Articles | Volume 22, issue 7
https://doi.org/10.5194/nhess-22-2317-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-22-2317-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Augmentation of WRF-Hydro to simulate overland-flow- and streamflow-generated debris flow susceptibility in burn scars
Chuxuan Li
CORRESPONDING AUTHOR
Department of Earth and Planetary Sciences, Northwestern University, Evanston, IL 60208, USA
Alexander L. Handwerger
Joint Institute for Regional Earth System Science and Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
Jiali Wang
Environmental Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
Wei Yu
Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, CO 80309, USA
Global Systems Laboratory, NOAA, Denver, CO 80305-3328, USA
Xiang Li
Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA
Noah J. Finnegan
Department of Earth and Planetary Sciences, University of California Santa Cruz, Santa Cruz, CA 95064, USA
Yingying Xie
Program in Environmental Sciences, Northwestern University, Evanston, IL 60208, USA
Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
Giuseppe Buscarnera
Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA
Daniel E. Horton
Department of Earth and Planetary Sciences, Northwestern University, Evanston, IL 60208, USA
Related authors
No articles found.
Lindsay M. Sheridan, Jiali Wang, Caroline Draxl, Nicola Bodini, Caleb Phillips, Dmitry Duplyakin, Heidi Tinnesand, Raj K. Rai, Julia E. Flaherty, Larry K. Berg, Chunyong Jung, Ethan Young, and Rao Kotamarthi
Wind Energ. Sci., 10, 1551–1574, https://doi.org/10.5194/wes-10-1551-2025, https://doi.org/10.5194/wes-10-1551-2025, 2025
Short summary
Short summary
Three recent wind resource datasets are assessed for their skills in representing annual average wind speeds and seasonal, diurnal, and interannual trends in the wind resource in coastal locations to support customers interested in small and midsize wind energy.
Lara Tobias-Tarsh, Chunyong Jung, Jiali Wang, Vishal Bobde, Akintomide A. Akinsanola, and V. Rao Kotamarthi
EGUsphere, https://doi.org/10.5194/egusphere-2025-1805, https://doi.org/10.5194/egusphere-2025-1805, 2025
Short summary
Short summary
We use a high-resolution regional climate model to better understand hurricanes in the North Atlantic over the past 20 years. The model closely matches observed storm frequency and captures stronger storms more accurately than traditional datasets. It also shows better performance in areas with limited data, like the Caribbean. These results can help improve local storm preparedness and planning for critical infrastructure.
Chunyong Jung, Pengfei Xue, Chenfu Huang, William Pringle, Mrinal Biswas, Geeta Nain, and Jiali Wang
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-47, https://doi.org/10.5194/wes-2025-47, 2025
Revised manuscript under review for WES
Short summary
Short summary
This study introduces a system that combines weather, ocean, and wave models to better understand their interactions during tropical storms and their impact on offshore structures like wind turbines. Tested using Hurricane Henri (2021), the system improves storm predictions by including how waves and ocean cooling affect storm strength and wind patterns. The results show this approach helps assess risks to offshore infrastructure during severe weather, making it more accurate and reliable.
Huilin Huang, Yun Qian, Gautam Bisht, Jiali Wang, Tirthankar Chakraborty, Dalei Hao, Jianfeng Li, Travis Thurber, Balwinder Singh, Zhao Yang, Ye Liu, Pengfei Xue, William J. Sacks, Ethan Coon, and Robert Hetland
Geosci. Model Dev., 18, 1427–1443, https://doi.org/10.5194/gmd-18-1427-2025, https://doi.org/10.5194/gmd-18-1427-2025, 2025
Short summary
Short summary
We integrate the E3SM Land Model (ELM) with the WRF model through the Lightweight Infrastructure for Land Atmosphere Coupling (LILAC) Earth System Modeling Framework (ESMF). This framework includes a top-level driver, LILAC, for variable communication between WRF and ELM and ESMF caps for ELM initialization, execution, and finalization. The LILAC–ESMF framework maintains the integrity of the ELM's source code structure and facilitates the transfer of future ELM model developments to WRF-ELM.
Kyle Peco, Jiali Wang, Chunyong Jung, Gökhan Sever, Lindsay Sheridan, Jeremy Feinstein, Rao Kotamarthi, Caroline Draxl, Ethan Young, Avi Purkayastha, and Andrew Kumler
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-13, https://doi.org/10.5194/wes-2025-13, 2025
Preprint under review for WES
Short summary
Short summary
This study presents a new wind dataset, generated by a climate model, that can help facilitate efforts in wind energy. By providing data across much of North America, this dataset can offer insights into the wind patterns in more understudied regions. By validating the dataset against actual wind observations, we have demonstrated that this dataset is able to accurately capture the wind patterns of different geographic areas, which can help identify locations for wind energy farms.
Vrinda D. Desai, Alexander L. Handwerger, and Karen E. Daniels
EGUsphere, https://doi.org/10.22541/essoar.172494370.04413277/v1, https://doi.org/10.22541/essoar.172494370.04413277/v1, 2025
Short summary
Short summary
Landslide events occur when soil, rock, and debris on slopes become unstable and move downhill, often triggered by heavy rain that reduces friction. Our research evaluates landslide vulnerability using a method that analyzes the spatiotemporal dynamics of landslide-prone areas. We've developed a statistical metric to track changing conditions in these regions. This approach can aid in early warning systems, helping communities and authorities take preventive measures and minimize damage.
Matthew C. Morriss, Benjamin Lehmann, Benjamin Campforts, George Brencher, Brianna Rick, Leif S. Anderson, Alexander L. Handwerger, Irina Overeem, and Jeffrey Moore
Earth Surf. Dynam., 11, 1251–1274, https://doi.org/10.5194/esurf-11-1251-2023, https://doi.org/10.5194/esurf-11-1251-2023, 2023
Short summary
Short summary
In this paper, we investigate the 28 June 2022 collapse of the Chaos Canyon landslide in Rocky Mountain National Park, Colorado, USA. We find that the landslide was moving prior to its collapse and took place at peak spring snowmelt; temperature modeling indicates the potential presence of permafrost. We hypothesize that this landslide could be part of the broader landscape evolution changes to alpine terrain caused by a warming climate, leading to thawing alpine permafrost.
Jeffrey S. Munroe and Alexander L. Handwerger
Hydrol. Earth Syst. Sci., 27, 543–557, https://doi.org/10.5194/hess-27-543-2023, https://doi.org/10.5194/hess-27-543-2023, 2023
Short summary
Short summary
Rock glaciers are mixtures of ice and rock debris that are common landforms in high-mountain environments. We evaluated the role of rock glaciers as a component of mountain hydrology by collecting water samples during the summer and fall of 2021. Our results indicate that the water draining from rock glaciers late in the melt season is likely derived from old buried ice; they further demonstrate that this water collectively makes up about a quarter of streamflow during the month of September.
Qiuyi Wu, Julie Bessac, Whitney Huang, Jiali Wang, and Rao Kotamarthi
Adv. Stat. Clim. Meteorol. Oceanogr., 8, 205–224, https://doi.org/10.5194/ascmo-8-205-2022, https://doi.org/10.5194/ascmo-8-205-2022, 2022
Short summary
Short summary
We study wind conditions and their potential future changes across the U.S. via a statistical conditional framework. We conclude that changes between historical and future wind directions are small, but wind speeds are generally weakened in the projected period, with some locations being intensified. Moreover, winter wind speeds are projected to decrease in the northwest, Colorado, and the northern Great Plains (GP), while summer wind speeds over the southern GP slightly increase in the future.
Romit Maulik, Vishwas Rao, Jiali Wang, Gianmarco Mengaldo, Emil Constantinescu, Bethany Lusch, Prasanna Balaprakash, Ian Foster, and Rao Kotamarthi
Geosci. Model Dev., 15, 3433–3445, https://doi.org/10.5194/gmd-15-3433-2022, https://doi.org/10.5194/gmd-15-3433-2022, 2022
Short summary
Short summary
In numerical weather prediction, data assimilation is frequently utilized to enhance the accuracy of forecasts from equation-based models. In this work we use a machine learning framework that approximates a complex dynamical system given by the geopotential height. Instead of using an equation-based model, we utilize this machine-learned alternative to dramatically accelerate both the forecast and the assimilation of data, thereby reducing need for large computational resources.
Alexander L. Handwerger, Mong-Han Huang, Shannan Y. Jones, Pukar Amatya, Hannah R. Kerner, and Dalia B. Kirschbaum
Nat. Hazards Earth Syst. Sci., 22, 753–773, https://doi.org/10.5194/nhess-22-753-2022, https://doi.org/10.5194/nhess-22-753-2022, 2022
Short summary
Short summary
Rapid detection of landslides is critical for emergency response and disaster mitigation. Here we develop a global landslide detection tool in Google Earth Engine that uses satellite radar data to measure changes in the ground surface properties. We find that we can detect areas with high landslide density within days of a triggering event. Our approach allows the broader hazard community to utilize these state-of-the-art data for improved situational awareness of landslide hazards.
Jiali Wang, Zhengchun Liu, Ian Foster, Won Chang, Rajkumar Kettimuthu, and V. Rao Kotamarthi
Geosci. Model Dev., 14, 6355–6372, https://doi.org/10.5194/gmd-14-6355-2021, https://doi.org/10.5194/gmd-14-6355-2021, 2021
Short summary
Short summary
Downscaling, the process of generating a higher spatial or time dataset from a coarser observational or model dataset, is a widely used technique. Two common methodologies for performing downscaling are to use either dynamic (physics-based) or statistical (empirical). Here we develop a novel methodology, using a conditional generative adversarial network (CGAN), to perform the downscaling of a model's precipitation forecasts and describe the advantages of this method compared to the others.
George Brencher, Alexander L. Handwerger, and Jeffrey S. Munroe
The Cryosphere, 15, 4823–4844, https://doi.org/10.5194/tc-15-4823-2021, https://doi.org/10.5194/tc-15-4823-2021, 2021
Short summary
Short summary
We use satellite InSAR to inventory and monitor rock glaciers, frozen bodies of ice and rock debris that are an important water resource in the Uinta Mountains, Utah, USA. Our inventory contains 205 rock glaciers, which occur within a narrow elevation band and deform at 1.94 cm yr-1 on average. Uinta rock glacier movement changes seasonally and appears to be driven by spring snowmelt. The role of rock glaciers as a perennial water resource is threatened by ice loss due to climate change.
Alexander L. Handwerger, Shannan Y. Jones, Mong-Han Huang, Pukar Amatya, Hannah R. Kerner, and Dalia B. Kirschbaum
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2020-315, https://doi.org/10.5194/nhess-2020-315, 2020
Manuscript not accepted for further review
Short summary
Short summary
The rapid and accurate mapping of landslides is critical for emergency response, disaster mitigation, and understanding landslide processes. Here we present a new approach to detect landslides anywhere in the world using freely available synthetic aperture radar data and open source tools in Google Earth Engine. Importantly, our methods do not require specialized processing software or training, which allows the broader hazards community to utilize these state-of-the-art remote sensing tools.
Cited articles
Alfieri, L., Salamon, P., Pappenberger, F., Wetterhall, F., and Thielen, J.:
Operational early warning systems for water-related hazards in Europe, Environ. Sci. Policy, 21, 35–49, https://doi.org/10.1016/j.envsci.2012.01.008, 2012.
Andersson, J. C. M., Arheimer, B., Traoré, F., Gustafsson, D., and Ali, A.:
Process refinements improve a hydrological model concept applied to the Niger River basin, Hydrol. Process., 31, 4540–4554, https://doi.org/10.1002/hyp.11376, 2017.
Anagnostou, M. N., Kalogiros, J., Anagnostou, E. N., Tarolli, M., Papadopoulos, A., and Borga, M: Performance evaluation of high-resolution rainfall estimation by X-band dual-polarization radar for flash flood applications in mountainous basins, J. Hydrol., 394, 4–16, https://doi.org/10.1016/j.jhydrol.2010.06.026, 2010.
Arattano, M. and Franzi, L.:
On the application of kinematic models to simulate the diffusive processes of debris flows, Nat. Hazards Earth Syst. Sci., 10, 1689–1695, https://doi.org/10.5194/nhess-10-1689-2010, 2010.
Brabb, E. E.: Innovative approaches to landslide hazard and risk mapping, in: International Landslide Symposium Proceedings, Toronto, Canada, 16–21, https://pubs.er.usgs.gov/publication/70197529
(last access: 27 June 2021), 1984.
Brown, E. K., Wang, J., and Feng, Y.:
U. S. wildfire potential: a historical view and future projection using high-resolution climate data, Environ. Res. Lett., 16, 034060, https://doi.org/10.1088/1748-9326/aba868, 2020.
Brunkal, H. and Santi, P. M.:
Exploration of design parameters for a dewatering structure for debris flow mitigation, Eng. Geol., 208, 81–92, https://doi.org/10.1016/j.enggeo.2016.04.011, 2016.
Burned Area Emergency Response: Dolan Postfire BAER Soil Burn Severity Map Release, U.S. Forest Service, https://inciweb.nwcg.gov/incident/7231/ (last access: 27 November 2021), 2020.
Bytheway, J. L., Hughes, M., Mahoney, K., and Cifelli, R.:
On the Uncertainty of High-Resolution Hourly Quantitative Precipitation Estimates in California, J. Hydrometeorol., 21, 865–879, https://journals.ametsoc.org/view/journals/hydr/21/5/jhm-d-19-0160.1.xml (last access: 27 November 2021), 2020.
Canli, E., Mergili, M., Thiebes, B., and Glade, T.:
Probabilistic landslide ensemble prediction systems: lessons to be learned from hydrology, Nat. Hazards Earth Syst. Sci., 18, 2183–2202, https://doi.org/10.5194/nhess-18-2183-2018, 2018.
Cannon, S. H., Gartner, J. E., Parrett, C., and Parise, M.:
Wildfire-related debris-flow generation through episodic progressive sediment-bulking processes, western USA, in: Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, edited by: Rickenmann, D. and Chen, C. L., Davos, Switzerland, 10–12 September 2003, Millpress, Rotterdam, 71–82, 2003.
Cannon, S. H., Gartner, J., Wilson, R., Bowers, J., and Laber, J.:
Storm Rainfall Conditions for Floods and Debris Flows from Recently Burned Basins in Southwestern Colorado and Southern California, Geomorphology, 96, 250–269, https://doi.org/10.1016/j.geomorph.2007.03.019, 2008.
Cannon, S. H., Gartner, J. E., Rupert, M. G., Michael, J. A., Rea, A. H., and Parrett, C.:
Predicting the probability and volume of postwildfire debris flows in the intermountain western United States, Geol. Soc. Am. Bull., 122, 127–144, https://doi.org/10.1130/B26459.1, 2010.
Cannon, S. H., Boldt, E. M., Laber, J. L., Kean, J. W., and Staley, D. M.: Rainfall intensity–duration thresholds for postfire debris flow emergency-response planning, Nat. Hazards, 59, 209–236, https://doi.org/10.1007/s11069-011-9747-2, 2011.
Cavagnaro, D., Delgado, N., East, A. E., Finnegan, N. J., Kostelnik, J., Lindsay, D., McCoy, S. W., Suter, I., Thomas, M. A., and Winner, A.:
Variability in hydrologic response to rainfall across a burn scar: observations from the Dolan Fire, California, in: AGU Fall Meeting 2021, New Orleans, Louisiana, USA, 12–17 December 2021, H55W-1005 2021.
Chen, F. and Dudhia, J.:
Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity, Mon. Weather Rev., 129, 569–585, https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2, 2001.
Chen, L., Berli, M., and Chief, K.:
Examining Modeling Approaches for the Rainfall-Runoff Process in Wildfire-Affected Watersheds: Using San Dimas Experimental Forest, J. Am. Water Resour. As., 49, 851–866, https://doi.org/10.1111/jawr.12043, 2013.
Claessens, L., Schoorl, J. M., and Veldkamp, A.:
Modelling the location of shallow landslides and their effects on landscape dynamics in large watersheds: An application for Northern New Zealand, Geomorphology, 87, 16–27, https://doi.org/10.1016/j.geomorph.2006.06.039, 2007.
Coe, J., Godt, J., Parise, M., and Moscariello, A.:
Estimating debris flow probability using fan stratigraphy, historic records, and drainage-basin morphology, Interstate 70 highway corridor, central Colorado, USA, Paper presented at the Debris flow Hazards Mitigation: Mechanics, Prediction, and Assessment, edited by: Rickenmann, D. and Cheng, Ch., Proceedings 3rd International DFHM Conference, Davos, Switzerland, 10–12 September 2003, 2, 1085–1096, 2003.
Coe, J. A., Kinner, D. A., and Godt, J. W. J. G.:
Initiation conditions for debris flows generated by runoff at Chalk Cliffs, central Colorado, Geomorphology, 96, 270–297, https://doi.org/10.1016/j.geomorph.2007.03.017, 2008.
Collow, A. B. M., Mersiovsky, H., Bosilovich, M. G.:
Large-Scale Influences on Atmospheric River–Induced Extreme Precipitation Events along the Coast of Washington State, J. Hydrometeorol., 21, 2139–2156, https://doi.org/10.1175/JHM-D-19-0272.1, 2020.
Cosby, B. J., Hornberger, G. M., Clapp, R. B., and Ginn, T. R.:
A Statistical Exploration of the Relationships of Soil Moisture Characteristics to the Physical Properties of Soils, Water Resour. Res., 20, 682–690, https://doi.org/10.1029/WR020i006p00682, 1984.
Cydzik, K. and Hogue, T. S.:
Modeling postfire response and recovery using the hydrologic engineering center hydrologic modeling system (HEC-HMS), J. Am. Water Resour. As., 45, 702–714, https://doi.org/10.1111/j.1752-1688.2009.00317.x, 2009.
Daly, C., Slater, M. E., Roberti, J. A., Laseter, S. H., and Swift Jr., L. W.:
High-resolution precipitation mapping in a mountainous watershed; Ground truth for evaluating uncertainty in a national precipitation dataset, Int. J. Climatol., 37, 124–137, https://doi.org/10.1002/joc.4986, 2017.
Deser, C., Lehner, F., Rodgers, K. B., Ault, T., Delworth, T. L., DiNezio, P. N., Fiore, A., Frankignoul, C. , Fyfe, J. C., Horton, D. E., Kay, J. E., Knutti, R., Lovenduski, N. S., Marotzke, J., McKinnon, K. A., Minobe, S., Randerson, J., Screen, J. A., Simpson, I. R., and Ting, M.:
Insights from Earth system model initial-condition large ensembles and future prospects, Nat. Clim. Change, 10, 277–286, https://doi.org/10.1038/s41558-020-0731-2, 2020. Di Cristo, C., Iervolino, M., Moramarco, T., and Vacca, A.:
Applicability of Diffusive model for mud-flows: An unsteady analysis, J. Hydrol., 600, 126512, https://doi.org/10.1016/j.jhydrol.2021.126512, 2021.
Eldardiry, H., Mahmood, A., Chen, X., Hossain, F., Nijssen, B., Lettenmaier, D. P.:
Atmospheric River–Induced Precipitation and Snowpack during the Western United States Cold Season, J. Hydrometeorol., 20, 613–630, https://doi.org/10.1175/JHM-D-18-0228.1, 2019.
Friedel, M. J.:
A data-driven approach for modeling post-fire debris-flow volumes and their uncertainty, Environ. Modell. Softw., 26, 1583–1598, https://doi.org/10.1016/j.envsoft.2011.07.014, 2011a.
Friedel, M. J.:
Modeling hydrologic and geomorphic hazards across post-fire landscapes using a self-organizing map approach, Environ. Modell. Softw., 26, 1660–1674, https://doi.org/10.1016/j.envsoft.2011.07.001, 2011b.
Gartner, J. E., Cannon, S. H., and Santi, P. M.:
Empirical models for predicting volumes of sediment deposited by debris flows and sediment-laden floods in the transverse ranges of southern California, Eng. Geol., 176, 45–56, https://doi.org/10.1016/j.enggeo.2014.04.008, 2014.
George, D. L. and Iverson, R. M.:
A depth-averaged debris flow model that includes the effects of evolving dilatancy. II. Numerical predictions and experimental tests, P. Roy. Soc. A-Math. Phy., 470, 20130820. https://doi.org/10.1098/rspa.2013.0820, 2014.
Germann, U., Galli, G., Boscacci, M., and Bolliger, M.:
Radar Precipitation Measurement in a Mountainous Region, Q. J. Roy. Meteor. Soc., 132, 1669–1692, https://doi.org/10.1256/qj.05.190, 2007.
Gochis, D. J. and Chen, F.:
Hydrological Enhancements to the Community Noah Land Surface Model (No. NCAR/TN-454+STR), University Corporation for Atmospheric Research, NCAR, technical report, https://doi.org/10.5065/D60P0X00, 2003.
Goodrich, D., Burns, I., Unkrich, C., Semmens, D., Guertin, D., Hernandez, M., Yatheendradas, S., Kennedy, J. R., and Levick, L.:
KINEROS2/AGWA: model use, calibration, and validation, T. ASABE, 55, 1561–1574, https://doi.org/10.13031/2013.42264, 2012.
Goss, M., Swain, D. L., Abatzoglou, J. T., Sarhadi, A., Kolden, C. A., Williams, A. P., and Diffenbaugh, N. S.:
Climate change is increasing the likelihood of extreme autumn wildfire conditions across California, Environ. Res. Lett., 15, 094016, https://doi.org/10.1088/1748-9326/ab83a7, 2020.
Gregoretti, C. and Dalla Fontana, G.:
The triggering of debris flow due to channel-bed failure in some alpine headwater basins of the Dolomites: analyses of critical runoff, Hydrol. Process., 22, 2248–2263, https://doi.org/10.1002/hyp.6821, 2008.
Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, G. F.:
Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling, J. Hydrol., 377, 80–91. https://doi.org/10.1016/j.jhydrol.2009.08.003, 2009.
Guzzetti, F., Reichenbach, P., Cardinali, M., Galli, M., and Ardizzone, F. J. G.:
Probabilistic landslide hazard assessment at the basin scale, Geomorphology, 72, 272–299 https://doi.org/10.1016/j.geomorph.2005.06.002, 2005.
Handwerger, A. L., Huang, M.-H., Jones, S. Y., Amatya, P., Kerner, H. R., and Kirschbaum, D. B.:
Generating landslide density heatmaps for rapid detection using open-access satellite radar data in Google Earth Engine, Nat. Hazards Earth Syst. Sci., 22, 753–773, https://doi.org/10.5194/nhess-22-753-2022, 2022.
Hapuarachchi, H. A. P., Wang, Q. J., and Pagano, T. C.:
A review of advances in flash flood forecasting, Hydrol. Process., 25, 2771–2784 https://doi.org/10.1002/hyp.8040, 2011.
Hecht, C. W. and Cordeira, J. M.:
Characterizing the influence of atmospheric river orientation and intensity on precipitation distributions over North Coastal California, Geophys. Res. Lett., 44, 9048–9058, https://doi.org/10.1002/2017GL074179, 2017.
Huang, M. and Handwerger, A. L.: GEE_scripts_for_Handwerger_et_al_2022_NHESS, GitHub [code], https://github.com/alhandwerger/GEE_scripts_for_Handwerger_et_al_2022_NHESS, last access: 27 June 2022.
Huang, X., Stevenson, S., and Hall, A. D.:
Future warming and intensification of precipitation extremes: A “double whammy” leading to increasing flood risk in California, Geophys. Res. Lett., 47, e2020GL088679, https://doi.org/10.1029/2020GL088679, 2020a.
Huang, X., Swain, D. L., and Hall, A. D.:
Future precipitation increase from very high resolution ensemble downscaling of extreme atmospheric river storms in California, Sci. Adv., 6, eaba1323, https://doi.org/10.1126/sciadv.aba1323, 2020b.
Jolly, W. M., Cochrane, M. A., Freeborn, P. H., Holden, Z. A., Brown, T. J., Williamson, G. J., and Bowman, D. M. J. S.:
Climate-induced variations in global wildfire danger from 1979 to 2013, Nat. Commun., 6, 7537, https://doi.org/10.1038/ncomms8537, 2015.
Julien, P. Y., Saghafian, B., and Ogden, F. L.:
Raster-based hydrologic modeling of spatially-varied surface runoff, J. Am. Water Resour. As., 31, 523–536, https://doi.org/10.1111/j.1752-1688.1995.tb04039.x, 1995.
Kean, J. W. and Staley, D. M.:
Forecasting the Frequency and Magnitude of Postfire Debris Flows Across Southern California, Earths Future, 9, e2020EF001735, https://doi.org/10.1029/2020EF001735, 2021.
Kean, J. W., Staley, D. M., and Cannon, S. H.:
In situ measurements of postfire debris flows in southern California: Comparisons of the timing and magnitude of 24 debris flow events with rainfall and soil moisture conditions, J. Geophys. Res.-Earth, 116, F04019, https://doi.org/10.1029/2011JF002005, 2011.
Kling, H., Fuchs, M., and Paulin, M.:
Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios, J. Hydrol., 424–425, 264–277, https://doi.org/10.1016/j.jhydrol.2012.01.011, 2012.
Lahmers, T. M., Gupta, H., Castro, C. L., Gochis, D. J., Yates, D., Dugger, A., Goodrich, D., and Hazenberg, P.: Enhancing the structure of the WRF-Hydro hydrologic model for semiarid environments, J. Hydrometeorol, 20, 691–714, https://doi.org/10.1175/JHM-D-18-0064.1, 2019.
Larsen, I. J., MacDonald, L. H., Brown, E., Rough, D., Welsh, M. J., Pietraszek, J. H., Libohova, Z., de Dios Benavides-Solorio, J., and Schaffrath, K.:
Causes of Postfire Runoff and Erosion: Water Repellency, Cover, or Soil Sealing?, Soil Sci. Soc. Am. J., 73, 1393–1407, https://doi.org/10.2136/sssaj2007.0432, 2009.
Leopold, L. B., Wolman, M. G., and Miller, J. P.:
Fluvial Processes in Geomorphology, W. H. Freeman, New York, Courier Dover Publications, 1964.
Li, C.: Use of WRF-Hydro in postfire debris-flow hazard simulation, Zenodo [data set], https://doi.org/10.5281/zenodo.5544083, 2021.
Li, C.: Modification of WRF-Hydro source code to output overland flow, Zenodo [code], https://doi.org/10.5281/zenodo.6766928, 2022.
MacDonald, L. H. and Huffman, E. L.:
Postfire soil water repellency: Persistence and soil moisture thresholds, Soil Sci. Soc. Am. J., 68, 1729–1734, https://doi.org/10.2136/sssaj2004.1729, 2004.
Martin, D. and Moody, J.:
Comparison of Soil Infiltration Rates in Burned and Unburned Mountainous Watersheds, Hydrol. Process., 15, 2893–2903, https://doi.org/10.1002/hyp.380, 2001.
McCormick, B. C., Eshleman, K. N., Griffith, J. L., and Townsend, P. A.:
Detection of flooding responses at the river basin scale enhanced by land use change, Water Resour. Res., 45, W08401, https://doi.org/10.1029/2008WR007594, 2009.
McGuire, L. A. and Youberg, A. M.:
What drives spatial variability in rainfall intensity-duration thresholds for post-wildfire debris flows? Insights from the 2018 Buzzard Fire, NM, USA, Landslides, 17, 2385–2399, https://doi.org/10.1007/s10346-020-01470-y, 2020.
McGuire, L. A., Kean, J. W., Staley, D. M., Rengers, F. K., and Wasklewicz, T. A.:
Constraining the relative importance of raindrop- and flow-driven sediment transport mechanisms in postwildfire environments and implications for recovery time scales, J. Geophys. Res.-Earth, 121, 2211–2237, https://doi.org/10.1002/2016JF003867, 2016.
McGuire, L. A., Rengers, F. K., Kean, J. W., and Staley, D. M.:
Debris flow initiation by runoff in a recently burned basin: Is grain-by-grain sediment bulking or en masse failure to blame?, Geophys. Res. Lett., 44, 7310–7319, https://doi.org/10.1002/2017GL074243, 2017.
McMichael, C. E. and Hope, A. S.:
Predicting streamflow response to fire-induced landcover change: implications of parameter uncertainty in the MIKE SHE model, J. Environ. Manage., 84, 245–256, https://doi.org/10.1016/j.jenvman.2006.06.003, 2007.
National Aeronautics and Space Administration (NASA), and the European Space Agency (ESA): Copernicus program, remote sensing data, Google Earth Engine, https://earthengine.google.com/, last access: 27 June 2021.
National Centers for Environmental Prediction (NCEP): Multi-Radar/Multi-Sensor (MRMS) Precipitation Data, Version 1.0, UCAR/NCAR, Earth Observing Laboratory [data set], https://doi.org/10.26023/4WM5-Y4PF-8D03, 2018.
National Interagency Fire Center (NCEP): WFIGS – Wildland Fire Perimeters Full History, National Interagency Fire Center [data set], https://data-nifc.opendata.arcgis.com/datasets/nifc::wfigs-wildland-fire-perimeters-full-history/explore?location=0.000000,0.000000,1.81 (last acces: 28 June 2022),
2021.
Neiman, P. J., Ralph, F. M., Wick, G. A., Lundquist, J. D., and Dettinger, M. D.:
Meteorological Characteristics and Overland Precipitation Impacts of Atmospheric Rivers Affecting the West Coast of North America Based on Eight Years of SSM/I Satellite Observations, J. Hydrometeorol., 9, 22–47, https://doi.org/10.1175/2007JHM855.1, 2008.
Miller, D. A. and White, R. A.:
A Conterminous United States Multilayer Soil Characteristics Dataset for Regional Climate and Hydrology Modeling, Earth Interact., 2, 1–26, https://doi.org/10.1175/1087-3562(1998)002<0001:ACUSMS>2.3.CO;2, 1998.
Moody, J. A., Shakesby, R. A., Robichaud, P. R., Cannon, S. H., and Martin, D. A.:
Current research issues related to post-wildfire runoff and erosion processes, Earth-Sci Rev., 122, 10–37. https://doi.org/10.1016/j.earscirev.2013.03.004, 2013.
Nash, J. E. and Sutcliffe, J. V.:
River flow forecasting through conceptual models part I — A discussion of principles, J. Hydrol., 10, 282–290, https://doi.org/10.1016/0022-1694(70)90255-6, 1970.
NOAA Physical Sciences Laboratory (PSL): Surface Meteorology and Physics Data, NOAA [data set], https://psl.noaa.gov/data/obs/datadisplay/, last access: 28 June 2022.
Nikolopoulos, E. I., Destro, E., Bhuiyan, M. A. E., Borga, M., and Anagnostou, E. N.:
Evaluation of predictive models for post-fire debris flow occurrence in the western United States, Nat. Hazards Earth Syst. Sci., 18, 2331–2343, https://doi.org/10.5194/nhess-18-2331-2018, 2018.
Nikolopoulos, E. I., Schwartz, C., Zhang, X, and Anagnostou, E. N.:
Rainfall estimation uncertainty and early warning procedures for
post-fire debris flows, EGU General Assembly, Vienna, Austria, 7–12 April 2019, Abstracts, 2019.
Niu, G. Y., Yang, Z. L., Mitchell, K. E., Chen, F., Ek,
M. B., Barlage, M., Kumar, A., Manning, K., Niyogi, D., Rosero, E., Tewari, M., and Xia, Y.:
The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements, J. Geophys. Res.-Atmos., 116, D12109, https://doi.org/10.1029/2010JD015139, 2011.
Oakley, N. S.:
A warming climate adds complexity to postfire hydrologic hazard planning, Earths Future, 9, e2021EF002149, https://doi.org/10.1029/2021EF002149, 2021.
Oakley, N. S., Lancaster, J. T., Kaplan, M. L., and Ralph, F. M.:
Synoptic conditions associated with cool season post-fire debris flows in the Transverse Ranges of southern California, Nat. Hazards, 88, 327–354 https://doi.org/10.1007/s11069-017-2867-6, 2017.
Oakley, N. S., Cannon, F., Munroe, R., Lancaster, J. T., Gomberg, D., and Ralph, F. M.:
Brief communication: Meteorological and climatological conditions associated with the 9 January 2018 post-fire debris flows in Montecito and Carpinteria, California, USA, Nat. Hazards Earth Syst. Sci., 18, 3037–3043, https://doi.org/10.5194/nhess-18-3037-2018, 2018.
Ogden, F. L.:
CASC2D reference manual, Department of Civil & Environmental Engineering, University of Connecticut, Storrs, 1997.
Palmer, J.:
The devastating mudslides that follow forest fires, Nature, 601, 184–186, https://www.nature.com/articles/d41586-022-00028-3 (last access: 27 November 2021), 2022.
Parise, M. and Cannon, S. H.:
The effects of wildfires on erosion and debris-flow generation in Mediterranean climatic areas: a first database, Proceedings of 1st World Landslide Forum, Tokyo, Japan, 18–21 November 2008, 465–468, 2008.
Parise, M. and Cannon, S. H.:
A database on post-fire erosion rates and debris flows in Mediterranean-Basin watersheds, EGU General Assembly, Vienna, Austria, 19–24 April 2009, Abstracts, p. 1530, 2009.
Pietsch, B.:
Part of Highway 1 in California Falls Into the Ocean, The New York Times, https://www.nytimes.com/2021/01/30/us/highway-one-mudslide.html (last access: 27 November 2021), 2021.
Polade, S. D., Gershunov, A., Cayan, D.R, Dettinger, M. D., and Pierce, D. W.:
Precipitation in a warming world: Assessing projected hydro-climate changes in California and other Mediterranean climate regions, Sci. Rep.-UK, 7, 10783, https://doi.org/10.1038/s41598-017-11285-y, 2017.
Qi, Y., Martinaitis, S., Zhang, J., and Cocks, S.:
A real-time automated quality control of hourly rain gauge data based on multiple sensors in MRMS system, J. Hydrometeorol., 17, 1675–1691, https://doi.org/10.1175/JHM-D-15-0188.1, 2016.
Raia, S., Alvioli, M., Rossi, M., Baum, R. L., Godt, J. W., and Guzzetti, F.:
Improving predictive power of physically based rainfall-induced shallow landslide models: a probabilistic approach, Geosci. Model Dev., 7, 495–514, https://doi.org/10.5194/gmd-7-495-2014, 2014.
Ralph, F. M., Neiman, P. J., and Wick, G. A.:
Satellite and CALJET aircraft observations of atmospheric rivers over the eastern North Pacific Ocean during the winter of 1997/98, Mon. Weather Rev., 132, 1721–1745, https://doi.org/10.1175/1520-0493(2004)132<1721:SACAOO>2.0.CO;2, 2004.
Regmi, N. R., Giardino, J. R., and Vitek, J. D.:
Modeling susceptibility to landslides using the weight of evidence approach: Western Colorado, USA, Geomorphology, 115, 172–187, https://doi.org/10.1016/j.geomorph.2009.10.002, 2010.
Reichenbach, P., Rossi, M., Malamud, B. D., Mihir, M., and Guzzetti, F.:
A review of statistically-based landslide susceptibility models, Earth-Sci. Rev., 180, 60–91 https://doi.org/10.1016/j.earscirev.2018.03.001, 2018.
Rengers, F. K., McGuire, L. A., Kean, J. W., Staley, D. M., and Hobley, D. E. J.:
Model simulations of flood and debris flow timing in steep catchments after wildfire, Water Resour. Res., 52, 6041–6061, https://doi.org/10.1002/2015WR018176, 2016.
Reneau, S. L., Katzman, D., Kuyumjian, G. A., Lavine, A., and Malmon, D. V.:
Sediment delivery after a wildfire, Geology, 35, 151–154, https://doi.org/10.1130/G23288A.1, 2007.
Reynolds, C.:
Highway 1 washout near Big Sur expected to be fixed by summer, Los Angeles Times, https://www.latimes.com/travel/story/2021-02-25/highway-1-to-big-sur-will-reopen-by-summer-caltrans-says (last access: 27 November 2021), 2021.
Robichaud, P. R.: Fire and erosion: evaluating the effectiveness of a post-fire rehabilitation treatment, contour-felled logs, in: Watershed Management and Operations Management 2000, 1–11, https://doi.org/10.1061/40499(2000)36, 2000.
Rosso, R., Rulli, M. C., and Bocchiola, D.:
Transient catchment hydrology after wildfires in a Mediterranean basin: runoff, sediment and woody debris, Hydrol. Earth Syst. Sci., 11, 125–140, https://doi.org/10.5194/hess-11-125-2007, 2007.
Rulli, M. C. and Rosso, R.:
Hydrologic response of upland catchments to wildfires, Adv. Water Resour., 30, 2072–2086, https://doi.org/10.1016/j.advwatres.2006.10.012, 2007.
Santi, P. M. and Morandi, L.:
Comparison of debris flow volumes from burned and unburned areas, Landslides, 10, 757–769, 2013.
Santi, P. M., deWolfe, V. G., Higgins, J. D., Cannon, S. H., and Gartner, J. E.:
Sources of debris flow material in burned areas, Geomorphology, 96, 310–321, https://doi.org/10.1016/j.geomorph.2007.02.022, 2008.
Schaefli, B. and Gupta, H. V.:
Do Nash values have value?, Hydrol. Process., 21, 2075–2080, https://doi.org/10.1002/hyp.6825, 2007.
Scheip, C., and Wegmann, K.: HazMapper: v1.0 source code (Version 1.0), Zenodo [code], https://doi.org/10.5281/zenodo.4103348, 2020.
Scheip, C. M. and Wegmann, K. W.:
HazMapper: a global open-source natural hazard mapping application in Google Earth Engine, Nat. Hazards Earth Syst. Sci., 21, 1495–1511, https://doi.org/10.5194/nhess-21-1495-2021, 2021.
Shakesby, R. A. and Doerr, S. H.:
Wildfire as a hydrological and geomorphological agent, Earth-Sci. Rev., 74, 269–307, https://doi.org/10.1016/j.earscirev.2005.10.006, 2006.
Shen, H., Lynch, B.., Poulsen, C. J., and Yanites, B. J.:
A modeling framework (WRF-Landlab) for simulating orogen-scale climate-erosion coupling, Comput. Geosci., 146, 104625, https://doi.org/10.1016/j.cageo.2020.104625, 2021.
Staley, D. M., Negri, J. A., Kean, J. W., Laber, J. M., Tillery, A. C., and Youberg, A. M.: Updated logistic regression equations for the calculation of post-fire debris-flow likelihood in the western United States: U.S. Geological Survey Open-File Report, 2016–1106, 13 pp., https://doi.org/10.3133/ofr20161106, 2016.
Staley, D. M., Negri, J. A., Kean, J. W., Laber, J. L., Tillery, A. C., and Youberg, A. M.:
Prediction of spatially explicit rainfall intensity–duration thresholds for post-fire debris-flow generation in the western United States, Geomorphology, 278, 149–162 https://doi.org/10.1016/j.geomorph.2016.10.019, 2017.
Stoof, C. R., Vervoort, R. W., Iwema, J., van den Elsen, E., Ferreira, A. J. D., and Ritsema, C. J.:
Hydrological response of a small catchment burned by experimental fire, Hydrol. Earth Syst. Sci., 16, 267–285, https://doi.org/10.5194/hess-16-267-2012, 2012.
Swain, D. L.:
A Shorter, Sharper Rainy Season Amplifies California Wildfire Risk, Geophys. Res. Lett., 48, e2021GL092843, https://doi.org/10.1029/2021GL092843, 2021.
Swain, D. L., Langenbrunner, B., Neelin, J. D., and Hall, A.:
Increasing precipitation volatility in twenty-first-century California, Nat. Clim. Change, 8, 427–433 https://doi.org/10.1038/s41558-018-0140-y, 2018.
Tang, H., McGuire, L. A., Rengers, F. K., Kean, J. W., Staley, D. M., and Smith, J. B.:
Developing and testing physically based triggering thresholds for runoff-generated debris flows, Geophys. Res. Lett., 46, 8830–8839. https://doi.org/10.1029/2019GL083623, 2019a.
Tang, H., McGuire, L. A., Rengers, F. K., Kean, J. W., Staley, D. M., and Smith, J. B.:
Evolution of debris-flow initiation mechanisms and sediment sources during a sequence of postwildfire rainstorms, J. Geophys. Res.-Earth, 124, 1572–1595. https://doi.org/10.1029/2018JF004837, 2019b.
Tognacca, C., Bezzola, G. R., and Minor, H. E.:
Threshold criterion for debris-flow initiation due to channel-bed failure, in: Debris-flow hazards mitigation: Mechanics, prediction and assessment, edited by: edited by:
Wieczorek, G. F. and Naeser, N. D., A.A.Balkema, Brookfield, the
Netherlands, 89–97, 2000.
U.S. Geological Survey (USGS): National Water Information System data, USGS Water Data for the Nation, USGS [data set], https://doi.org/10.5066/F7P55KJN, 2016.
U.S. Geological Survey (USGS): Postfire Debris flow Hazards: Dolan Fire (Los Padres National Forest, CA), Landslide Hazards Program, USGS,
https://landslides.usgs.gov/hazards/postfire_debrisflow/detail.php?objectid=312 (last access: 27 September 2021), 2021.
Wang, J., Wang, C., Rao, V., Orr, A., Yan, E., and Kotamarthi, R.:
A parallel workflow implementation for PEST version 13.6 in high-performance computing for WRF-Hydro version 5.0: a case study over the midwestern United States, Geosci. Model Dev., 12, 3523–3539, https://doi.org/10.5194/gmd-12-3523-2019, 2019.
Williams, A. P., Abatzoglou, J. T., Gershunov, A., Guzman-Morales, J., Bishop, D. A., Balch, J. K., and Lettenmaier, D. P.:
Observed Impacts of Anthropogenic Climate Change on Wildfire in California, Earths Future, 7, 892–910, https://doi.org/10.1029/2019EF001210, 2019.
Xia, Y., Mitchell, K., Ek, M., Cosgrove, B., Sheffield, J., Luo, L., Alonge, C., Wei, H., Meng, J., Livneh, B., Duan, Q., and Lohmann, D.: NCEP/EMC, NLDAS Primary Forcing Data L4 Hourly 0.125×0.125 degree V002, Edited by David Mocko, NASA/GSFC/HSL, Greenbelt, Maryland, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set], https://doi.org/10.5067/6J5LHHOHZHN4, 2009.
Xia, Y., Mitchell, K., Ek, M., Cosgrove, B., Sheffield, J., Luo, L., Alonge, C., Wei, H., Meng, J., Livneh, B., Duan, Q., and Lohmann, D.:
Continental-scale water and energy flux analysis and validation for North American Land Data Assimilation System project phase 2 (NLDAS-2): 2. Validation of model-simulated streamflow, J. Geophys. Res-Atmos., 117, D03110, https://doi.org/10.1029/2011JD016051, 2012.
Young, A. M., Skelly, K. T., and Cordeira, J. M.:
High-impact hydrologic events and atmospheric rivers in California: An investigation using the NCEI Storm Events Database, Geophys. Res. Lett., 44, 3393–3401 https://doi.org/10.1002/2017GL073077, 2017.
Yin, D., Xue, Z. G., Gochis, D. J., Yu, W., Morales, M., and Rafieeinasab, A.:
A Process-Based, Fully Distributed Soil Erosion and Sediment Transport Model for WRF-Hydro, Water, 12, 1840, https://doi.org/10.3390/w12061840, 2020.
Zhang, J., Howard, K., Langston, C., Vasiloff, S., Kaney, B., Arthur, A., Van Cooten, S., Kelleher, K., Kitzmiller, D., Ding, F., Seo, D., Wells, E., and Dempsey, C.:
National Mosaic and Multi-Sensor QPE (NMQ) system: Description, results, and future plans, B. Am. Meteorol. Soc., 92, 1321–1338, https://doi.org/10.1175/2011BAMS-D-11-00047.1, 2011.
Zhang, J., Qi, Y., Langston, C., Kaney, B., and Howard, K.:
A real-time algorithm for merging radar QPEs with rain gauge observations and orographic precipitation climatology, J. Hydrometeorol., 15, 1794–1809, https://doi.org/10.1175/JHM-D-13-0163.1, 2014.
Zhang, J., Howard, K., Langston, C., Kaney, B., Qi, Y., Tang, L., Grams, H., Wang, Y., Cocks, S., Martinaitis, S., Arthur, A., Cooper, K., Brogden, J., and Kitzmiller, D.:
Multi-Radar Multi-Sensor (MRMS) quantitative precipitation estimation: Initial operating capabilities, B. Am. Meteorol. Soc., 97, 621–638, https://doi.org/10.1175/BAMS-D-14-00174.1, 2016.
Zhang, S., Zhao, L., Delgado-Tellez, R., and Bao, H.:
A physics-based probabilistic forecasting model for rainfall-induced shallow landslides at regional scale, Nat. Hazards Earth Syst. Sci., 18, 969–982, https://doi.org/10.5194/nhess-18-969-2018, 2018.
Zhu, Y. and Newell, R. E.:
A Proposed Algorithm for Moisture Fluxes from Atmospheric Rivers, Mon. Weather Rev., 126, 725–735, https://doi.org/10.1175/1520-0493(1998)126<0725:APAFMF>2.0.CO;2, 1998.
Download
The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.
- Article
(26696 KB) - Full-text XML
Short summary
In January 2021 a storm triggered numerous debris flows in a wildfire burn scar in California. We use a hydrologic model to assess debris flow susceptibility in pre-fire and postfire scenarios. Compared to pre-fire conditions, postfire conditions yield dramatic increases in peak water discharge, substantially increasing debris flow susceptibility. Our work highlights the hydrologic model's utility in investigating and potentially forecasting postfire debris flows at regional scales.
In January 2021 a storm triggered numerous debris flows in a wildfire burn scar in California....
Altmetrics
Final-revised paper
Preprint