Articles | Volume 21, issue 7
https://doi.org/10.5194/nhess-21-2075-2021
https://doi.org/10.5194/nhess-21-2075-2021
Research article
 | 
09 Jul 2021
Research article |  | 09 Jul 2021

A Bayesian network approach to modelling rip-current drownings and shore-break wave injuries

Elias de Korte, Bruno Castelle, and Eric Tellier

Related authors

Environmental controls on surf zone injuries on high-energy beaches
Bruno Castelle, Tim Scott, Rob Brander, Jak McCarroll, Arthur Robinet, Eric Tellier, Elias de Korte, Bruno Simonnet, and Louis-Rachid Salmi
Nat. Hazards Earth Syst. Sci., 19, 2183–2205, https://doi.org/10.5194/nhess-19-2183-2019,https://doi.org/10.5194/nhess-19-2183-2019, 2019
Short summary

Related subject area

Sea, Ocean and Coastal Hazards
Semi-empirical forecast modelling of rip-current and shore-break wave hazards
Bruno Castelle, Jeoffrey Dehez, Jean-Philippe Savy, Sylvain Liquet, and David Carayon
Nat. Hazards Earth Syst. Sci., 25, 2379–2397, https://doi.org/10.5194/nhess-25-2379-2025,https://doi.org/10.5194/nhess-25-2379-2025, 2025
Short summary
A multiscale modelling framework of coastal flooding events for global to local flood hazard assessments
Irene Benito, Jeroen C. J. H. Aerts, Philip J. Ward, Dirk Eilander, and Sanne Muis
Nat. Hazards Earth Syst. Sci., 25, 2287–2315, https://doi.org/10.5194/nhess-25-2287-2025,https://doi.org/10.5194/nhess-25-2287-2025, 2025
Short summary
Super typhoons Mangkhut (2018) and Saola (2023) during landfall: comparison and insights for wind engineering practice
Yujie Liu, Yuncheng He, Pakwai Chan, Aiming Liu, and Qijun Gao
Nat. Hazards Earth Syst. Sci., 25, 2255–2269, https://doi.org/10.5194/nhess-25-2255-2025,https://doi.org/10.5194/nhess-25-2255-2025, 2025
Short summary
Recent Baltic Sea storm surge events from a climate perspective
Nikolaus Groll, Lidia Gaslikova, and Ralf Weisse
Nat. Hazards Earth Syst. Sci., 25, 2137–2154, https://doi.org/10.5194/nhess-25-2137-2025,https://doi.org/10.5194/nhess-25-2137-2025, 2025
Short summary
Development of a wind-based storm surge model for the German Bight
Laura Schaffer, Andreas Boesch, Johanna Baehr, and Tim Kruschke
Nat. Hazards Earth Syst. Sci., 25, 2081–2096, https://doi.org/10.5194/nhess-25-2081-2025,https://doi.org/10.5194/nhess-25-2081-2025, 2025
Short summary

Cited articles

Austin, M., Scott, T. M., Brown, J. W., Brown, J. A., MacMahan, J. H., Masselink, G., and Russell, P.: Temporal observations of rip current circulation on a macro-tidal beach, Cont. Shelf. Res., 30, 1149–1165, https://doi.org/10.1016/j.csr.2010.03.005, 2010. a
Austin, M., Scott, T. M., Russell, P. E., and Masselink, G.: Rip Current Prediction: Development, Validation and Evaluation of an Operational Tool, J. Coast. Res., 29, 283–300, https://doi.org/10.2112/JCOASTRES-D-12-00093.1, 2013. a
Balsillie, J. H.: Redefinition of shore-breaker classification as a numerical continuum and a design shore-breaker, J. Coast. Res., 1, 247–254, 1985. a, b
Battjes, J. A.: Surf similarity, in: 14th Int. Conf. on Coastal Eng., 466–480, ASCE, New York, 1974. a, b
Bayes, T.: An Essay Towards Solving a Problem in the Doctrine of Chances, Philos. Trans. R. Soc. Lond., 53, 370–418, 1763. a
Download
Short summary
We use a statistical model to address the controls and interactions of environmental (wave, tide, weather, beach morphology) data on surf zone injuries along a sandy coast where shore-break and rip-current hazards co-exist. Although fair but limited predictive life-risk skill is found, the approach provides new insight into the environmental controls, their interactions and their respective contribution to hazard and exposure, with implications for the development of public education messaging.
Share
Altmetrics
Final-revised paper
Preprint