
Geographic information system models with fuzzy logic for susceptibility maps of debris flow using multiple types of parameters: a case study in Pinggu District of Beijing, China
Spatial assessment of probable recharge areas – investigating the hydrogeological controls of an active deep-seated gravitational slope deformation
Rainfall-induced landslide early warning system based on corrected mesoscale numerical models: an application for the southern Andes
Xushan Shi, Bo Chai, Juan Du, Wei Wang, and Bo Liu
Nat. Hazards Earth Syst. Sci., 23, 3425–3443, https://doi.org/10.5194/nhess-23-3425-2023, https://doi.org/10.5194/nhess-23-3425-2023, 2023
Short summary
Short summary
A 3D stability analysis method is proposed for biased rockfall with external erosion. Four failure modes are considered according to rockfall evolution processes, including partial damage of underlying soft rock and overall failure of hard rock blocks. This method is validated with the biased rockfalls in the Sichuan Basin, China. The critical retreat ratio from low to moderate rockfall susceptibility is 0.33. This method could facilitate rockfall early identification and risk mitigation.
Marius Schneider, Nicolas Oestreicher, Thomas Ehrat, and Simon Loew
Nat. Hazards Earth Syst. Sci., 23, 3337–3354, https://doi.org/10.5194/nhess-23-3337-2023, https://doi.org/10.5194/nhess-23-3337-2023, 2023
Short summary
Short summary
Rockfalls and their hazards are typically treated as statistical events based on rockfall catalogs, but only a few complete rockfall inventories are available today. Here, we present new results from a Doppler radar rockfall alarm system, which has operated since 2018 at a high frequency under all illumination and weather conditions at a site where frequent rockfall events threaten a village and road. The new data set is used to investigate rockfall triggers in an active rockslide complex.
Annette I. Patton, Lisa V. Luna, Joshua J. Roering, Aaron Jacobs, Oliver Korup, and Benjamin B. Mirus
Nat. Hazards Earth Syst. Sci., 23, 3261–3284, https://doi.org/10.5194/nhess-23-3261-2023, https://doi.org/10.5194/nhess-23-3261-2023, 2023
Short summary
Short summary
Landslide warning systems often use statistical models to predict landslides based on rainfall. They are typically trained on large datasets with many landslide occurrences, but in rural areas large datasets may not exist. In this study, we evaluate which statistical model types are best suited to predicting landslides and demonstrate that even a small landslide inventory (five storms) can be used to train useful models for landslide early warning when non-landslide events are also included.
Sandra Melzner, Marco Conedera, Johannes Hübl, and Mauro Rossi
Nat. Hazards Earth Syst. Sci., 23, 3079–3093, https://doi.org/10.5194/nhess-23-3079-2023, https://doi.org/10.5194/nhess-23-3079-2023, 2023
Short summary
Short summary
The estimation of the temporal frequency of the involved rockfall processes is an important part in hazard and risk assessments. Different methods can be used to collect and analyse rockfall data. From a statistical point of view, rockfall datasets are nearly always incomplete. Accurate data collection approaches and the application of statistical methods on existing rockfall data series as reported in this study should be better considered in rockfall hazard and risk assessments in the future.
Stefan Hergarten
Nat. Hazards Earth Syst. Sci., 23, 3051–3063, https://doi.org/10.5194/nhess-23-3051-2023, https://doi.org/10.5194/nhess-23-3051-2023, 2023
Short summary
Short summary
Rockslides are a major hazard in mountainous regions. In formerly glaciated regions, the disposition mainly arises from oversteepened topography and decreases through time. However, little is known about this decrease and thus about the present-day hazard of huge, potentially catastrophic rockslides. This paper presents a new theoretical framework that explains the decrease in maximum rockslide size through time and predicts the present-day frequency of large rockslides for the European Alps.
Colin K. Bloom, Corinne Singeisen, Timothy Stahl, Andrew Howell, Chris Massey, and Dougal Mason
Nat. Hazards Earth Syst. Sci., 23, 2987–3013, https://doi.org/10.5194/nhess-23-2987-2023, https://doi.org/10.5194/nhess-23-2987-2023, 2023
Short summary
Short summary
Landslides are often observed on coastlines following large earthquakes, but few studies have explored this occurrence. Here, statistical modelling of landslides triggered by the 2016 Kaikōura earthquake in New Zealand is used to investigate factors driving coastal earthquake-induced landslides. Geology, steep slopes, and shaking intensity are good predictors of landslides from the Kaikōura event. Steeper slopes close to the coast provide the best explanation for a high landslide density.
Yi-Min Huang
Nat. Hazards Earth Syst. Sci., 23, 2649–2662, https://doi.org/10.5194/nhess-23-2649-2023, https://doi.org/10.5194/nhess-23-2649-2023, 2023
Short summary
Short summary
Debris flows are common hazards in Taiwan, and debris-flow early warning is important for disaster responses. The rainfall thresholds of debris flows are analyzed and determined in terms of rainfall intensity, accumulated rainfall, and rainfall duration, based on case histories in Taiwan. These thresholds are useful for disaster management, and the cases in Taiwan are useful for global debris-flow databases.
Davide Notti, Martina Cignetti, Danilo Godone, and Daniele Giordan
Nat. Hazards Earth Syst. Sci., 23, 2625–2648, https://doi.org/10.5194/nhess-23-2625-2023, https://doi.org/10.5194/nhess-23-2625-2023, 2023
Short summary
Short summary
We developed a cost-effective and user-friendly approach to map shallow landslides using free satellite data. Our methodology involves analysing the pre- and post-event NDVI variation to semi-automatically detect areas potentially affected by shallow landslides (PLs). Additionally, we have created Google Earth Engine scripts to rapidly compute NDVI differences and time series of affected areas. Datasets and codes are stored in an open data repository for improvement by the scientific community.
Simon Seelig, Thomas Wagner, Karl Krainer, Michael Avian, Marc Olefs, Klaus Haslinger, and Gerfried Winkler
Nat. Hazards Earth Syst. Sci., 23, 2547–2568, https://doi.org/10.5194/nhess-23-2547-2023, https://doi.org/10.5194/nhess-23-2547-2023, 2023
Short summary
Short summary
A rapid sequence of cascading events involving thermokarst lake outburst, rock glacier front failure, debris flow development, and river blockage hit an alpine valley in Austria during summer 2019. We analyze the environmental conditions initiating the process chain and identify the rapid evolution of a thermokarst channel network as the main driver. Our results highlight the need to account for permafrost degradation in debris flow hazard assessment studies.
Camilla Lanfranconi, Paolo Frattini, Gianluca Sala, Giuseppe Dattola, Davide Bertolo, Juanjuan Sun, and Giovanni Battista Crosta
Nat. Hazards Earth Syst. Sci., 23, 2349–2363, https://doi.org/10.5194/nhess-23-2349-2023, https://doi.org/10.5194/nhess-23-2349-2023, 2023
Short summary
Short summary
This paper presents a study on rockfall dynamics and hazard, examining the impact of the presence of trees along slope and block fragmentation. We compared rockfall simulations that explicitly model the presence of trees and fragmentation with a classical approach that accounts for these phenomena in model parameters (both the hazard and the kinetic energy change). We also used a non-parametric probabilistic rockfall hazard analysis method for hazard mapping.
Ascanio Rosi, William Frodella, Nicola Nocentini, Francesco Caleca, Hans Balder Havenith, Alexander Strom, Mirzo Saidov, Gany Amirgalievich Bimurzaev, and Veronica Tofani
Nat. Hazards Earth Syst. Sci., 23, 2229–2250, https://doi.org/10.5194/nhess-23-2229-2023, https://doi.org/10.5194/nhess-23-2229-2023, 2023
Short summary
Short summary
This work was carried out within the Strengthening Financial Resilience and Accelerating Risk Reduction in Central Asia (SFRARR) project and is focused on the first landslide susceptibility analysis at a regional scale for Central Asia. The most detailed available landslide inventories were implemented in a random forest model. The final aim was to provide a useful tool for reduction strategies to landslide scientists, practitioners, and administrators.
Francis K. Rengers, Luke A. McGuire, Katherine R. Barnhart, Ann M. Youberg, Daniel Cadol, Alexander N. Gorr, Olivia J. Hoch, Rebecca Beers, and Jason W. Kean
Nat. Hazards Earth Syst. Sci., 23, 2075–2088, https://doi.org/10.5194/nhess-23-2075-2023, https://doi.org/10.5194/nhess-23-2075-2023, 2023
Short summary
Short summary
Debris flows often occur after wildfires. These debris flows move water, sediment, and wood. The wood can get stuck in channels, creating a dam that holds boulders, cobbles, sand, and muddy material. We investigated how the channel width and wood length influenced how much sediment is stored. We also used a series of equations to back calculate the debris flow speed using the breaking threshold of wood. These data will help improve models and provide insight into future field investigations.
Maxime Morel, Guillaume Piton, Damien Kuss, Guillaume Evin, and Caroline Le Bouteiller
Nat. Hazards Earth Syst. Sci., 23, 1769–1787, https://doi.org/10.5194/nhess-23-1769-2023, https://doi.org/10.5194/nhess-23-1769-2023, 2023
Short summary
Short summary
In mountain catchments, damage during floods is generally primarily driven by the supply of a massive amount of sediment. Predicting how much sediment can be delivered by frequent and infrequent events is thus important in hazard studies. This paper uses data gathered during the maintenance operation of about 100 debris retention basins to build simple equations aiming at predicting sediment supply from simple parameters describing the upstream catchment.
Anne Felsberg, Zdenko Heyvaert, Jean Poesen, Thomas Stanley, and Gabriëlle J. M. De Lannoy
EGUsphere, https://doi.org/10.5194/egusphere-2023-869, https://doi.org/10.5194/egusphere-2023-869, 2023
Short summary
Short summary
The Probabilistic Hydrological Estimation of LandSlides (PHELS) model combines ensembles of landslide susceptibility and of hydrological predictor variables to provide daily, global ensembles of hazard for hydrologically-triggered landslides. Testing different hydrological predictors showed that the combination of rainfall and soil moisture performed best, with the least amount of missed and false alarms. The ensemble approach moreover allowed to estimate the associated prediction uncertainty.
Jacob B. Woodard, Benjamin B. Mirus, Nathan J. Wood, Kate E. Allstadt, Benjamin A. Leshchinsky, and Matthew M. Crawford
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-70, https://doi.org/10.5194/nhess-2023-70, 2023
Revised manuscript accepted for NHESS
Short summary
Short summary
Dividing landscapes into representative hillslopes greatly improves predictions of landslide potential across landscapes but requires vast computing power. Here, we present a new computer program that can efficiently divide landscapes into meaningful slope units. The results of this work will allow an improved understanding of landslide potential across different landscapes and can ultimately help reduce the impacts of landslides worldwide.
Elsa S. Culler, Ben Livneh, Balaji Rajagopalan, and Kristy F. Tiampo
Nat. Hazards Earth Syst. Sci., 23, 1631–1652, https://doi.org/10.5194/nhess-23-1631-2023, https://doi.org/10.5194/nhess-23-1631-2023, 2023
Short summary
Short summary
Landslides have often been observed in the aftermath of wildfires. This study explores regional patterns in the rainfall that caused landslides both after fires and in unburned locations. In general, landslides that occur after fires are triggered by less rainfall, confirming that fire helps to set the stage for landslides. However, there are regional differences in the ways in which fire impacts landslides, such as the size and direction of shifts in the seasonality of landslides after fires.
Stefan Steger, Mateo Moreno, Alice Crespi, Peter James Zellner, Stefano Luigi Gariano, Maria Teresa Brunetti, Massimo Melillo, Silvia Peruccacci, Francesco Marra, Robin Kohrs, Jason Goetz, Volkmar Mair, and Massimiliano Pittore
Nat. Hazards Earth Syst. Sci., 23, 1483–1506, https://doi.org/10.5194/nhess-23-1483-2023, https://doi.org/10.5194/nhess-23-1483-2023, 2023
Short summary
Short summary
We present a novel data-driven modelling approach to determine season-specific critical precipitation conditions for landslide occurrence. It is shown that the amount of precipitation required to trigger a landslide in South Tyrol varies from season to season. In summer, a higher amount of preparatory precipitation is required to trigger a landslide, probably due to denser vegetation and higher temperatures. We derive dynamic thresholds that directly relate to hit rates and false-alarm rates.
Yaspal Sundriyal, Vipin Kumar, Neha Chauhan, Sameeksha Kaushik, Rahul Ranjan, and Mohit Kumar Punia
Nat. Hazards Earth Syst. Sci., 23, 1425–1431, https://doi.org/10.5194/nhess-23-1425-2023, https://doi.org/10.5194/nhess-23-1425-2023, 2023
Short summary
Short summary
The NW Himalaya has been one of the most affected terrains of the Himalaya, subject to disastrous landslides. This article focuses on two towns (Joshimath and Bhatwari) of the NW Himalaya, which have been witnessing subsidence for decades. We used a slope stability simulation to determine the response of the hillslopes accommodating these towns under various loading conditions. We found that the maximum displacement in these hillslopes might reach up to 20–25 m.
Yu Zhuang, Aiguo Xing, Perry Bartelt, Muhammad Bilal, and Zhaowei Ding
Nat. Hazards Earth Syst. Sci., 23, 1257–1266, https://doi.org/10.5194/nhess-23-1257-2023, https://doi.org/10.5194/nhess-23-1257-2023, 2023
Short summary
Short summary
Tree destruction is often used to back calculate the air blast impact region and to estimate the air blast power. Here we established a novel model to assess air blast power using tree destruction information. We find that the dynamic magnification effect makes the trees easier to damage by a landslide-induced air blast, but the large tree deformation would weaken the effect. Bending and overturning are two likely failure modes, which depend heavily on the properties of trees.
Suzanne Lapillonne, Firmin Fontaine, Frédéric Liebault, Vincent Richefeu, and Guillaume Piton
Nat. Hazards Earth Syst. Sci., 23, 1241–1256, https://doi.org/10.5194/nhess-23-1241-2023, https://doi.org/10.5194/nhess-23-1241-2023, 2023
Short summary
Short summary
Debris flows are fast flows most often found in torrential watersheds. They are composed of two phases: a liquid phase which can be mud-like and a granular phase, including large boulders, transported along with the flow. Due to their destructive nature, accessing features of the flow, such as velocity and flow height, is difficult. We present a protocol to analyse debris flow data and results of the Réal torrent in France. These results will help experts in designing models.
Carlos Millán-Arancibia and Waldo Lavado-Casimiro
Nat. Hazards Earth Syst. Sci., 23, 1191–1206, https://doi.org/10.5194/nhess-23-1191-2023, https://doi.org/10.5194/nhess-23-1191-2023, 2023
Short summary
Short summary
This study is the first approximation of regional rainfall thresholds for shallow landslide occurrence in Peru. This research was generated from a gridded precipitation data and landslide inventory. The analysis showed that the threshold based on the combination of mean daily intensity–duration variables gives the best results for separating rainfall events that generate landslides. Through this work the potential of thresholds for landslide monitoring at the regional scale is demonstrated.
Luca Verrucci, Giovanni Forte, Melania De Falco, Paolo Tommasi, Giuseppe Lanzo, Kevin W. Franke, and Antonio Santo
Nat. Hazards Earth Syst. Sci., 23, 1177–1190, https://doi.org/10.5194/nhess-23-1177-2023, https://doi.org/10.5194/nhess-23-1177-2023, 2023
Short summary
Short summary
Stability analyses in static and seismic conditions were performed on four rockslides that occurred during the main shocks of the 2016–2017 central Italy seismic sequence. These results also indicate that specific structural features of the slope must carefully be accounted for in evaluating potential hazards on transportation infrastructures in mountainous regions.
Enner Alcântara, José A. Marengo, José Mantovani, Luciana R. Londe, Rachel Lau Yu San, Edward Park, Yunung Nina Lin, Jingyu Wang, Tatiana Mendes, Ana Paula Cunha, Luana Pampuch, Marcelo Seluchi, Silvio Simões, Luz Adriana Cuartas, Demerval Goncalves, Klécia Massi, Regina Alvalá, Osvaldo Moraes, Carlos Souza Filho, Rodolfo Mendes, and Carlos Nobre
Nat. Hazards Earth Syst. Sci., 23, 1157–1175, https://doi.org/10.5194/nhess-23-1157-2023, https://doi.org/10.5194/nhess-23-1157-2023, 2023
Short summary
Short summary
The municipality of Petrópolis (approximately 305 687 inhabitants) is nestled in the mountains 68 km outside the city of Rio de Janeiro. On 15 February 2022, the city of Petrópolis in Rio de Janeiro, Brazil, received an unusually high volume of rain within 3 h (258 mm). This resulted in flash floods and subsequent landslides that caused 231 fatalities, the deadliest landslide disaster recorded in Petrópolis. This work shows how the disaster was triggered.
Joshua N. Jones, Georgina L. Bennett, Claudia Abancó, Mark A. M. Matera, and Fibor J. Tan
Nat. Hazards Earth Syst. Sci., 23, 1095–1115, https://doi.org/10.5194/nhess-23-1095-2023, https://doi.org/10.5194/nhess-23-1095-2023, 2023
Short summary
Short summary
We modelled where landslides occur in the Philippines using landslide data from three typhoon events in 2009, 2018, and 2019. These models show where landslides occurred within the landscape. By comparing the different models, we found that the 2019 landslides were occurring all across the landscape, whereas the 2009 and 2018 landslides were mostly occurring at specific slope angles and aspects. This shows that landslide susceptibility must be considered variable through space and time.
Shalev Siman-Tov and Francesco Marra
Nat. Hazards Earth Syst. Sci., 23, 1079–1093, https://doi.org/10.5194/nhess-23-1079-2023, https://doi.org/10.5194/nhess-23-1079-2023, 2023
Short summary
Short summary
Debris flows represent a threat to infrastructure and the population. In arid areas, they are observed when heavy rainfall hits steep slopes with sediments. Here, we use digital surface models and radar rainfall data to detect and characterize the triggering and non-triggering rainfall conditions. We find that rainfall intensity alone is insufficient to explain the triggering. We suggest that antecedent rainfall could represent a critical factor for debris flow triggering in arid regions.
Xun Huang, Zhijian Zhang, and Guoping Xiang
Nat. Hazards Earth Syst. Sci., 23, 871–889, https://doi.org/10.5194/nhess-23-871-2023, https://doi.org/10.5194/nhess-23-871-2023, 2023
Short summary
Short summary
A sensitivity analysis on the building impact force resulting from the representative built environment parameters is executed through the FLOW-3D model. The surrounding buildings' properties, especially the azimuthal angle, have been confirmed to play significant roles in determining the peak impact forces. The single and combined effects of built environments are analyzed in detail. This will improve understanding of vulnerability assessment and migration design against debris flow hazards.
Yuntao Zhou, Xiaoyan Zhao, Guangze Zhang, Bernd Wünnemann, Jiajia Zhang, and Minghui Meng
EGUsphere, https://doi.org/10.5194/egusphere-2023-28, https://doi.org/10.5194/egusphere-2023-28, 2023
Short summary
Short summary
We developed three rock bridge models to analyze 3D stability and deformation behaviors of the Tizicao landslide. We found that the CSM-HSP combines the advantages of the IRMM model in simulating the actual deformation of slopes with rock bridges and the modeling advantage of the JM model. The research results are helpful to choose an appropriate rock bridge model to simulate the 3D landslide stability and to reveal the influence laws of rock bridges on the 3D stability of landslides.
Jean-Claude Maki Mateso, Charles L. Bielders, Elise Monsieurs, Arthur Depicker, Benoît Smets, Théophile Tambala, Luc Bagalwa Mateso, and Olivier Dewitte
Nat. Hazards Earth Syst. Sci., 23, 643–666, https://doi.org/10.5194/nhess-23-643-2023, https://doi.org/10.5194/nhess-23-643-2023, 2023
Short summary
Short summary
This research highlights the importance of human activities on the occurrence of landslides and the need to consider this context when studying hillslope instability patterns in regions under anthropogenic pressure. Also, this study highlights the importance of considering the timing of landslides and hence the added value of using historical information for compiling an inventory.
Jakob Rom, Florian Haas, Tobias Heckmann, Moritz Altmann, Fabian Fleischer, Camillo Ressl, Sarah Betz-Nutz, and Michael Becht
Nat. Hazards Earth Syst. Sci., 23, 601–622, https://doi.org/10.5194/nhess-23-601-2023, https://doi.org/10.5194/nhess-23-601-2023, 2023
Short summary
Short summary
In this study, an area-wide slope-type debris flow record has been established for Horlachtal, Austria, since 1947 based on historical and recent remote sensing data. Spatial and temporal analyses show variations in debris flow activity in space and time in a high-alpine region. The results can contribute to a better understanding of past slope-type debris flow dynamics in the context of extreme precipitation events and their possible future development.
Tom Birien and Francis Gauthier
Nat. Hazards Earth Syst. Sci., 23, 343–360, https://doi.org/10.5194/nhess-23-343-2023, https://doi.org/10.5194/nhess-23-343-2023, 2023
Short summary
Short summary
On highly fractured rockwalls such as those found in northern Gaspésie, most rockfalls are triggered by weather conditions. This study highlights that in winter, rockfall frequency is 12 times higher during a superficial thaw than during a cold period in which temperature remains below 0 °C. In summer, rockfall frequency is 22 times higher during a heavy rainfall event than during a mainly dry period. This knowledge could be used to implement a risk management strategy.
Nunziarita Palazzolo, David J. Peres, Enrico Creaco, and Antonino Cancelliere
Nat. Hazards Earth Syst. Sci., 23, 279–291, https://doi.org/10.5194/nhess-23-279-2023, https://doi.org/10.5194/nhess-23-279-2023, 2023
Short summary
Short summary
We propose an approach exploiting PCA to derive hydrometeorological landslide-triggering thresholds using multi-layered soil moisture data from ERA5-Land reanalysis. Comparison of thresholds based on single- and multi-layered soil moisture information provides a means to identify the significance of multi-layered data for landslide triggering in a region. In Sicily, the proposed approach yields thresholds with a higher performance than traditional precipitation-based ones (TSS = 0.71 vs. 0.50).
Raphael Knevels, Helene Petschko, Herwig Proske, Philip Leopold, Aditya N. Mishra, Douglas Maraun, and Alexander Brenning
Nat. Hazards Earth Syst. Sci., 23, 205–229, https://doi.org/10.5194/nhess-23-205-2023, https://doi.org/10.5194/nhess-23-205-2023, 2023
Short summary
Short summary
In summer 2009 and 2014, rainfall events occurred in the Styrian Basin (Austria), triggering thousands of landslides. Landslide storylines help to show potential future changes under changing environmental conditions. The often neglected uncertainty quantification was the aim of this study. We found uncertainty arising from the landslide model to be of the same order as climate scenario uncertainty. Understanding the dimensions of uncertainty is crucial for allowing informed decision-making.
Marc Peruzzetto, Yoann Legendre, Aude Nachbaur, Thomas J. B. Dewez, Yannick Thiery, Clara Levy, and Benoit Vittecoq
Nat. Hazards Earth Syst. Sci., 22, 3973–3992, https://doi.org/10.5194/nhess-22-3973-2022, https://doi.org/10.5194/nhess-22-3973-2022, 2022
Short summary
Short summary
Volcanic edifices result from successive construction and dismantling phases. Thus, the geological units forming volcanoes display complex geometries. We show that such geometries can be reconstructed thanks to aerial views, topographic surveys and photogrammetric models. In our case study of the Samperre cliff (Martinique, Lesser Antilles), it allows us to link destabilizations from a rocky cliff to the existence of a filled paleo-valley and estimate a potentially unstable volume.
Abdellah Khouz, Jorge Trindade, Sérgio C. Oliveira, Fatima El Bchari, Blaid Bougadir, Ricardo A. C. Garcia, and Mourad Jadoud
Nat. Hazards Earth Syst. Sci., 22, 3793–3814, https://doi.org/10.5194/nhess-22-3793-2022, https://doi.org/10.5194/nhess-22-3793-2022, 2022
Short summary
Short summary
The aim of this study was to assess the landslide susceptibility of the rocky coast of Essaouira using the information value model. The resulting susceptibility maps could be used for both environmental protection and general planning of future development activities.
Kamal Rana, Nishant Malik, and Ugur Ozturk
Nat. Hazards Earth Syst. Sci., 22, 3751–3764, https://doi.org/10.5194/nhess-22-3751-2022, https://doi.org/10.5194/nhess-22-3751-2022, 2022
Short summary
Short summary
The landslide hazard models assist in mitigating losses due to landslides. However, these models depend on landslide databases, which often have missing triggering information, rendering these databases unusable for landslide hazard models. In this work, we developed a Python library, Landsifier, consisting of three different methods to identify the triggers of landslides. These methods can classify landslide triggers with high accuracy using only a landslide polygon shapefile as an input.
Axel A. J. Deijns, Olivier Dewitte, Wim Thiery, Nicolas d'Oreye, Jean-Philippe Malet, and François Kervyn
Nat. Hazards Earth Syst. Sci., 22, 3679–3700, https://doi.org/10.5194/nhess-22-3679-2022, https://doi.org/10.5194/nhess-22-3679-2022, 2022
Short summary
Short summary
Landslides and flash floods are rainfall-induced processes that often co-occur and interact, generally very quickly. In mountainous cloud-covered environments, determining when these processes occur remains challenging. We propose a regional methodology using open-access satellite radar images that allow for the timing of landslide and flash floods events, in the contrasting landscapes of tropical Africa, with an accuracy of up to a few days. The methodology shows potential for transferability.
Judith Uwihirwe, Alessia Riveros, Hellen Wanjala, Jaap Schellekens, Frederiek Sperna Weiland, Markus Hrachowitz, and Thom A. Bogaard
Nat. Hazards Earth Syst. Sci., 22, 3641–3661, https://doi.org/10.5194/nhess-22-3641-2022, https://doi.org/10.5194/nhess-22-3641-2022, 2022
Short summary
Short summary
This study compared gauge-based and satellite-based precipitation products. Similarly, satellite- and hydrological model-derived soil moisture was compared to in situ soil moisture and used in landslide hazard assessment and warning. The results reveal the cumulative 3 d rainfall from the NASA-GPM to be the most effective landslide trigger. The modelled antecedent soil moisture in the root zone was the most informative hydrological variable for landslide hazard assessment and warning in Rwanda.
Hans-Balder Havenith, Kelly Guerrier, Romy Schlögel, Anika Braun, Sophia Ulysse, Anne-Sophie Mreyen, Karl-Henry Victor, Newdeskarl Saint-Fleur, Léna Cauchie, Dominique Boisson, and Claude Prépetit
Nat. Hazards Earth Syst. Sci., 22, 3361–3384, https://doi.org/10.5194/nhess-22-3361-2022, https://doi.org/10.5194/nhess-22-3361-2022, 2022
Short summary
Short summary
We present a new landslide inventory for the 2021, M 7.2, Haiti, earthquake. We compare characteristics of this inventory with those of the 2010 seismically induced landslides, highlighting the much larger total area of 2021 landslides. This fact could be related to the larger earthquake magnitude in 2021, to the more central location of the fault segment ruptured in 2021 with respect to coastal zones, and/or to possible climatic preconditioning of slope failures in the 2021 affected area.
Maximillian Van Wyk de Vries, Shashank Bhushan, Mylène Jacquemart, César Deschamps-Berger, Etienne Berthier, Simon Gascoin, David E. Shean, Dan H. Shugar, and Andreas Kääb
Nat. Hazards Earth Syst. Sci., 22, 3309–3327, https://doi.org/10.5194/nhess-22-3309-2022, https://doi.org/10.5194/nhess-22-3309-2022, 2022
Short summary
Short summary
On 7 February 2021, a large rock–ice avalanche occurred in Chamoli, Indian Himalaya. The resulting debris flow swept down the nearby valley, leaving over 200 people dead or missing. We use a range of satellite datasets to investigate how the collapse area changed prior to collapse. We show that signs of instability were visible as early 5 years prior to collapse. However, it would likely not have been possible to predict the timing of the event from current satellite datasets.
Bastian van den Bout, Chenxiao Tang, Cees van Westen, and Victor Jetten
Nat. Hazards Earth Syst. Sci., 22, 3183–3209, https://doi.org/10.5194/nhess-22-3183-2022, https://doi.org/10.5194/nhess-22-3183-2022, 2022
Short summary
Short summary
Natural hazards such as earthquakes, landslides, and flooding do not always occur as stand-alone events. After the 2008 Wenchuan earthquake, a co-seismic landslide blocked a stream in Hongchun. Two years later, a debris flow breached the material, blocked the Min River, and resulted in flooding of a small town. We developed a multi-process model that captures the full cascade. Despite input and process uncertainties, probability of flooding was high due to topography and trigger intensities.
Lucas Pelascini, Philippe Steer, Maxime Mouyen, and Laurent Longuevergne
Nat. Hazards Earth Syst. Sci., 22, 3125–3141, https://doi.org/10.5194/nhess-22-3125-2022, https://doi.org/10.5194/nhess-22-3125-2022, 2022
Short summary
Short summary
Landslides represent a major natural hazard and are often triggered by typhoons. We present a new 2D model computing the respective role of rainfall infiltration, atmospheric depression and groundwater in slope stability during typhoons. The results show rainfall is the strongest factor of destabilisation. However, if the slope is fully saturated, near the toe of the slope or during the wet season, rainfall infiltration is limited and atmospheric pressure change can become the dominant factor.
Anne Felsberg, Jean Poesen, Michel Bechtold, Matthias Vanmaercke, and Gabriëlle J. M. De Lannoy
Nat. Hazards Earth Syst. Sci., 22, 3063–3082, https://doi.org/10.5194/nhess-22-3063-2022, https://doi.org/10.5194/nhess-22-3063-2022, 2022
Short summary
Short summary
In this study we assessed global landslide susceptibility at the coarse 36 km spatial resolution of global satellite soil moisture observations to prepare for a subsequent combination of the two. Specifically, we focus therefore on the susceptibility of hydrologically triggered landslides. We introduce ensemble techniques, common in, for example, meteorology but not yet in the landslide community, to retrieve reliable estimates of the total prediction uncertainty.
Txomin Bornaetxea, Ivan Marchesini, Sumit Kumar, Rabisankar Karmakar, and Alessandro Mondini
Nat. Hazards Earth Syst. Sci., 22, 2929–2941, https://doi.org/10.5194/nhess-22-2929-2022, https://doi.org/10.5194/nhess-22-2929-2022, 2022
Short summary
Short summary
One cannot know if there is a landslide or not in an area that one has not observed. This is an obvious statement, but when landslide inventories are obtained by field observation, this fact is seldom taken into account. Since fieldwork campaigns are often done following the roads, we present a methodology to estimate the visibility of the terrain from the roads, and we demonstrate that fieldwork-based inventories are underestimating landslide density in less visible areas.
Katy Burrows, Odin Marc, and Dominique Remy
Nat. Hazards Earth Syst. Sci., 22, 2637–2653, https://doi.org/10.5194/nhess-22-2637-2022, https://doi.org/10.5194/nhess-22-2637-2022, 2022
Short summary
Short summary
The locations of triggered landslides following a rainfall event can be identified in optical satellite images. However cloud cover associated with the rainfall means that these images cannot be used to identify landslide timing. Timings of landslides triggered during long rainfall events are often unknown. Here we present methods of using Sentinel-1 satellite radar data, acquired every 12 d globally in all weather conditions, to better constrain the timings of rainfall-triggered landslides.
Feiko Bernard van Zadelhoff, Adel Albaba, Denis Cohen, Chris Phillips, Bettina Schaefli, Luuk Dorren, and Massimiliano Schwarz
Nat. Hazards Earth Syst. Sci., 22, 2611–2635, https://doi.org/10.5194/nhess-22-2611-2022, https://doi.org/10.5194/nhess-22-2611-2022, 2022
Short summary
Short summary
Shallow landslides pose a risk to people, property and infrastructure. Assessment of this hazard and the impact of protective measures can reduce losses. We developed a model (SlideforMAP) that can assess the shallow-landslide risk on a regional scale for specific rainfall events. Trees are an effective and cheap protective measure on a regional scale. Our model can assess their hazard reduction down to the individual tree level.
Chuxuan Li, Alexander L. Handwerger, Jiali Wang, Wei Yu, Xiang Li, Noah J. Finnegan, Yingying Xie, Giuseppe Buscarnera, and Daniel E. Horton
Nat. Hazards Earth Syst. Sci., 22, 2317–2345, https://doi.org/10.5194/nhess-22-2317-2022, https://doi.org/10.5194/nhess-22-2317-2022, 2022
Short summary
Short summary
In January 2021 a storm triggered numerous debris flows in a wildfire burn scar in California. We use a hydrologic model to assess debris flow susceptibility in pre-fire and postfire scenarios. Compared to pre-fire conditions, postfire conditions yield dramatic increases in peak water discharge, substantially increasing debris flow susceptibility. Our work highlights the hydrologic model's utility in investigating and potentially forecasting postfire debris flows at regional scales.
Saskia de Vilder, Chris Massey, Biljana Lukovic, Tony Taig, and Regine Morgenstern
Nat. Hazards Earth Syst. Sci., 22, 2289–2316, https://doi.org/10.5194/nhess-22-2289-2022, https://doi.org/10.5194/nhess-22-2289-2022, 2022
Short summary
Short summary
This study calculates the fatality risk posed by landslides while visiting Franz Josef Glacier and Fox Glacier valleys, New Zealand, for nine different scenarios, where the variables of the risk equation were adjusted to determine the range in risk values and associated uncertainty. The results show that it is important to consider variable inputs that change through time, such as the increasing probability of an earthquake and the impact of climate change on landslide characteristics.
Yiwei Zhang, Jianping Chen, Qing Wang, Chun Tan, Yongchao Li, Xiaohui Sun, and Yang Li
Nat. Hazards Earth Syst. Sci., 22, 2239–2255, https://doi.org/10.5194/nhess-22-2239-2022, https://doi.org/10.5194/nhess-22-2239-2022, 2022
Short summary
Short summary
The disaster prevention and mitigation of debris flow is a very important scientific problem. Our model is based on geographic information system (GIS), combined with grey relational, data-driven and fuzzy logic methods. Through our results, we believe that the streamlining of factors and scientific classification should attract attention from other researchers to optimize a model. We also propose a good perspective to make better use of the watershed feature parameters.
Jan Pfeiffer, Thomas Zieher, Jan Schmieder, Thom Bogaard, Martin Rutzinger, and Christoph Spötl
Nat. Hazards Earth Syst. Sci., 22, 2219–2237, https://doi.org/10.5194/nhess-22-2219-2022, https://doi.org/10.5194/nhess-22-2219-2022, 2022
Short summary
Short summary
The activity of slow-moving deep-seated landslides is commonly governed by pore pressure variations within the shear zone. Groundwater recharge as a consequence of precipitation therefore is a process regulating the activity of landslides. In this context, we present a highly automated geo-statistical approach to spatially assess groundwater recharge controlling the velocity of a deep-seated landslide in Tyrol, Austria.
Ivo Fustos-Toribio, Nataly Manque-Roa, Daniel Vásquez Antipan, Mauricio Hermosilla Sotomayor, and Viviana Letelier Gonzalez
Nat. Hazards Earth Syst. Sci., 22, 2169–2183, https://doi.org/10.5194/nhess-22-2169-2022, https://doi.org/10.5194/nhess-22-2169-2022, 2022
Short summary
Short summary
We develop for the first time a rainfall-induced landslide early warning system for the south of Chile. We used forecast precipitation values at different scales using mesoscale models to evaluate the probability of landslides using statistical models. We showed the feasibility of implementing these models in future, supporting stakeholders and decision-makers.
Cited articles
Bennett, G., Molnar, P., McArdell, B., and Burlando, P.: A probabilistic
sediment cascade model of sediment transfer in the Illgraben, Water Resour.
Res., 50, 1225–1244, 2014. a
Bennett, G. L., Molnar, P., McArdell, B. W., Schlunegger, F., and Burlando, P.: Patterns and controls of sediment production, transfer and yield in the
Illgraben, Geomorphology, 188, 68–82, https://doi.org/10.1016/j.geomorph.2012.11.029,
2013. a, b, c
Bonneau, D., Hutchinson, D. J., McDougall, S., DiFrancesco, P.-M., and Evans,
T.: Debris-Flow Channel Headwater Dynamics: Examining Channel Recharge Cycles With Terrestrial Laser Scanning, Front. Earth Sci., 10, 883259, https://doi.org/10.3389/feart.2022.883259, 2022. a
Bovis, M. J. and Jakob, M.: The role of debris supply conditions in predicting debris flow activity, Earth Surf. Proc. Land., 24, 1039–1054,
1999. a
Burtin, A., Hovius, N., McArdell, B. W., Turowski, J. M., and Vergne, J.: Seismic constraints on dynamic links between geomorphic processes and routing of sediment in a steep mountain catchment, Earth Surf. Dynam., 2, 21–33, https://doi.org/10.5194/esurf-2-21-2014, 2014. a
Cannon, S. H., Gartner, J. E., Wilson, R. C., Bowers, J. C., and Laber, J. L.: Storm rainfall conditions for floods and debris flows from recently burned areas in southwestern Colorado and southern California, Geomorphology, 96, 250–269, 2008. a
Chmiel, M., Walter, F., Wenner, M., Zhang, Z., McArdell, B. W., and Hibert, C.: Machine learning improves debris flow warning, Geophys. Res. Lett., 48, e2020GL090874, https://doi.org/10.1029/2020GL090874, 2021. a
Cook, K. L. and Dietze, M.: Short Communication: A simple workflow for robust low-cost UAV-derived change detection without ground control points, Earth Surf. Dynam., 7, 1009–1017, https://doi.org/10.5194/esurf-7-1009-2019, 2019. a, b
de Haas, T., Nijland, W., de Jong, S. M., and McArdell, B. W.: How memory
effects, check dams, and channel geometry control erosion and deposition by
debris flows, Scient. Rep., 10, 1–8, https://doi.org/10.1038/s41598-020-71016-8, 2020. a, b, c
Dietrich, A. and Krautblatter, M.: Deciphering controls for debris-flow erosion derived from a LiDAR-recorded extreme event and a calibrated numerical model (Roßbichelbach, Germany), Earth Surf. Proc. Land., 44,
1346–1361, 2019. a
Gabus, J., Weidmann, M., Bugnon, P.-C., Burri, M., Sartori, M., and Marthaler, M.: Atlas geól. Suisse 1:25 000, 2008. a
Girod, L., Nuth, C., Kääb, A., Etzelmüller, B., and Kohler, J.: Terrain changes from images acquired on opportunistic flights by SfM photogrammetry, The Cryosphere, 11, 827–840, https://doi.org/10.5194/tc-11-827-2017, 2017. a
Godt, J. W. and Coe, J. A.: Alpine debris flows triggered by a 28 July 1999
thunderstorm in the central Front Range, Colorado, Geomorphology, 84, 80–97,
2007. a
Gregoretti, C., Degetto, M., Bernard, M., Crucil, G., Pimazzoni, A., De Vido,
G., Berti, M., Simoni, A., and Lanzoni, S.: Runoff of small rocky headwater
catchments: Field observations and hydrological modeling, Water Resour. Res., 52, 8138–8158, 2016. a
Hendrickx, H., De Sloover, L., Stal, C., Delaloye, R., Nyssen, J., and Frankl, A.: Talus slope geomorphology investigated at multiple time scales from high-resolution topographic surveys and historical aerial photographs
(Sanetsch Pass, Switzerland), Earth Surf. Proc. Land., 45, 3653–3669, 2020. a
Hirschberg, J., Badoux, A., McArdell, B. W., Leonarduzzi, E., and Molnar, P.: Evaluating methods for debris-flow prediction based on rainfall in an Alpine catchment, Nat. Hazards Earth Syst. Sci., 21, 2773–2789, https://doi.org/10.5194/nhess-21-2773-2021, 2021a. a, b, c
Hirschberg, J., Fatichi, S., Bennett, G. L., McArdell, B. W., Peleg, N., Lane, S. N., Schlunegger, F., and Molnar, P.: Climate change impacts on sediment yield and debris-flow activity in an alpine catchment, J. Geophys.
Res.-Earth, 126, e2020JF005739, https://doi.org/10.1029/2020JF005739, 2021b. a
James, M. R., Robson, S., d'Oleire Oltmanns, S., and Niethammer, U.: Optimising UAV topographic surveys processed with structure-from-motion: Ground control quality, quantity and bundle adjustment, Geomorphology, 280, 51–66, https://doi.org/10.1016/j.geomorph.2016.11.021, 2017. a
Johnson, C., Kokelaar, B., Iverson, R. M., Logan, M., LaHusen, R., and Gray,
J.: Grain-size segregation and levee formation in geophysical mass flows, J. Geophys. Res.-Earth, 117, F01032, https://doi.org/10.1029/2011JF002185, 2012. a
Kean, J. W., Staley, D. M., Leeper, R. J., Schmidt, K. M., and Gartner, J. E.: A low-cost method to measure the timing of postfire flash floods and debris flows relative to rainfall, Water Resour. Res., 48, W05516, https://doi.org/10.1029/2011WR011460, 2012. a
Lichtenhahn, C.: Zwei Betonmauern: die Geschieberückhaltesperre am
Illgraben (Wallis) und die Staumauer des Hochwasserschutzbeckens an der
Orlegna im Bergell (Graubünden), http://www.interpraevent.at/palm-cms/upload_files/Publikationen/Tagungsbeitraege/1971_3_451.pdf
(last access: 24 November 2022), 1971. a
Marchetti, E., Walter, F., Barfucci, G., Genco, R., Wenner, M., Ripepe, M.,
McArdell, B., and Price, C.: Infrasound array analysis of debris flow
activity and implication for early warning, J. Geophys. Res.-Earth, 124, 567–587, 2019. a
McArdell, B. W., Bartelt, P., and Kowalski, J.: Field observations of basal
forces and fluid pore pressure in a debris flow, Geophys. Res. Lett., 34, L07406, https://doi.org/10.1029/2006GL029183, 2007. a
Rengers, F. K., McGuire, L., Kean, J. W., Staley, D. M., and Hobley, D.: Model simulations of flood and debris flow timing in steep catchments after
wildfire, Water Resour. Res., 52, 6041–6061, 2016. a
Schimmel, A., Hübl, J., McArdell, B. W., and Walter, F.: Automatic
identification of alpine mass movements by a combination of seismic and
infrasound sensors, Sensors, 18, 1658, https://doi.org/10.3390/s18051658, 2018. a
Schlunegger, F., Badoux, A., McArdell, B. W., Gwerder, C., Schnydrig, D.,
Rieke-Zapp, D., and Molnar, P.: Limits of sediment transfer in an alpine
debris-flow catchment, Illgraben, Switzerland, Quaternary Sci. Rev., 28, 1097–1105, 2009. a
Schürch, P., Densmore, A. L., Rosser, N. J., and McArdell, B. W.:
Dynamic controls on erosion and deposition on debris-flow fans, Geology, 39, 827–830, https://doi.org/10.1130/G32103.1, 2011. a
Smith, M. W., Carrivick, J. L., and Quincey, D. J.: Structure from motion
photogrammetry in physical geography, Prog. Phys. Geogr., 40, 247–275, 2016. a
Staley, D. M., Wasklewicz, T. A., and Kean, J. W.: Characterizing the primary
material sources and dominant erosional processes for post-fire debris-flow
initiation in a headwater basin using multi-temporal terrestrial laser scanning data, Geomorphology, 214, 324–338, 2014. a
Walter, F., Amann, F., Kos, A., Kenner, R., Phillips, M., de Preux, A., Huss, M., Tognacca, C., Clinton, J., Diehl, T., and Bonamoni, Y.: Direct observations of a three million cubic meter rock-slope collapse with almost immediate initiation of ensuing debris flows, Geomorphology, 351, 106933, https://doi.org/10.1016/j.geomorph.2019.106933, 2020. a
Watson, C. S., Kargel, J. S., Shugar, D. H., Haritashya, U. K., Schiassi, E.,
and Furfaro, R.: Mass loss from calving in Himalayan proglacial lakes,
Front. Earth Sci., 7, 342, https://doi.org/10.3389/feart.2019.00342, 2020. a
Short summary
Debris flows are dangerous sediment–water mixtures in steep terrain. Their formation takes place in poorly accessible terrain where instrumentation cannot be installed. Here we propose to monitor such source terrain with an autonomous drone for mapping sediments which were left behind by debris flows or may contribute to future events. Short flight intervals elucidate changes of such sediments, providing important information for landscape evolution and the likelihood of future debris flows.
Debris flows are dangerous sediment–water mixtures in steep terrain. Their formation takes place...
Altmetrics
Final-revised paper
Preprint