Articles | Volume 22, issue 7
https://doi.org/10.5194/nhess-22-2359-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-22-2359-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Storm surge hazard over Bengal delta: a probabilistic–deterministic modelling approach
Md Jamal Uddin Khan
CORRESPONDING AUTHOR
LEGOS UMR5566, CNRS/CNES/IRD/UPS, 31400 Toulouse, France
UMR 7266 LIENSs, CNRS – La Rochelle University, 17000 La Rochelle, France
Fabien Durand
LEGOS UMR5566, CNRS/CNES/IRD/UPS, 31400 Toulouse, France
Laboratório de Geoquímica, Instituto de Geociências, Universidade de Brasilia, Brasilia, Brazil
Kerry Emanuel
Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, MIT, Cambridge, MA 02139, USA
Yann Krien
SHOM, DOPS/STM/REC, Toulouse, France
Laurent Testut
LEGOS UMR5566, CNRS/CNES/IRD/UPS, 31400 Toulouse, France
UMR 7266 LIENSs, CNRS – La Rochelle University, 17000 La Rochelle, France
A. K. M. Saiful Islam
Institute of Water and Flood Management, Bangladesh University of Engineering and Technology, IWFM, BUET, Dhaka 1000, Bangladesh
Related authors
Md Jamal Uddin Khan, Inge Van Den Beld, Guy Wöppelmann, Laurent Testut, Alexa Latapy, and Nicolas Pouvreau
Earth Syst. Sci. Data, 15, 5739–5753, https://doi.org/10.5194/essd-15-5739-2023, https://doi.org/10.5194/essd-15-5739-2023, 2023
Short summary
Short summary
Established in the southwest of France in 1875, the Socoa tide gauge is part of the national sea level monitoring network in France. Through a data archaeology exercise, a large part of the records of this gauge in paper format have been rescued and digitized. The digitized data were processed and quality controlled to produce a uniform hourly sea level time series covering 1875 to the present day. This new dataset is important for climate research on sea level rise, tides, and storm surges.
Aurélia Bernard, Nathalie Long, Mélanie Becker, Jamal Khan, and Sylvie Fanchette
Nat. Hazards Earth Syst. Sci., 22, 729–751, https://doi.org/10.5194/nhess-22-729-2022, https://doi.org/10.5194/nhess-22-729-2022, 2022
Short summary
Short summary
This article reviews current scientific literature in order to define vulnerability in the context of coastal Bangladesh facing cyclonic flooding. A new metric, called the socio-spatial vulnerability index, is defined as a function of both the probability of the cyclonic flood hazard and the sensitivity of delta inhabitants. The main result shows that three very densely populated districts, located in the Ganges delta tidal floodplain, are highly vulnerable to cyclonic flooding.
Md. Jamal Uddin Khan, Fabien Durand, Xavier Bertin, Laurent Testut, Yann Krien, A. K. M. Saiful Islam, Marc Pezerat, and Sazzad Hossain
Nat. Hazards Earth Syst. Sci., 21, 2523–2541, https://doi.org/10.5194/nhess-21-2523-2021, https://doi.org/10.5194/nhess-21-2523-2021, 2021
Short summary
Short summary
The Bay of Bengal is well known for some of the deadliest cyclones in history. At the same time, storm surge forecasting in this region is physically involved and computationally costly. Here we show a proof of concept of a real-time, computationally efficient, and physically consistent forecasting system with an application to the recent Supercyclone Amphan. While challenges remain, our study paves the path forward to the improvement of the quality of localized forecast and disaster management.
Katja Frieler, Stefan Lange, Jacob Schewe, Matthias Mengel, Simon Treu, Christian Otto, Jan Volkholz, Christopher P. O. Reyer, Stefanie Heinicke, Colin Jones, Julia L. Blanchard, Cheryl S. Harrison, Colleen M. Petrik, Tyler D. Eddy, Kelly Ortega-Cisneros, Camilla Novaglio, Ryan Heneghan, Derek P. Tittensor, Olivier Maury, Matthias Büchner, Thomas Vogt, Dánnell Quesada Chacón, Kerry Emanuel, Chia-Ying Lee, Suzana J. Camargo, Jonas Jägermeyr, Sam Rabin, Jochen Klar, Iliusi D. Vega del Valle, Lisa Novak, Inga J. Sauer, Gitta Lasslop, Sarah Chadburn, Eleanor Burke, Angela Gallego-Sala, Noah Smith, Jinfeng Chang, Stijn Hantson, Chantelle Burton, Anne Gädeke, Fang Li, Simon N. Gosling, Hannes Müller Schmied, Fred Hattermann, Thomas Hickler, Rafael Marcé, Don Pierson, Wim Thiery, Daniel Mercado-Bettín, Robert Ladwig, Ana Isabel Ayala-Zamora, Matthew Forrest, Michel Bechtold, Robert Reinecke, Inge de Graaf, Jed O. Kaplan, Alexander Koch, and Matthieu Lengaigne
EGUsphere, https://doi.org/10.5194/egusphere-2025-2103, https://doi.org/10.5194/egusphere-2025-2103, 2025
Short summary
Short summary
This paper describes the experiments and data sets necessary to run historic and future impact projections, and the underlying assumptions of future climate change as defined by the 3rd round of the ISIMIP Project (Inter-sectoral Impactmodel Intercomparison Project, isimip.org). ISIMIP provides a framework for cross-sectorally consistent climate impact simulations to contribute to a comprehensive and consistent picture of the world under different climate-change scenarios.
Kerry Emanuel, Tommaso Alberti, Stella Bourdin, Suzana J. Camargo, Davide Faranda, Manos Flaounas, Juan Jesus Gonzalez-Aleman, Chia-Ying Lee, Mario Marcello Miglietta, Claudia Pasquero, Alice Portal, Hamish Ramsay, and Romualdo Romero
EGUsphere, https://doi.org/10.5194/egusphere-2024-3387, https://doi.org/10.5194/egusphere-2024-3387, 2024
Short summary
Short summary
Storms strongly resembling hurricanes are sometime observed to form well outside the tropics, even in polar latitudes. They behave capriciously, developing very rapidly and then dying just as quickly. We show that strong dynamical processes in the atmosphere can sometimes cause it to become locally much colder than the underlying ocean, creating the conditions for hurricanes to form, but only over small areas and for short times. We call the resulting storms "cyclops".
Arne Bendinger, Sophie Cravatte, Lionel Gourdeau, Luc Rainville, Clément Vic, Guillaume Sérazin, Fabien Durand, Frédéric Marin, and Jean-Luc Fuda
Ocean Sci., 20, 945–964, https://doi.org/10.5194/os-20-945-2024, https://doi.org/10.5194/os-20-945-2024, 2024
Short summary
Short summary
A unique dataset of glider observations reveals tidal beams south of New Caledonia – an internal-tide-generation hot spot in the southwestern tropical Pacific. Observations are in good agreement with numerical modeling output, highlighting the glider's capability to infer internal tides while assessing the model's realism of internal-tide dynamics. Discrepancies are in large part linked to eddy–internal-tide interactions. A methodology is proposed to deduce the internal-tide surface signature.
Md Jamal Uddin Khan, Inge Van Den Beld, Guy Wöppelmann, Laurent Testut, Alexa Latapy, and Nicolas Pouvreau
Earth Syst. Sci. Data, 15, 5739–5753, https://doi.org/10.5194/essd-15-5739-2023, https://doi.org/10.5194/essd-15-5739-2023, 2023
Short summary
Short summary
Established in the southwest of France in 1875, the Socoa tide gauge is part of the national sea level monitoring network in France. Through a data archaeology exercise, a large part of the records of this gauge in paper format have been rescued and digitized. The digitized data were processed and quality controlled to produce a uniform hourly sea level time series covering 1875 to the present day. This new dataset is important for climate research on sea level rise, tides, and storm surges.
Clémence Chupin, Valérie Ballu, Laurent Testut, Yann-Treden Tranchant, and Jérôme Aucan
Ocean Sci., 19, 1277–1314, https://doi.org/10.5194/os-19-1277-2023, https://doi.org/10.5194/os-19-1277-2023, 2023
Short summary
Short summary
Reducing uncertainties in coastal sea level trend estimates requires a better understanding of altimeter measurements and local sea level dynamics. Using long-term sea level time series from the Nouméa tide gauge (New Caledonia) and in situ data collected as part of the GEOCEAN-NC campaign, this study presents a method inspired from Cal/Val studies to re-analyse about 20 years of altimetry observations and re-address the question of sea level evolution in the lagoon.
Begoña Pérez Gómez, Ivica Vilibić, Jadranka Šepić, Iva Međugorac, Matjaž Ličer, Laurent Testut, Claire Fraboul, Marta Marcos, Hassen Abdellaoui, Enrique Álvarez Fanjul, Darko Barbalić, Benjamín Casas, Antonio Castaño-Tierno, Srđan Čupić, Aldo Drago, María Angeles Fraile, Daniele A. Galliano, Adam Gauci, Branislav Gloginja, Víctor Martín Guijarro, Maja Jeromel, Marcos Larrad Revuelto, Ayah Lazar, Ibrahim Haktan Keskin, Igor Medvedev, Abdelkader Menassri, Mohamed Aïssa Meslem, Hrvoje Mihanović, Sara Morucci, Dragos Niculescu, José Manuel Quijano de Benito, Josep Pascual, Atanas Palazov, Marco Picone, Fabio Raicich, Mohamed Said, Jordi Salat, Erdinc Sezen, Mehmet Simav, Georgios Sylaios, Elena Tel, Joaquín Tintoré, Klodian Zaimi, and George Zodiatis
Ocean Sci., 18, 997–1053, https://doi.org/10.5194/os-18-997-2022, https://doi.org/10.5194/os-18-997-2022, 2022
Short summary
Short summary
This description and mapping of coastal sea level monitoring networks in the Mediterranean and Black seas reveals the existence of 240 presently operational tide gauges. Information is provided about the type of sensor, time sampling, data availability, and ancillary measurements. An assessment of the fit-for-purpose status of the network is also included, along with recommendations to mitigate existing bottlenecks and improve the network, in a context of sea level rise and increasing extremes.
Aurélia Bernard, Nathalie Long, Mélanie Becker, Jamal Khan, and Sylvie Fanchette
Nat. Hazards Earth Syst. Sci., 22, 729–751, https://doi.org/10.5194/nhess-22-729-2022, https://doi.org/10.5194/nhess-22-729-2022, 2022
Short summary
Short summary
This article reviews current scientific literature in order to define vulnerability in the context of coastal Bangladesh facing cyclonic flooding. A new metric, called the socio-spatial vulnerability index, is defined as a function of both the probability of the cyclonic flood hazard and the sensitivity of delta inhabitants. The main result shows that three very densely populated districts, located in the Ganges delta tidal floodplain, are highly vulnerable to cyclonic flooding.
Md. Jamal Uddin Khan, Fabien Durand, Xavier Bertin, Laurent Testut, Yann Krien, A. K. M. Saiful Islam, Marc Pezerat, and Sazzad Hossain
Nat. Hazards Earth Syst. Sci., 21, 2523–2541, https://doi.org/10.5194/nhess-21-2523-2021, https://doi.org/10.5194/nhess-21-2523-2021, 2021
Short summary
Short summary
The Bay of Bengal is well known for some of the deadliest cyclones in history. At the same time, storm surge forecasting in this region is physically involved and computationally costly. Here we show a proof of concept of a real-time, computationally efficient, and physically consistent forecasting system with an application to the recent Supercyclone Amphan. While challenges remain, our study paves the path forward to the improvement of the quality of localized forecast and disaster management.
Bjorn Stevens, Sandrine Bony, David Farrell, Felix Ament, Alan Blyth, Christopher Fairall, Johannes Karstensen, Patricia K. Quinn, Sabrina Speich, Claudia Acquistapace, Franziska Aemisegger, Anna Lea Albright, Hugo Bellenger, Eberhard Bodenschatz, Kathy-Ann Caesar, Rebecca Chewitt-Lucas, Gijs de Boer, Julien Delanoë, Leif Denby, Florian Ewald, Benjamin Fildier, Marvin Forde, Geet George, Silke Gross, Martin Hagen, Andrea Hausold, Karen J. Heywood, Lutz Hirsch, Marek Jacob, Friedhelm Jansen, Stefan Kinne, Daniel Klocke, Tobias Kölling, Heike Konow, Marie Lothon, Wiebke Mohr, Ann Kristin Naumann, Louise Nuijens, Léa Olivier, Robert Pincus, Mira Pöhlker, Gilles Reverdin, Gregory Roberts, Sabrina Schnitt, Hauke Schulz, A. Pier Siebesma, Claudia Christine Stephan, Peter Sullivan, Ludovic Touzé-Peiffer, Jessica Vial, Raphaela Vogel, Paquita Zuidema, Nicola Alexander, Lyndon Alves, Sophian Arixi, Hamish Asmath, Gholamhossein Bagheri, Katharina Baier, Adriana Bailey, Dariusz Baranowski, Alexandre Baron, Sébastien Barrau, Paul A. Barrett, Frédéric Batier, Andreas Behrendt, Arne Bendinger, Florent Beucher, Sebastien Bigorre, Edmund Blades, Peter Blossey, Olivier Bock, Steven Böing, Pierre Bosser, Denis Bourras, Pascale Bouruet-Aubertot, Keith Bower, Pierre Branellec, Hubert Branger, Michal Brennek, Alan Brewer, Pierre-Etienne Brilouet, Björn Brügmann, Stefan A. Buehler, Elmo Burke, Ralph Burton, Radiance Calmer, Jean-Christophe Canonici, Xavier Carton, Gregory Cato Jr., Jude Andre Charles, Patrick Chazette, Yanxu Chen, Michal T. Chilinski, Thomas Choularton, Patrick Chuang, Shamal Clarke, Hugh Coe, Céline Cornet, Pierre Coutris, Fleur Couvreux, Susanne Crewell, Timothy Cronin, Zhiqiang Cui, Yannis Cuypers, Alton Daley, Gillian M. Damerell, Thibaut Dauhut, Hartwig Deneke, Jean-Philippe Desbios, Steffen Dörner, Sebastian Donner, Vincent Douet, Kyla Drushka, Marina Dütsch, André Ehrlich, Kerry Emanuel, Alexandros Emmanouilidis, Jean-Claude Etienne, Sheryl Etienne-Leblanc, Ghislain Faure, Graham Feingold, Luca Ferrero, Andreas Fix, Cyrille Flamant, Piotr Jacek Flatau, Gregory R. Foltz, Linda Forster, Iulian Furtuna, Alan Gadian, Joseph Galewsky, Martin Gallagher, Peter Gallimore, Cassandra Gaston, Chelle Gentemann, Nicolas Geyskens, Andreas Giez, John Gollop, Isabelle Gouirand, Christophe Gourbeyre, Dörte de Graaf, Geiske E. de Groot, Robert Grosz, Johannes Güttler, Manuel Gutleben, Kashawn Hall, George Harris, Kevin C. Helfer, Dean Henze, Calvert Herbert, Bruna Holanda, Antonio Ibanez-Landeta, Janet Intrieri, Suneil Iyer, Fabrice Julien, Heike Kalesse, Jan Kazil, Alexander Kellman, Abiel T. Kidane, Ulrike Kirchner, Marcus Klingebiel, Mareike Körner, Leslie Ann Kremper, Jan Kretzschmar, Ovid Krüger, Wojciech Kumala, Armin Kurz, Pierre L'Hégaret, Matthieu Labaste, Tom Lachlan-Cope, Arlene Laing, Peter Landschützer, Theresa Lang, Diego Lange, Ingo Lange, Clément Laplace, Gauke Lavik, Rémi Laxenaire, Caroline Le Bihan, Mason Leandro, Nathalie Lefevre, Marius Lena, Donald Lenschow, Qiang Li, Gary Lloyd, Sebastian Los, Niccolò Losi, Oscar Lovell, Christopher Luneau, Przemyslaw Makuch, Szymon Malinowski, Gaston Manta, Eleni Marinou, Nicholas Marsden, Sebastien Masson, Nicolas Maury, Bernhard Mayer, Margarette Mayers-Als, Christophe Mazel, Wayne McGeary, James C. McWilliams, Mario Mech, Melina Mehlmann, Agostino Niyonkuru Meroni, Theresa Mieslinger, Andreas Minikin, Peter Minnett, Gregor Möller, Yanmichel Morfa Avalos, Caroline Muller, Ionela Musat, Anna Napoli, Almuth Neuberger, Christophe Noisel, David Noone, Freja Nordsiek, Jakub L. Nowak, Lothar Oswald, Douglas J. Parker, Carolyn Peck, Renaud Person, Miriam Philippi, Albert Plueddemann, Christopher Pöhlker, Veronika Pörtge, Ulrich Pöschl, Lawrence Pologne, Michał Posyniak, Marc Prange, Estefanía Quiñones Meléndez, Jule Radtke, Karim Ramage, Jens Reimann, Lionel Renault, Klaus Reus, Ashford Reyes, Joachim Ribbe, Maximilian Ringel, Markus Ritschel, Cesar B. Rocha, Nicolas Rochetin, Johannes Röttenbacher, Callum Rollo, Haley Royer, Pauline Sadoulet, Leo Saffin, Sanola Sandiford, Irina Sandu, Michael Schäfer, Vera Schemann, Imke Schirmacher, Oliver Schlenczek, Jerome Schmidt, Marcel Schröder, Alfons Schwarzenboeck, Andrea Sealy, Christoph J. Senff, Ilya Serikov, Samkeyat Shohan, Elizabeth Siddle, Alexander Smirnov, Florian Späth, Branden Spooner, M. Katharina Stolla, Wojciech Szkółka, Simon P. de Szoeke, Stéphane Tarot, Eleni Tetoni, Elizabeth Thompson, Jim Thomson, Lorenzo Tomassini, Julien Totems, Alma Anna Ubele, Leonie Villiger, Jan von Arx, Thomas Wagner, Andi Walther, Ben Webber, Manfred Wendisch, Shanice Whitehall, Anton Wiltshire, Allison A. Wing, Martin Wirth, Jonathan Wiskandt, Kevin Wolf, Ludwig Worbes, Ethan Wright, Volker Wulfmeyer, Shanea Young, Chidong Zhang, Dongxiao Zhang, Florian Ziemen, Tobias Zinner, and Martin Zöger
Earth Syst. Sci. Data, 13, 4067–4119, https://doi.org/10.5194/essd-13-4067-2021, https://doi.org/10.5194/essd-13-4067-2021, 2021
Short summary
Short summary
The EUREC4A field campaign, designed to test hypothesized mechanisms by which clouds respond to warming and benchmark next-generation Earth-system models, is presented. EUREC4A comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. It was the first campaign that attempted to characterize the full range of processes and scales influencing trade wind clouds.
Alice César Fassoni-Andrade, Fabien Durand, Daniel Moreira, Alberto Azevedo, Valdenira Ferreira dos Santos, Claudia Funi, and Alain Laraque
Earth Syst. Sci. Data, 13, 2275–2291, https://doi.org/10.5194/essd-13-2275-2021, https://doi.org/10.5194/essd-13-2275-2021, 2021
Short summary
Short summary
We present a seamless dataset of river, land, and ocean topography of the Amazon River estuary with a 30 m spatial resolution. An innovative remote sensing approach was used to estimate the topography of the intertidal flats, riverbanks, and adjacent floodplains. Amazon River bathymetry was generated from digitized nautical charts. The novel dataset opens up a broad range of opportunities, providing the poorly known underwater digital topography required for environmental sciences.
Samuel Dandoy, Francesco S. R. Pausata, Suzana J. Camargo, René Laprise, Katja Winger, and Kerry Emanuel
Clim. Past, 17, 675–701, https://doi.org/10.5194/cp-17-675-2021, https://doi.org/10.5194/cp-17-675-2021, 2021
Short summary
Short summary
This study analyzes the impacts of changing vegetation and atmospheric dust concentrations over an area that is currently desert (the Sahara) to investigate their impacts on tropical cyclone activity during a warm climate state, the mid-Holocene. Our results suggest a significant change in Atlantic TC frequency, intensity and seasonality when considering the effects of a warmer climate in a greener world. They also highlight the importance of considering these factors in future climate studies.
Cited articles
Adnan, M. S. G., Haque, A., and Hall, J. W.: Have coastal embankments reduced
flooding in Bangladesh?, Sci. Total Environ., 682, 405–416,
https://doi.org/10.1016/j.scitotenv.2019.05.048, 2019. a
Akter, N. and Tsuboki, K.: Recurvature and movement processes of tropical
cyclones over the Bay of Bengal, Q. J. Roy. Meteor. Soc., 147, 3681–3702, https://doi.org/10.1002/qj.4148, 2021. a
Alam, E. and Dominey-Howes, D.: A new catalogue of tropical cyclones of the
northern Bay of Bengal and the distribution and effects of selected
landfalling events in Bangladesh, Int. J. Climatol., 35,
801–835, https://doi.org/10.1002/joc.4035, 2014. a, b, c
Ali, A.: Vulnerability of Bangladesh to Climate Change and Sea Level Rise
through Tropical Cyclones and Storm Surges, in: Climate Change Vulnerability
and Adaptation in Asia and the Pacific, Springer Netherlands, 171–179,
https://doi.org/10.1007/978-94-017-1053-4_16, 1996. a
Ali, A.: Climate change impacts and adaptation assessment in Bangladesh,
Clim. Res., 12, 109–116, https://doi.org/10.3354/cr012109, 1999. a
Antony, C. and Unnikrishnan, A.: Observed characteristics of tide-surge
interaction along the east coast of India and the head of Bay of Bengal,
Estuar. Coast. Shelf S., 131, 6–11,
https://doi.org/10.1016/j.ecss.2013.08.004, 2013. a
Antony, C., Unnikrishnan, A., and Woodworth, P. L.: Evolution of extreme high
waters along the east coast of India and at the head of the Bay of Bengal,
Global Planet. Change, 140, 59–67,
https://doi.org/10.1016/j.gloplacha.2016.03.008, 2016. a, b, c
Ardhuin, F., Rogers, E., Babanin, A. V., Filipot, J.-F., Magne, R., Roland, A., van der Westhuysen, A., Queffeulou, P., Lefevre, J.-M., Aouf, L., and
Collard, F.: Semiempirical Dissipation Source Functions for Ocean Waves. Part I: Definition, Calibration, and Validation, J. Phys. Oceanogr.,
40, 1917–1941, https://doi.org/10.1175/2010jpo4324.1, 2010. a
Battjes, J. A. and Janssen, J. P. F. M.: Energy Loss and Set-Up Due to Breaking of Random Waves, Coastal Engineering 1978, 569–587, https://doi.org/10.1061/9780872621909.034, 1978. a
Becker, M., Karpytchev, M., and Papa, F.: Hotspots of Relative Sea Level Rise
in the Tropics, Tropical Extremes, 2019, 203–262,
https://doi.org/10.1016/b978-0-12-809248-4.00007-8, 2019. a
Becker, M., Papa, F., Karpytchev, M., Delebecque, C., Krien, Y., Khan, J. U.,
Ballu, V., Durand, F., Cozannet, G. L., Islam, A. K. M. S., Calmant, S., and
Shum, C. K.: Water level changes, subsidence, and sea level rise in the
Ganges–Brahmaputra–Meghna delta, P. Ntl. A. Sci., 117, 1867–1876, https://doi.org/10.1073/pnas.1912921117, 2020. a, b
Bertin, X., Li, K., Roland, A., Zhang, Y. J., Breilh, J. F., and Chaumillon,
E.: A modeling-based analysis of the flooding associated with Xynthia,
central Bay of Biscay, Coast. Eng., 94, 80–89,
https://doi.org/10.1016/j.coastaleng.2014.08.013, 2014. a
Bunya, S., Dietrich, J. C., Westerink, J. J., Ebersole, B. A., Smith, J. M.,
Atkinson, J. H., Jensen, R., Resio, D. T., Luettich, R. A., Dawson, C.,
Cardone, V. J., Cox, A. T., Powell, M. D., Westerink, H. J., and Roberts,
H. J.: A High-Resolution Coupled Riverine Flow, Tide, Wind, Wind Wave, and
Storm Surge Model for Southern Louisiana and Mississippi. Part I: Model
Development and Validation, Mon. Weather Rev., 138, 345–377,
https://doi.org/10.1175/2009mwr2906.1, 2010. a
Carrère, L., Lyard, F., Cancet, M., Guillot, A., and Roblou, L.: FES
2012: a new global tidal model taking advantage of nearly 20 years of
altimetry, in: 20 Years of Progress in Radar Altimatry, edited by: Ouwehand, L., 20 Years of Progress in Radar Altimatry, ESA Special Publication, Vol. 710, p. 13,
2013. a
Center For International Earth Science Information Network (CIESIN) Columbia University: Documentation for Gridded Population of the World, Version 4 (GPWv4), Palisades NY: NASA Socioeconomic Data and Applications Center (SEDAC), 24 pp., https://doi.org/10.7927/H4D50JX4, 2016. a
Chiu, S. and Small, C.: Observations of Cyclone-Induced Storm Surge in Coastal
Bangladesh, J. Coastal Res., 321, 1149–1161,
https://doi.org/10.2112/jcoastres-d-15-00030.1, 2016. a, b
Chowdhury, J. U., Watkins, D. W., Rahman, M. R., and Karim, M. F.: Models for
Cyclone Shelter Planning in Bangladesh, Water Int., 23, 155–163,
https://doi.org/10.1080/02508069808686762, 1998. a, b, c
Chowdhury, M. A. M. and Al Rahim, M.: A proposal on new scheduling of turbine
discharge at Kaptai hydro-electric power plant to avoid the wastage of water
due to overflow in the dam, in: 2012 7th International Conference on
Electrical and Computer Engineering, IEEE, 20–22 December 2012, Dhaka, Bangladesh, IEEE, 758–762, https://doi.org/10.1109/ICECE.2012.6471661, 2012. a
Emanuel, K.: Tropical cyclone risk in Bangladesh, MAUSAM, 72, 27–34,
https://doi.org/10.54302/mausam.v72i1.122, 2021. a
Emanuel, K. and Rotunno, R.: Self-Stratification of Tropical Cyclone Outflow.
Part I: Implications for Storm Structure, J. Atmos. Sci., 68, 2236–2249, https://doi.org/10.1175/jas-d-10-05024.1, 2011. a, b
Emanuel, K., DesAutels, C., Holloway, C., and Korty, R.: Environmental Control
of Tropical Cyclone Intensity, J. Atmos. Sci., 61,
843–858, https://doi.org/10.1175/1520-0469(2004)061<0843:ecotci>2.0.co;2, 2004. a
Emanuel, K., Ravela, S., Vivant, E., and Risi, C.: A Statistical Deterministic
Approach to Hurricane Risk Assessment,
B. Am. Meteorol. Soc., 87, 299–314, https://doi.org/10.1175/bams-87-3-299, 2006. a, b, c, d
Freire, S., MacManus, K., Pesaresi, M., Doxsey-Whitfield, E., and Mills, J.:
Development of new open and free multi-temporal global population grids at
250 m resolution, Tech. rep., Association of Geographic Information
Laboratories in Europe, AGILE, ISBN 978-90-816960-6-7, https://publications.jrc.ec.europa.eu/repository/handle/JRC100523 (last access: 1 July 2022). 2016 . a
Haigh, I. D., MacPherson, L. R., Mason, M. S., Wijeratne, E. M. S.,
Pattiaratchi, C. B., Crompton, R. P., and George, S.: Estimating present day extreme water level exceedance probabilities around the coastline of
Australia: tropical cyclone-induced storm surges, Clim. Dynam., 42,
139–157, https://doi.org/10.1007/s00382-012-1653-0, 2013. a
Hesterberg, T.: Bootstrap,
Wiley Interdisciplinary Reviews: Computational Statistics, 3, 497–526, https://doi.org/10.1002/wics.182, 2011. a
Holland, G. J.: An Analytic Model of the Wind and Pressure Profiles in
Hurricanes, Mon. Weather Rev., 108, 1212–1218,
https://doi.org/10.1175/1520-0493(1980)108<1212:aamotw>2.0.co;2, 1980. a, b, c, d
Hussain, M., Tajima, Y., Hossain, M., and Das, P.: Impact of Cyclone Track
Features and Tidal Phase Shift upon Surge Characteristics in the Bay of
Bengal along the Bangladesh Coast,
Journal of Marine Science and Engineering, 5, 52, https://doi.org/10.3390/jmse5040052, 2017. a, b, c
IPCC: Summary for Policymakers, in: Climate Change 2021: The Physical Science
Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J., Maycock, T., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, in press, https://doi.org/10.1017/9781009157896, 2022. a
Islam, A. S., Bala, S. K., Hussain, M. A., Hossain, M. A., and Rahman, M. M.:
Performance of Coastal Structures during Cyclone Sidr,
Nat. Hazards Rev., 12, 111–116, https://doi.org/10.1061/(asce)nh.1527-6996.0000031, 2011. a
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L.,
Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Leetmaa, A.,
Reynolds, R., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo,
K. C., Ropelewski, C., Wang, J., Jenne, R., and Joseph, D.: The NCEP/NCAR 40-Year Reanalysis Project, B. Am. Meteorol. Soc.,
77, 437–471, https://doi.org/10.1175/1520-0477(1996)077<0437:tnyrp>2.0.co;2, 1996. a
Khan, M. J. U., Ansary, M. N., Durand, F., Testut, L., Ishaque, M., Calmant,
S., Krien, Y., Islam, A. S., and Papa, F.: High-Resolution Intertidal
Topography from Sentinel-2 Multi-Spectral Imagery: Synergy between Remote
Sensing and Numerical Modeling, Remote Sens., 11, 2888,
https://doi.org/10.3390/rs11242888, 2019. a, b, c
Khan, M. J. U., Durand, F., Testut, L., Krien, Y., and Islam, A. S.: Sea level rise inducing tidal modulation along the coasts of Bengal delta, Cont. Shelf Res., 211, 104289, https://doi.org/10.1016/j.csr.2020.104289, 2020. a, b, c
Khan, Md. J. U., Durand, F., Bertin, X., Testut, L., Krien, Y., Islam, A. K. M. S., Pezerat, M., and Hossain, S.: Towards an efficient storm surge and inundation forecasting system over the Bengal delta: chasing the Supercyclone Amphan, Nat. Hazards Earth Syst. Sci., 21, 2523–2541, https://doi.org/10.5194/nhess-21-2523-2021, 2021a. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r
Khan, M. J. U., Durand, F., Emanuel, K., Krien, Y., Testut, L., and Islam,
A. S.: Probabilistic-deterministic storm surge return level dataset for the
Bengal delta, Zenodo [dataset], https://doi.org/10.5281/zenodo.5614101, 2021b. a, b
Krien, Y., Dudon, B., Roger, J., and Zahibo, N.: Probabilistic hurricane-induced storm surge hazard assessment in Guadeloupe, Lesser Antilles, Nat. Hazards Earth Syst. Sci., 15, 1711–1720, https://doi.org/10.5194/nhess-15-1711-2015, 2015. a, b
Krien, Y., Mayet, C., Testut, L., Durand, F., Tazkia, A. R., Islam, A. K.
M. S., Gopalakrishna, V. V., Becker, M., Calmant, S., Shum, C. K., Khan,
Z. H., Papa, F., and Ballu, V.: Improved Bathymetric Dataset and Tidal Model for the Northern Bay of Bengal, Mar. Geod., 39, 422–438,
https://doi.org/10.1080/01490419.2016.1227405, 2016. a, b, c, d, e, f, g, h, i
Krien, Y., Dudon, B., Roger, J., Arnaud, G., and Zahibo, N.: Assessing storm surge hazard and impact of sea level rise in the Lesser Antilles case study of Martinique, Nat. Hazards Earth Syst. Sci., 17, 1559–1571, https://doi.org/10.5194/nhess-17-1559-2017, 2017a. a, b, c
Krien, Y., Testut, L., Islam, A., Bertin, X., Durand, F., Mayet, C., Tazkia,
A., Becker, M., Calmant, S., Papa, F., Ballu, V., Shum, C., and Khan, Z.:
Towards improved storm surge models in the northern Bay of Bengal,
Cont. Shelf Res., 135, 58–73, https://doi.org/10.1016/j.csr.2017.01.014,
2017b. a, b, c, d, e, f, g, h, i, j, k, l
Krien, Y., Arnaud, G., Cécé, R., Ruf, C., Belmadani, A., Khan, J., Bernard, D., Islam, A., Durand, F., Testut, L., Palany, P., and Zahibo, N.: Can We Improve Parametric Cyclonic Wind Fields Using Recent Satellite Remote Sensing Data?, Remote Sens., 10, 1963, https://doi.org/10.3390/rs10121963, 2018. a, b, c
Leijnse, T. W. B., Giardino, A., Nederhoff, K., and Caires, S.: Generating reliable estimates of tropical-cyclone-induced coastal hazards along the Bay of Bengal for current and future climates using synthetic tracks, Nat. Hazards Earth Syst. Sci., 22, 1863–1891, https://doi.org/10.5194/nhess-22-1863-2022, 2022. a, b, c, d, e, f, g, h, i
Lewis, M., Horsburgh, K., and Bates, P.: Bay of Bengal cyclone extreme water
level estimate uncertainty, Nat. Hazards, 72, 983–996,
https://doi.org/10.1007/s11069-014-1046-2, 2014. a
Lin, N. and Chavas, D.: On hurricane parametric wind and applications in storm
surge modeling, J. Geophys. Res.-Atmos., 117, D9,
https://doi.org/10.1029/2011jd017126, 2012. a, b, c, d
Lin, N., Emanuel, K. A., Smith, J. A., and Vanmarcke, E.: Risk assessment of
hurricane storm surge for New York City, J. Geophys. Res.,
115, D18, https://doi.org/10.1029/2009jd013630, 2010. a, b
Longuet-Higgins, M. and Stewart, R.: Radiation stresses in water waves: a
physical discussion with applications,
Deep Sea Research and Oceanographic Abstracts, 11, 529–562, https://doi.org/10.1016/0011-7471(64)90001-4, 1964. a
Lyard, F., Lefevre, F., Letellier, T., and Francis, O.: Modelling the global
ocean tides: modern insights from FES2004, Ocean Dynam., 56, 394–415,
https://doi.org/10.1007/s10236-006-0086-x, 2006. a
Lyard, F. H., Allain, D. J., Cancet, M., Carrère, L., and Picot, N.: FES2014 global ocean tide atlas: design and performance, Ocean Sci., 17, 615–649, https://doi.org/10.5194/os-17-615-2021, 2021. a
Mohammed, K., Islam, A. K. M. S., Islam, G. M. T., Alfieri, L., Khan, M. J. U.,
Bala, S. K., and Das, M. K.: Future Floods in Bangladesh under
1.5 ∘C, 2 ∘C, and 4 ∘C Global Warming
Scenarios, J. Hydrol. Eng., 23, 04018050,
https://doi.org/10.1061/(asce)he.1943-5584.0001705, 2018. a
Mondal, M., Biswas, A., Haldar, S., Mandal, S., Bhattacharya, S., and Paul, S.: Spatio-temporal Behaviours of Tropical Cyclones over the Bay of Bengal Basin in last Five Decades, Tropical Cyclone Research and Review, 11, 1–15, https://doi.org/10.1016/j.tcrr.2021.11.004, 2021. a
Mukhopadhyay, S., Biswas, H., De, T., and Jana, T.: Fluxes of nutrients from
the tropical River Hooghly at the land-ocean boundary of
Sundarbans, NE Coast of Bay of Bengal, India, J. Marine Syst.,
62, 9–21, https://doi.org/10.1016/j.jmarsys.2006.03.004, 2006. a
Murty, P., Bhaskaran, P. K., Gayathri, R., Sahoo, B., Kumar, T. S., and
SubbaReddy, B.: Numerical study of coastal hydrodynamics using a coupled
model for Hudhud cyclone in the Bay of Bengal, Estuar. Coast. Shelf S., 183, 13–27, https://doi.org/10.1016/j.ecss.2016.10.013, 2016. a
Murty, T., Flather, R., and Henry, R.: The storm surge problem in the bay of
Bengal, Prog. Oceanogr., 16, 195–233,
https://doi.org/10.1016/0079-6611(86)90039-x, 1986. a
Needham, H. F., Keim, B. D., and Sathiaraj, D.: A review of tropical
cyclone-generated storm surges: Global data sources, observations, and
impacts, Rev. Geophys., 53, 545–591, https://doi.org/10.1002/2014rg000477,
2015. a, b
Nowreen, S., Jalal, M. R., and Khan, M. S. A.: Historical analysis of
rationalizing South West coastal polders of Bangladesh, Water Policy, 16,
264–279, https://doi.org/10.2166/wp.2013.172, 2013. a
Oppenheimer, M., Glavovic, B., Hinkel, J., van de Wal, R., Magnan, A. K.,
Abd-Elgawad, A., Cai, R., Cifuentes-Jara, M., DeConto, R. M., Ghosh, T., Hay, J., Isla, F., Marzeion, B., Meyssignac, B., and Sebesvari, Z.: Sea Level Rise and Implications for Low Lying Islands, Coasts and Communities, in: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, edited by: Pörtner, H.-O., Roberts, D. C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., Petzold, J., Rama, B., and Weyer, N. M., Cambridge University Press, Cambridge, UK and New York, NY, USA, 321–445, https://doi.org/10.1017/9781009157964.006,
2019. a
Paszkowski, A., Goodbred, S., Borgomeo, E., Khan, M. S. A., and Hall, J. W.:
Geomorphic change in the Ganges-Brahmaputra-Meghna
delta, Nat. Rev. Earth Environ., 2, 763–780, https://doi.org/10.1038/s43017-021-00213-4, 2021. a
Paul, B. K.: Why relatively fewer people died? The case of Bangladesh's Cyclone Sidr, Nat. Hazards, 50, 289–304, https://doi.org/10.1007/s11069-008-9340-5, 2009. a
Pezerat, M., Martins, K., and Bertin, X.: Modelling Storm Waves in the
Nearshore Area Using Spectral Models, J. Coastal Res.,
95, 1240, https://doi.org/10.2112/SI95-240.1, 2020. a
Pezerat, M., Bertin, X., Martins, K., Mengual, B., and Hamm, L.: Simulating
storm waves in the nearshore area using spectral model: Current issues and a pragmatic solution, Ocean Model., 158, 101737,
https://doi.org/10.1016/j.ocemod.2020.101737, 2021. a, b, c
Roland, A., Zhang, Y. J., Wang, H. V., Meng, Y., Teng, Y.-C., Maderich, V.,
Brovchenko, I., Dutour-Sikiric, M., and Zanke, U.: A fully coupled 3D
wave-current interaction model on unstructured grids,
J. Geophys. Res.-Oceans, 117, C00J33, https://doi.org/10.1029/2012jc007952, 2012. a
Rumpf, J., Weindl, H., Höppe, P., Rauch, E., and Schmidt, V.: Stochastic
modelling of tropical cyclone tracks,
Math. Method. Oper. Res., 66, 475–490, https://doi.org/10.1007/s00186-007-0168-7, 2007. a
Schiavina, M., Freire, S., and MacManus, K.: GHS-POP R2019A – GHS population grid multitemporal (1975-1990-2000-2015), European Commission, Joint Research Centre (JRC) [dataset],
https://doi.org/10.2905/0C6B9751-A71F-4062-830B-43C9F432370F, 2019. a
SCHISM development team: SCHISM v5.8, GitHub [code], https://github.com/schism-dev/schism, last access: 15 May 2020. a
Seo, S. N. and Bakkensen, L. A.: Is Tropical Cyclone Surge, Not Intensity, What Kills So Many People in South Asia?, Weather Clim. Soc., 9,
171–181, https://doi.org/10.1175/wcas-d-16-0059.1, 2017. a
Sindhu, B. and Unnikrishnan, A. S.: Characteristics of Tides in the Bay of
Bengal, Mar. Geod., 36, 377–407, https://doi.org/10.1080/01490419.2013.781088,
2013. a
Singh, K., Panda, J., and Mohapatra, M.: Robustness of best track data and
associated cyclone activity over the North Indian Ocean region during and
prior to satellite era, J. Earth Syst. Sci., 129, 84,
https://doi.org/10.1007/s12040-020-1344-x, 2020. a, b
Tazkia, A., Krien, Y., Durand, F., Testut, L., Islam, A. S., Papa, F., and
Bertin, X.: Seasonal modulation of M2 tide in the Northern Bay of Bengal,
Cont. Shelf Res., 137, 154–162, https://doi.org/10.1016/j.csr.2016.12.008,
2017. a, b, c, d
Toro, G. R., Resio, D. T., Divoky, D., Niedoroda, A. W., and Reed, C.:
Efficient joint-probability methods for hurricane surge frequency analysis,
Ocean Eng., 37, 125–134, https://doi.org/10.1016/j.oceaneng.2009.09.004, 2010.
a
Unnikrishnan, A. S. and Sundar, D.: Analysis of extreme sea level along the
east coast of India, J. Geophys. Res., 109, C6,
https://doi.org/10.1029/2003jc002217, 2004. a
Woodworth, P. L., Hunter, J. R., Marcos, M., Caldwell, P., Menéndez, M.,
and Haigh, I.: Towards a global higher-frequency sea level dataset,
Geosci. Data J., 3, 50–59, https://doi.org/10.1002/gdj3.42, 2016. a
Zhang, Y. J. and Baptista, A. M.: SELFE: A semi-implicit
Eulerian-Lagrangian finite-element model for cross-scale ocean
circulation, Ocean Model., 21, 71–96, https://doi.org/10.1016/j.ocemod.2007.11.005,
2008. a
Zhang, Y. J., Ye, F., Stanev, E. V., and Grashorn, S.: Seamless cross-scale
modeling with SCHISM, Ocean Model., 102, 64–81,
https://doi.org/10.1016/j.ocemod.2016.05.002, 2016. a
Short summary
Cyclonic storm surges constitute a major threat to lives and properties along the vast coastline of the Bengal delta. From a combination of cyclone and storm surge modelling, we present a robust probabilistic estimate of the storm surge flooding hazard under the current climate. The estimated extreme water levels vary regionally, and the inland flooding is strongly controlled by the embankments. More than 1/10 of the coastal population is currently exposed to 50-year return period flooding.
Cyclonic storm surges constitute a major threat to lives and properties along the vast coastline...
Altmetrics
Final-revised paper
Preprint