Articles | Volume 21, issue 10
https://doi.org/10.5194/nhess-21-3015-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-21-3015-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Debris flow event on Osorno volcano, Chile, during summer 2017: new interpretations for chain processes in the southern Andes
Ivo Janos Fustos-Toribio
CORRESPONDING AUTHOR
Department of Civil Engineering, University of La Frontera,
Francisco Salazar 1145, Temuco, Chile
Bastian Morales-Vargas
Departamento de Obras Civiles y Geología, Facultad de
Ingeniería, Universidad Católica de Temuco, Rudecindo Ortega 02950,
Temuco, Chile
Department of Forest Sciences, Faculty of Agriculture and Forest
Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco,
4780000, Chile
Marcelo Somos-Valenzuela
CORRESPONDING AUTHOR
Department of Forest Sciences, Faculty of Agriculture and Forest
Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco,
4780000, Chile
Butamallín Research Center for Global Change, University of La
Frontera, Av. Francisco Salazar 01145, Temuco, 4780000, Chile
Pablo Moreno-Yaeger
Department of Civil Engineering, University of La Frontera,
Francisco Salazar 1145, Temuco, Chile
Department of Geoscience, University of Wisconsin–Madison, 1215
West Dayton St., Madison, WI 53706, USA
Ramiro Muñoz-Ramirez
Departamento de Obras Civiles y Geología, Facultad de
Ingeniería, Universidad Católica de Temuco, Rudecindo Ortega 02950,
Temuco, Chile
Ines Rodriguez Araneda
Departamento de Obras Civiles y Geología, Facultad de
Ingeniería, Universidad Católica de Temuco, Rudecindo Ortega 02950,
Temuco, Chile
Ningsheng Chen
Key Laboratory of Mountain Hazards and Surface Processes, Institute
of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu
610041, China
Related authors
Manuel Labbe, Millaray Curilem, Ivo Fustos-Toribio, and Mario Pooley
EGUsphere, https://doi.org/10.5194/egusphere-2025-2764, https://doi.org/10.5194/egusphere-2025-2764, 2025
Short summary
Short summary
We investigated methods to improve the prediction of landslides triggered by heavy rainfall in southern Chile, utilising local soil and climate data. We tested different models and selected the most critical environmental factors. We improved the process for making forecasts in areas with limited monitoring. Our results help create faster and more reliable warnings and can guide safety planning in other mountain regions facing similar risks.
Ivo Fustos-Toribio, Daniel Basualto, Ardy Gatica, Alvaro Bravo-Alarcón, José-Luis Palma, Gabriel Fuentealba, and Sergio A. Sepúlveda
EGUsphere, https://doi.org/10.5194/egusphere-2025-1394, https://doi.org/10.5194/egusphere-2025-1394, 2025
Short summary
Short summary
We investigated how volcanic soils and heavy rainfall trigger dangerous debris flows in the southern Andes. Our findings show saturated volcanic-soils above less permeable glacial deposits create ideal conditions for slope failures. Monitoring soil moisture and surface changes helps predict these events. This knowledge aids in protecting communities from debris flow hazards, increasingly important under climate change.
Ivo Fustos-Toribio, Nataly Manque-Roa, Daniel Vásquez Antipan, Mauricio Hermosilla Sotomayor, and Viviana Letelier Gonzalez
Nat. Hazards Earth Syst. Sci., 22, 2169–2183, https://doi.org/10.5194/nhess-22-2169-2022, https://doi.org/10.5194/nhess-22-2169-2022, 2022
Short summary
Short summary
We develop for the first time a rainfall-induced landslide early warning system for the south of Chile. We used forecast precipitation values at different scales using mesoscale models to evaluate the probability of landslides using statistical models. We showed the feasibility of implementing these models in future, supporting stakeholders and decision-makers.
Patricio A. Pacheco-Cancino, Rubén F. Carrillo-López, Jorge A. Riquelme-Belmar, and Marcelo A. Somos-Valenzuela
EGUsphere, https://doi.org/10.5194/egusphere-2025-3190, https://doi.org/10.5194/egusphere-2025-3190, 2025
Short summary
Short summary
Peatlands in Chilean Patagonia store large amounts of carbon and help mitigate climate change. We measured carbon dioxide exchange over a year in a North Patagonian peatland, showing that commercial Sphagnum moss harvesting reduces its carbon sink function. Sites with higher harvesting intensity released carbon dioxide, while undisturbed sites sequestered it. We conclude that sustainable practices are essential to protect the climate role of Patagonian peatlands.
Manuel Labbe, Millaray Curilem, Ivo Fustos-Toribio, and Mario Pooley
EGUsphere, https://doi.org/10.5194/egusphere-2025-2764, https://doi.org/10.5194/egusphere-2025-2764, 2025
Short summary
Short summary
We investigated methods to improve the prediction of landslides triggered by heavy rainfall in southern Chile, utilising local soil and climate data. We tested different models and selected the most critical environmental factors. We improved the process for making forecasts in areas with limited monitoring. Our results help create faster and more reliable warnings and can guide safety planning in other mountain regions facing similar risks.
Ivo Fustos-Toribio, Daniel Basualto, Ardy Gatica, Alvaro Bravo-Alarcón, José-Luis Palma, Gabriel Fuentealba, and Sergio A. Sepúlveda
EGUsphere, https://doi.org/10.5194/egusphere-2025-1394, https://doi.org/10.5194/egusphere-2025-1394, 2025
Short summary
Short summary
We investigated how volcanic soils and heavy rainfall trigger dangerous debris flows in the southern Andes. Our findings show saturated volcanic-soils above less permeable glacial deposits create ideal conditions for slope failures. Monitoring soil moisture and surface changes helps predict these events. This knowledge aids in protecting communities from debris flow hazards, increasingly important under climate change.
Bastian Morales, Marcelo Somos-Valenzuela, Mario Lillo, Iñigo Irarrazaval, David Farias, Elizabet Lizama, Diego Rivera, and Alfonso Fernández
EGUsphere, https://doi.org/10.5194/egusphere-2024-1053, https://doi.org/10.5194/egusphere-2024-1053, 2024
Preprint archived
Short summary
Short summary
Through a physical model, we explored how lacier geometry and topography configuration constrains glacier thinning in the Patagonian Icefields, the world's main glacial freshwater reservoir after Antarctica and Greenland. Our results indicate that about 53 % of the Patagonian Icefield ice flow is susceptible to thinning. Our findings allow for identifying priority glaciers for future research considering climate change projections.
Alton C. Byers, Marcelo Somos-Valenzuela, Dan H. Shugar, Daniel McGrath, Mohan B. Chand, and Ram Avtar
The Cryosphere, 18, 711–717, https://doi.org/10.5194/tc-18-711-2024, https://doi.org/10.5194/tc-18-711-2024, 2024
Short summary
Short summary
In spite of enhanced technologies, many large cryospheric events remain unreported because of their remoteness, inaccessibility, or poor communications. In this Brief communication, we report on a large ice-debris avalanche that occurred sometime between 16 and 21 August 2022 in the Kanchenjunga Conservation Area (KCA), eastern Nepal.
Ivo Fustos-Toribio, Nataly Manque-Roa, Daniel Vásquez Antipan, Mauricio Hermosilla Sotomayor, and Viviana Letelier Gonzalez
Nat. Hazards Earth Syst. Sci., 22, 2169–2183, https://doi.org/10.5194/nhess-22-2169-2022, https://doi.org/10.5194/nhess-22-2169-2022, 2022
Short summary
Short summary
We develop for the first time a rainfall-induced landslide early warning system for the south of Chile. We used forecast precipitation values at different scales using mesoscale models to evaluate the probability of landslides using statistical models. We showed the feasibility of implementing these models in future, supporting stakeholders and decision-makers.
Cited articles
Aaron, J. and Hungr, O.: Dynamic analysis of an extraordinarily mobile rock
avalanche in the Northwest Territories, Canada, Can. Geotech. J., 53,
899–908, https://doi.org/10.1139/cgj-2015-0371, 2016.
Aguilar, G., Carretier, S., Regard, V., Vassallo, R., Riquelme, R., and
Martinod, J.: Grain size-dependent 10Be concentrations in alluvial stream
sediment of the Huasco Valley, a semi-arid Andes region, Quaternary
Geochronol., 19, 163–172, https://doi.org/10.1016/j.quageo.2013.01.011,
2014.
Alganci, U., Besol, B., and Sertel, E.: Accuracy Assessment of Different
Digital Surface Models, ISPRS Int. J. Geo.-Inf., 7, 114, https://doi.org/10.3390/ijgi7030114,
2018.
Alimohammadlou, Y., Najafi, A., and Yalcin, A.: Landslide process and
impacts: A proposed classification method, CATENA, 104, 219–232,
https://doi.org/10.1016/j.catena.2012.11.013, 2013.
ASTM: D2216-19, Standard Test Methods for Laboratory Determination of Water
(Moisture) Content of Soil and Rock by Mass, ASTM International, West
Conshohocken, PA, 2019, https://doi.org/10.1520/D2216-19, 2019.
ASTM: D3080/D3080M-11: Standard Test Method for Direct Shear Test of Soils
Under Consolidated Drained Conditions (Withdrawn 2020), ASTM International,
West Conshohocken, PA, 2011, https://doi.org/10.1520/d3080_d3080m-11, 2020.
Bühler, Y., Christen, M., Kowalski, J., and Bartelt, P.: Sensitivity of
snow avalanche simulations to digital elevation model quality and
resolution, Ann. Glaciol., 52, 72–80,
https://doi.org/10.3189/172756411797252121, 2011.
Bueechi, E., Klimeš, J., Frey, H., Huggel, C., Strozzi, T., and
Cochachin, A.: Regional-scale landslide susceptibility modelling in the
Cordillera Blanca, Peru – a comparison of different approaches, Landslides,
16, 395–407, https://doi.org/10.1007/s10346-018-1090-1, 2018.
Calhoun, N. C. and Clague, J. J.: Distinguishing between debris flows and
hyperconcentrated flows: an example from the eastern Swiss Alps, Earth Surf.
Proc. Land., 43, 1280–1294,
https://doi.org/10.1002/esp.4313, 2018.
Cembrano, J. and Lara, L.: The link between volcanism and tectonics in the
southern volcanic zone of the Chilean Andes: A review, Tectonophysics, 471,
96–113, https://doi.org/10.1016/j.tecto.2009.02.038, 2009.
Dufresne, A., Wolken, G. J., Hibert, C., Bessette-Kirton, E. K., Coe, J. A.,
Geertsema, M., and Ekström, G.: The 2016 Lamplugh rock avalanche,
Alaska: deposit structures and emplacement dynamics, Landslides, 16,
2301–2319, https://doi.org/10.1007/s10346-019-01225-4, 2019.
Evans, S. G., Bishop, N. F., Fidel Smoll, L., Valderrama Murillo, P.,
Delaney, K. B., and Oliver-Smith, A.: A re-examination of the mechanism and
human impact of catastrophic mass flows originating on Nevado Huascarán,
Cordillera Blanca, Peru in 1962 and 1970, Eng. Geol., 108, 96–118,
https://doi.org/10.1016/j.enggeo.2009.06.020, 2009.
Fustos, I., Abarca-del-Rio, R., Moreno-Yaeger, P., and Somos-Valenzuela, M.:
Rainfall-Induced Landslides forecast using local precipitation and global
climate indexes, Nat. Hazards, 102, 115–131,
https://doi.org/10.1007/s11069-020-03913-0, 2020.
García-Delgado, H., Machuca, S., and Medina, E.: Dynamic and geomorphic
characterizations of the Mocoa debris flow (March 31, 2017, Putumayo
Department, southern Colombia), Landslides, 16, 597–609,
https://doi.org/10.1007/s10346-018-01121-3, 2019.
Garrido, N.: Deslizamientos y flujos de detritos en Petrohué, Sierra
Santo Domingo, naciente río Petrohué ladera sur. 02.06.2015.
Servicio Nacional de Geología y Minería, Informe Técnico, 11 pp., 2015.
Garrido, N., Mella, M., Sepúlveda, V., Duhart, P., and Moreno, H.: Efectos
geológicos de los flujos de detritos ruta CH-225 entre Ensenada y
Petrohué, 08 de enero 2017, región de Los Lagos (INF-X-05.2017)
[informe inédito], Puerto Varas: Sernageomin, 2017, 12, 2017.
Garrido, N., Sepúlveda, V., Duhart, P.: Catastro de remociones en masa
de la Provincia de Llanquihue, Región de Los Lagos (INF-Los
Lagos-10.2018) [informe inédito], Puerto Varas, Sernageomin, 2018.
INE: ENCUESTA MENSUAL DE ALOJAMIENTO TURÍSTICO, AÑO 2017, Technical
report, available at:
https://www.ine.cl/docs/default-source/actividad-del-turismo/publicaciones-y-anuarios/informe-anual/informe-anual-emat-2017.pdf
(last access: 12 June 2020), 2018.
Jakob, M., Hungr, O., and Jakob, D. M.: Debris-flow Hazards and Related
Phenomena, Springer, Berlin, Heidelberg, 2005.
Johnson, J. B. and Palma, J. L.: Lahar infrasound associated with Volcán
Villarrica's 3 March 2015 eruption, Geophys. Res. Lett., 42, 6324–6331,
https://doi.org/10.1002/2015gl065024, 2015.
Kääb, A., Huggel, C., Fischer, L., Guex, S., Paul, F., Roer, I., Salzmann, N., Schlaefli, S., Schmutz, K., Schneider, D., Strozzi, T., and Weidmann, Y.: Remote sensing of glacier- and permafrost-related hazards in high mountains: an overview, Nat. Hazards Earth Syst. Sci., 5, 527–554, https://doi.org/10.5194/nhess-5-527-2005, 2005.
Korup, O., Seidemann, J., and Mohr, C. H.: Increased landslide activity on
forested hillslopes following two recent volcanic eruptions in Chile, Nat.
Geosci., 12, 284–289, https://doi.org/10.1038/s41561-019-0315-9, 2019.
Lavigne, F. and Suwa, H.: Contrasts between debris flows, hyperconcentrated
flows and stream flows at a channel of Mount Semeru, East Java, Indonesia,
Geomorphology, 61, 41–58, https://doi.org/10.1016/j.geomorph.2003.11.005,
2004.
Major, J. J., Bertin, D., Pierson, T. C., Amigo, Á., Iroumé, A.,
Ulloa, H., and Castro, J.: Extraordinary sediment delivery and rapid
geomorphic response following the 2008–2009 eruption of Chaitén Volcano,
Chile, Water Resour. Res., 52, 5075–5094,
https://doi.org/10.1002/2015wr018250, 2016.
Martha, T. R., Kerle, N., Jetten, V., van Westen, C. J., and Kumar, K. V.:
Characterising spectral, spatial and morphometric properties of landslides
for semi-automatic detection using object-oriented methods, Geomorphology,
116, 24–36, https://doi.org/10.1016/j.geomorph.2009.10.004, 2010.
Mergili, M. and Pudasaini, S. P.:. r.avaflow – The mass flow simulation tool, available at: https://www.landslidemodels.org/r.avaflow/ (last access: 7 October 2021), 2014–2021.
Mergili, M., Fischer, J.-T., Krenn, J., and Pudasaini, S. P.: r.avaflow v1, an advanced open-source computational framework for the propagation and interaction of two-phase mass flows, Geosci. Model Dev., 10, 553–569, https://doi.org/10.5194/gmd-10-553-2017, 2017.
Mergili, M., Frank, B., Fischer, J.-T., Huggel, C., and Pudasaini, S. P.:
Computational experiments on the 1962 and 1970 landslide events at
Huascarán (Peru) with r.avaflow: Lessons learned for predictive mass
flow simulations, Geomorphology, 322, 15–28,
https://doi.org/10.1016/j.geomorph.2018.08.032, 2018a.
Mergili, M., Emmer, A., Juřicová, A., Cochachin, A., Fischer, J.-T.,
Huggel, C., and Pudasaini, S. P.: How well can we simulate complex
hydro-geomorphic process chains? The 2012 multi-lake outburst flood in the
Santa Cruz Valley (Cordillera Blanca, Perú), Earth Surf. Proc.
Land., 43, 1373–1389, https://doi.org/10.1002/esp.4318, 2018b.
Moreno, H., Varela, J., López-E,L., Munizaga, F., and Lahsen, A.:
Geología y riesgo volcánico del volcán Osorno y centros
eruptivos menores, Universidad de Chile, Departamento de Geología y
Geofisica, Sangiago, 212 pp., 1985.
Moreno, H., Lara, L. E., and Orozco, G.: Geología del volcán Osorno,
Región de Los Lagos, Servicio Nacional de Geología y Minería,
Carta Geológica de Chile, Serie Geología Básica 126: p., 1 mapa
escala 1:50.000, Santiago, 2010.
Moreno, T. and Gibbons, W. (Eds.): The Geology of Chile, The Geological Society of London, https://doi.org/10.1144/goch, 2007.
Naranjo, J. L., Sigurdsson, H., Carey, S. N., and Fritz, W.: Eruption of the
Nevado del Ruiz Volcano, Colombia, On 13 November 1985: Tephra Fall and
Lahars, Science, 233, 961–963,
https://doi.org/10.1126/science.233.4767.961, 1986.
Oyarzún, J.: Análisis de los factores gatillantes al flujo
hiperconcentrado en Villa Santa Lucía y determinación de las
condicionantes de un proceso futuro, Trabajo de Proyecto de Titulación
para optar al Título de Ingeniero Civil, Universidad de La Frontera,
Facultad de Ingeniería y Ciencias, 2019.
Pierson, T. C.: Flow characteristics of large eruption-triggered debris
flows at snow-clad volcanoes: constraints for debris-flow models, J.
Volcanol. Geoth. Res., 66, 283–294,
https://doi.org/10.1016/0377-0273(94)00070-w, 1995.
Pierson, T. C., Major, J. J., Amigo, Á., and Moreno, H.: Acute sedimentation response to rainfall following the explosive phase of the 2008–2009 eruption of Chaitén volcano, Chile, Bull. Volcanol., 75, 723, https://doi.org/10.1007/s00445-013-0723-4, 2013.
Pudasaini, S. P.: A general two-phase debris flow model, J. Geophys. Res.,
117, F03010, https://doi.org/10.1029/2011jf002186, 2012.
Pudasaini, S. P. and Mergili, M.: A Multi-Phase Mass Flow Model, J.
Geophys. Res.-Earth, 124, 2920–2942,
https://doi.org/10.1029/2019jf005204, 2019.
Qin, C.-Z., Bao, L.-L., Zhu, A.-X., Wang, R.-X., and Hu, X.-M.: Uncertainty
due to DEM error in landslide susceptibility mapping, Int. J.
Geogr. Inf. Sci., 27, 1364–1380,
https://doi.org/10.1080/13658816.2013.770515, 2013.
Rodríguez, I., Páez, J., van Wyk de Vries, M. S., van Wyk de Vries,
B., and Godoy, B.: Dynamics and physical parameters of the Lastarria debris
avalanche, Central Andes, J. Volcanol. Geoth. Res.,
402, 106990, https://doi.org/10.1016/j.jvolgeores.2020.106990, 2020.
Schaefer, L. N., Kennedy, B. M., Villeneuve, M. C., Cook, S. C. W., Jolly,
A. D., Keys, H. J. R., and Leonard, G. S.: Stability assessment of the
Crater Lake/Te Wai-ā-moe overflow channel at Mt. Ruapehu (New Zealand),
and implications for volcanic lake break-out triggers, J.
Volcanol. Geoth. Res., 358, 31–44,
https://doi.org/10.1016/j.jvolgeores.2018.06.011, 2018.
Schuster, R. L., NietoThomas, A. S., D. O'Rourke, T., Crespo, E., and
Plaza-Nieto, G.: Mass wasting triggered by the 5 March 1987 ecuador
earthquakes, Eng. Geol., 42, 1–23,
https://doi.org/10.1016/0013-7952(95)00024-0, 1996.
Sepúlveda, S. A., Moreiras, S. M., Lara, M., and Alfaro, A.: Debris
flows in the Andean ranges of central Chile and Argentina triggered by 2013
summer storms: characteristics and consequences, Landslides, 12, 115–133,
https://doi.org/10.1007/s10346-014-0539-0, 2014.
Sheridan, M. F., Stinton, A. J., Patra, A., Pitman, E. B., Bauer, A., and
Nichita, C. C.: Evaluating Titan2D mass-flow model using the 1963 Little
Tahoma Peak avalanches, Mount Rainier, Washington, J. Volcanol.
Geoth. Res., 139, 89–102,
https://doi.org/10.1016/j.jvolgeores.2004.06.011, 2005.
Shu, H., Ma, J., Yu, H., Hürlimann, M., Zhang, P., Liu, F., and Qi, S.:
Effect of Density and Total Weight on Flow Depth, Velocity, and Stresses in
Loess Debris Flows, Water, 10, 1784, https://doi.org/10.3390/w10121784,
2018.
Sosio, R., Crosta, G. B., and Hungr, O.: Numerical modeling of debris
avalanche propagation from collapse of volcanic edifices, Landslides, 9,
315–334, https://doi.org/10.1007/s10346-011-0302-8, 2011.
Somos-Valenzuela, M. A., Oyarzún-Ulloa, J. E., Fustos-Toribio, I. J., Garrido-Urzua, N., and Chen, N.: The mudflow disaster at Villa Santa Lucía in Chilean Patagonia: understandings and insights derived from numerical simulation and postevent field surveys, Nat. Hazards Earth Syst. Sci., 20, 2319–2333, https://doi.org/10.5194/nhess-20-2319-2020, 2020.
Stern, C. R.: Holocene tephrochronology record of large explosive eruptions
in the southernmost Patagonian Andes, B. Volcanol., 70, 435–454,
https://doi.org/10.1007/s00445-007-0148-z, 2007.
Tacconi Stefanelli, C., Vilímek, V., Emmer, A., and Catani, F.:
Morphological analysis and features of the landslide dams in the Cordillera
Blanca, Peru, Landslides, 15, 507–521,
https://doi.org/10.1007/s10346-017-0888-6, 2017.
Thouret, J.-C., Antoine, S., Magill, C., and Ollier, C.: Lahars and debris
flows: Characteristics and impacts, Earth-Sci. Rev., 201, 103003,
https://doi.org/10.1016/j.earscirev.2019.103003, 2020.
Vezzoli, L., Apuani, T., Corazzato, C., and Uttini, A.: Geological and
geotechnical characterization of the debris avalanche and pyroclastic
deposits of Cotopaxi Volcano (Ecuador). A contribute to instability-related
hazard studies, J. Volcanol. Geoth. Res., 332, 51–70,
https://doi.org/10.1016/j.jvolgeores.2017.01.004, 2017.
Wieczorek, G. F., Larsen, M. C., and Eaton, L. S.: Catastrophic landslides and
flooding in coastal Venezuela, December 16, 1999 (abstr.). In Program with
abstracts, 2000 Annual Meeting, Assoc. of Engrg. Geologists, San Jose,
California, 19–26 September, AEG News, Vol. 43, p. 120, 2000.
Zwinger, T., Kluwick, A., and Sampl, P.: Numerical Simulation of Dry-Snow
Avalanche Flow over Natural Terrain, in: Dynamic Response of Granular and
Porous Materials under Large and Catastrophic Deformations, Springer Berlin
Heidelberg, 161–194,
https://doi.org/10.1007/978-3-540-36565-5_5, 2003.
Short summary
Links between debris flow and volcanic evolution are an open question in the southern Andes. We modelled the catastrophic debris flow using field data, a geotechnical approach and numerical modelling of the Petrohué event (Chile, 2017). Our results indicated new debris-flow-prone zones. Finally, we propose considering connections between volcanoes and debris flow in the southern Andes.
Links between debris flow and volcanic evolution are an open question in the southern Andes. We...
Altmetrics
Final-revised paper
Preprint