

Corrigendum to

“Augmentation of WRF-Hydro to simulate overland-flow- and streamflow-generated debris flow susceptibility in burn scars” published in Nat. Hazards Earth Syst. Sci., 22, 2317–2345, 2022

Chuxuan Li¹, Alexander L. Handwerger^{2,3}, Jiali Wang⁴, Wei Yu^{5,6}, Xiang Li⁷, Noah J. Finnegan⁸, Yingying Xie^{9,10}, Giuseppe Buscarnera⁷, and Daniel E. Horton¹

¹Department of Earth and Planetary Sciences, Northwestern University, Evanston, IL 60208, USA

²Joint Institute for Regional Earth System Science and Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA

³Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA

⁴Environmental Science Division, Argonne National Laboratory, Lemont, IL 60439, USA

⁵Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, CO 80309, USA

⁶Global Systems Laboratory, NOAA, Denver, CO 80305-3328, USA

⁷Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA

⁸Department of Earth and Planetary Sciences, University of California Santa Cruz, Santa Cruz, CA 95064, USA

⁹Program in Environmental Sciences, Northwestern University, Evanston, IL 60208, USA

¹⁰Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA

Correspondence: Chuxuan Li (chuxuanli2020@u.northwestern.edu)

Published: 1 November 2022

The numbers in the fourth column (i.e., Manning’s roughness coefficient n) of Table B1 of the above paper are incorrect. The mistake was generated during the production process. The correct table is as follows:

Table B1. Parameters of trapezoidal channels in WRF-Hydro.

Stream order	Channel bottom width B_w (m)	Channel side slope z (m)	Manning’s roughness coefficient n
1	1.5	3	0.55
2	3	1	0.35
3	5	0.5	0.15
4	10	0.18	0.1
5	20	0.05	0.07
6	40	0.05	0.05
7	60	0.05	0.04
8	70	0.05	0.03
9	80	0.05	0.02
10	100	0.05	0.01