Articles | Volume 21, issue 4
https://doi.org/10.5194/nhess-21-1229-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-21-1229-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
An efficient two-layer landslide-tsunami numerical model: effects of momentum transfer validated with physical experiments of waves generated by granular landslides
Institute of Earth Sciences, University of Lausanne, Lausanne,
1015, Switzerland
Michel Jaboyedoff
Institute of Earth Sciences, University of Lausanne, Lausanne,
1015, Switzerland
Ryan P. Mulligan
Department of Civil Engineering, Queen's University, Kingston, ON K7L 3N6, Ontario, Canada
Yury Podladchikov
Institute of Earth Sciences, University of Lausanne, Lausanne,
1015, Switzerland
W. Andy Take
Department of Civil Engineering, Queen's University, Kingston, ON K7L 3N6, Ontario, Canada
Related authors
No articles found.
François Noël, Michel Jaboyedoff, Andrin Caviezel, Clément Hibert, Franck Bourrier, and Jean-Philippe Malet
Earth Surf. Dynam., 10, 1141–1164, https://doi.org/10.5194/esurf-10-1141-2022, https://doi.org/10.5194/esurf-10-1141-2022, 2022
Short summary
Short summary
Rockfall simulations are often performed to make sure infrastructure is safe. For that purpose, rockfall trajectory data are needed to calibrate the simulation models. In this paper, an affordable, flexible, and efficient trajectory reconstruction method is proposed. The method is tested by reconstructing trajectories from a full-scale rockfall experiment involving 2670 kg rocks and a flexible barrier. The results highlight improvements in precision and accuracy of the proposed method.
Ludovic Räss, Ivan Utkin, Thibault Duretz, Samuel Omlin, and Yuri Y. Podladchikov
Geosci. Model Dev., 15, 5757–5786, https://doi.org/10.5194/gmd-15-5757-2022, https://doi.org/10.5194/gmd-15-5757-2022, 2022
Short summary
Short summary
Continuum mechanics-based modelling of physical processes at large scale requires huge computational resources provided by massively parallel hardware such as graphical processing units. We present a suite of numerical algorithms, implemented using the Julia language, that efficiently leverages the parallelism. We demonstrate that our implementation is efficient, scalable and robust and showcase applications to various geophysical problems.
Clément Hibert, François Noël, David Toe, Miloud Talib, Mathilde Desrues, Emmanuel Wyser, Ombeline Brenguier, Franck Bourrier, Renaud Toussaint, Jean-Philippe Malet, and Michel Jaboyedoff
EGUsphere, https://doi.org/10.5194/egusphere-2022-522, https://doi.org/10.5194/egusphere-2022-522, 2022
Short summary
Short summary
Natural disasters such as landslides and rock falls are mostly difficult to study because of the impossibility of making in situ measurements due to their destructive nature and spontaneous occurrence. Seismology is able to record the occurrence of such events from a distance and in real time. In this study, we show that using a machine learning approach, the mass and velocity of rockfalls can be estimated from the seismic signal they generate.
Shuqi Lin, Leon Boegman, Shiliang Shan, and Ryan Mulligan
Geosci. Model Dev., 15, 1331–1353, https://doi.org/10.5194/gmd-15-1331-2022, https://doi.org/10.5194/gmd-15-1331-2022, 2022
Short summary
Short summary
An operational hydrodynamics forecast system, COASTLINES, using the Windows Task Scheduler, Python, and MATLAB scripts, to automate application of a 3-D model (AEM3D) in Lake Erie was developed. The system predicted storm-surge and up-/downwelling events that are important for flood water and drinking water/fishery management. This example of the successful development of an operational forecast system can be adapted to simulate aquatic systems as required for management and public safety.
Emmanuel Wyser, Yury Alkhimenkov, Michel Jaboyedoff, and Yury Y. Podladchikov
Geosci. Model Dev., 14, 7749–7774, https://doi.org/10.5194/gmd-14-7749-2021, https://doi.org/10.5194/gmd-14-7749-2021, 2021
Short summary
Short summary
We propose an implementation of the material point method using graphical processing units (GPUs) to solve elastoplastic problems in three-dimensional configurations, such as the granular collapse or the slumping mechanics, i.e., landslide. The computational power of GPUs promotes fast code executions, compared to a traditional implementation using central processing units (CPUs). This allows us to study complex three-dimensional problems tackling high spatial resolution.
Negar Ghahramani, Andrew Mitchell, Nahyan M. Rana, Scott McDougall, Stephen G. Evans, and W. Andy Take
Nat. Hazards Earth Syst. Sci., 20, 3425–3438, https://doi.org/10.5194/nhess-20-3425-2020, https://doi.org/10.5194/nhess-20-3425-2020, 2020
Short summary
Short summary
Tailings flows result from the breach of tailings dams. These flows contain waste products of the mineral processing operations and can travel substantial distances, causing significant loss of life, environmental damage, and economic costs. This paper establishes a new tailings-flow runout classification system, describes a new database of events that have been mapped in detail using the new system, and examines the applicability of a semi-physical area–volume relationship using the new data.
Emmanuel Wyser, Yury Alkhimenkov, Michel Jaboyedoff, and Yury Y. Podladchikov
Geosci. Model Dev., 13, 6265–6284, https://doi.org/10.5194/gmd-13-6265-2020, https://doi.org/10.5194/gmd-13-6265-2020, 2020
Short summary
Short summary
In this work, we present an efficient and fast material point method (MPM) implementation in MATLAB. We first discuss the vectorization strategies to adapt this numerical method to a MATLAB implementation. We report excellent agreement of the solver compared with classical analysis among the MPM community, such as the cantilever beam problem. The solver achieves a performance gain of 28 compared with a classical iterative implementation.
Ludovic Räss, Aleksandar Licul, Frédéric Herman, Yury Y. Podladchikov, and Jenny Suckale
Geosci. Model Dev., 13, 955–976, https://doi.org/10.5194/gmd-13-955-2020, https://doi.org/10.5194/gmd-13-955-2020, 2020
Short summary
Short summary
Accurate predictions of future sea level rise require numerical models that predict rapidly deforming ice. Localised ice deformation can be captured numerically only with high temporal and spatial resolution. This paper’s goal is to propose a parallel FastICE solver for modelling ice deformation. Our model is particularly useful for improving our process-based understanding of localised ice deformation. Our solver reaches a parallel efficiency of 99 % on GPU-based supercomputers.
Martin Mergili, Michel Jaboyedoff, José Pullarello, and Shiva P. Pudasaini
Nat. Hazards Earth Syst. Sci., 20, 505–520, https://doi.org/10.5194/nhess-20-505-2020, https://doi.org/10.5194/nhess-20-505-2020, 2020
Short summary
Short summary
Computer simulations of complex landslide processes in mountain areas are important for informing risk management but are at the same time challenging in terms of parameterization and physical and numerical model implementation. Using the tool r.avaflow, we highlight the progress and the challenges with regard to such simulations on the example of the Piz Cengalo–Bondo landslide cascade in Switzerland, which started as an initial rockslide–rockfall and finally evolved into a debris flow.
Michel Jaboyedoff, Masahiro Chigira, Noriyuki Arai, Marc-Henri Derron, Benjamin Rudaz, and Ching-Ying Tsou
Earth Surf. Dynam., 7, 439–458, https://doi.org/10.5194/esurf-7-439-2019, https://doi.org/10.5194/esurf-7-439-2019, 2019
Short summary
Short summary
High-resolution digital elevation models (DEMs) can now be acquired using airborne laser scanners. This allows for a detailed analysis of the geometry of landslides. Several large landslides were triggered by Typhoon Talas in Japan in 2011. The comparison of pre- and post-DEMs allowed us to test a method of defining landslide failure surfaces before catastrophic movements. It provides new results about the curvature of the failure surface and the volume expansion of the deposit.
Jérémie Voumard, Antonio Abellán, Pierrick Nicolet, Ivanna Penna, Marie-Aurélie Chanut, Marc-Henri Derron, and Michel Jaboyedoff
Nat. Hazards Earth Syst. Sci., 17, 2093–2107, https://doi.org/10.5194/nhess-17-2093-2017, https://doi.org/10.5194/nhess-17-2093-2017, 2017
Short summary
Short summary
We discuss the challenges and limitations of surveying rock slope failures using 3-D reconstruction from images acquired from street view imagery (SVI) and processed with modern photogrammetric workflows. Despite some clear limitations and challenges, we demonstrate that this original approach could help obtain preliminary 3-D models of an area without on-field images. Furthermore, the pre-failure topography can be obtained for sites where it would not be available otherwise.
Antoine Guerin, Antonio Abellán, Battista Matasci, Michel Jaboyedoff, Marc-Henri Derron, and Ludovic Ravanel
Nat. Hazards Earth Syst. Sci., 17, 1207–1220, https://doi.org/10.5194/nhess-17-1207-2017, https://doi.org/10.5194/nhess-17-1207-2017, 2017
Short summary
Short summary
The coupling of terrestrial lidar scans acquired in 2011 and a photogrammetric model created from 30 old Web-retrieved images enabled reconstructing in 3-D the Drus west face before the 2005 rock avalanche and estimating the volume of this event. The volume is calculated as 292 680 m3 (±5.6 %). However, despite functioning well for the Drus (legendary peak), this method would have been difficult to implement on a less-well-known site with fewer images available to be collected and downloaded.
Pascal Horton, Charles Obled, and Michel Jaboyedoff
Hydrol. Earth Syst. Sci., 21, 3307–3323, https://doi.org/10.5194/hess-21-3307-2017, https://doi.org/10.5194/hess-21-3307-2017, 2017
Short summary
Short summary
The analogue method aims at forecasting precipitation by means of a statistical relationship with meteorological variables at a large scale, such as the general atmospheric circulation. A moving time window has been introduced here in order to allow finding better analogue situations at different hours of the day. This change resulted in a better analogy of the atmospheric circulation, with improved prediction skills, and even to a greater extent for days with heavy precipitation.
Ryan A. Kromer, Antonio Abellán, D. Jean Hutchinson, Matt Lato, Marie-Aurelie Chanut, Laurent Dubois, and Michel Jaboyedoff
Earth Surf. Dynam., 5, 293–310, https://doi.org/10.5194/esurf-5-293-2017, https://doi.org/10.5194/esurf-5-293-2017, 2017
Short summary
Short summary
We developed and tested an automated terrestrial laser scanning (ATLS) system with near-real-time change detection at the Séchilienne landslide. We monitored the landslide for a 6-week period collecting a point cloud every 30 min. We detected various slope processes including movement of scree material, pre-failure deformation of discrete rockfall events and deformation of the main landslide body. This system allows the study of slope processes a high level of temporal detail.
Roya Olyazadeh, Karen Sudmeier-Rieux, Michel Jaboyedoff, Marc-Henri Derron, and Sanjaya Devkota
Nat. Hazards Earth Syst. Sci., 17, 549–561, https://doi.org/10.5194/nhess-17-549-2017, https://doi.org/10.5194/nhess-17-549-2017, 2017
Short summary
Short summary
This work shows the progress and testing of an online–offline web-GIS application based on open-source technologies for landslide hazard and risk. It has satellite images as a base map in the offline mode and data collection in a centralized online database. The advantage of a mobile app coupled with satellite images over mapping in the office is improved identification of landslide type. This study was used for landslides in Nepal, but it can also be useful for other hazards like floods.
Zar Chi Aye, Roya Olyazadeh, Marc-Henri Derron, Michel Jaboyedoff, and Johann Lüthi
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2017-85, https://doi.org/10.5194/nhess-2017-85, 2017
Revised manuscript not accepted
Short summary
Short summary
In this paper, we present an open-source, web-GIS application (RISKGIS), developed for students learning in risk management of geohazards with real case studies. The aim is for students to better understand and become familiarized with approaches used by experts as well as for teachers to better evaluate and monitor student learning. A series of practical exercises is carried out with students and feedback are collected to identify the possibility and applicability of RISKGIS learning platform.
Jacques Bechet, Julien Duc, Alexandre Loye, Michel Jaboyedoff, Nicolle Mathys, Jean-Philippe Malet, Sébastien Klotz, Caroline Le Bouteiller, Benjamin Rudaz, and Julien Travelletti
Earth Surf. Dynam., 4, 781–798, https://doi.org/10.5194/esurf-4-781-2016, https://doi.org/10.5194/esurf-4-781-2016, 2016
Short summary
Short summary
This paper describes the erosion processes of a small black marl catchment. It is based on terrestrial laser scanner digital elevation model campaigns. A detailed sediment budget is performed, leading to a seasonal sediment transport pattern described spatially and temporally. The link with precipitation intensities and duration is analysed, leading to a conceptual model of erosion that provides clear input for future research regarding potential impacts of climate change on erosion processes.
Céline Longchamp, Antonio Abellan, Michel Jaboyedoff, and Irene Manzella
Earth Surf. Dynam., 4, 743–755, https://doi.org/10.5194/esurf-4-743-2016, https://doi.org/10.5194/esurf-4-743-2016, 2016
Short summary
Short summary
The main objective of this research is to analyze rock avalanche dynamics by means of a detailed structural analysis of the deposits coming from data of 3-D measurements. The studied deposits are of different magnitude: (1) decimeter level scale laboratory experiments and (2) well-studied rock avalanches.
Filtering techniques were developed and applied to a 3-D dataset in order to detect fault structures present in the deposits and to propose kinematic mechanisms for the propagation.
Alexandre Loye, Michel Jaboyedoff, Joshua Isaac Theule, and Frédéric Liébault
Earth Surf. Dynam., 4, 489–513, https://doi.org/10.5194/esurf-4-489-2016, https://doi.org/10.5194/esurf-4-489-2016, 2016
Short summary
Short summary
The sediment supply and storage changes from major channels of the Manival catchment (French Alps) were surveyed periodically for 16 months to study the coupling between sediment dynamics and torrent responses in terms of debris flow events. The spatial and seasonal variability of sediment delivery is displayed and analysed. This study shows that monitoring the changes within a torrent’s in-channel storage and its debris supply can improve knowledge on recharge thresholds leading to debris flow.
Pierrick Nicolet, Michel Jaboyedoff, Catherine Cloutier, Giovanni B. Crosta, and Sébastien Lévy
Nat. Hazards Earth Syst. Sci., 16, 995–1004, https://doi.org/10.5194/nhess-16-995-2016, https://doi.org/10.5194/nhess-16-995-2016, 2016
Short summary
Short summary
When calculating the risk of railway or road users being killed by a natural hazard, one has to calculate a temporal spatial probability, i.e. the probability of a vehicle being in the path of the falling mass when the mass falls, or the expected number of hit vehicles in the case of an event. This paper discusses different methods used to calculate this probability, in particular regarding the consideration of the dimensions of the falling mass and of the vehicles.
Julie D'Amato, Didier Hantz, Antoine Guerin, Michel Jaboyedoff, Laurent Baillet, and Armand Mariscal
Nat. Hazards Earth Syst. Sci., 16, 719–735, https://doi.org/10.5194/nhess-16-719-2016, https://doi.org/10.5194/nhess-16-719-2016, 2016
Short summary
Short summary
The influence of meteorological conditions on rockfall occurrence has been often highlighted, but quantitative analyses are rare. A near-continuous survey of a limestone cliff has shown that the rockfall frequency can be multiplied by 7 during freeze-thaw episodes and 26 when the mean rainfall intensity (since the beginning of the rainfall episode) is higher than 5 mm h−1. Based on these results, a three-level scale has been proposed for predicting the temporal variations of rockfall frequency.
Z. C. Aye, M. Jaboyedoff, M. H. Derron, C. J. van Westen, H. Y. Hussin, R. L. Ciurean, S. Frigerio, and A. Pasuto
Nat. Hazards Earth Syst. Sci., 16, 85–101, https://doi.org/10.5194/nhess-16-85-2016, https://doi.org/10.5194/nhess-16-85-2016, 2016
Short summary
Short summary
This paper presents the development and application of a prototype web-GIS tool for risk analysis, in particular for floods and landslides, based on open-source software and web technologies. The aim is to assist experts (risk managers) in analysing the impacts and consequences of a certain hazard event in a considered region, contributing to open-source and research community in natural hazards and risk assessment. The tool is demonstrated using a regional data set of Fella River basin, Italy.
J. Bechet, J. Duc, M. Jaboyedoff, A. Loye, and N. Mathys
Hydrol. Earth Syst. Sci., 19, 1849–1855, https://doi.org/10.5194/hess-19-1849-2015, https://doi.org/10.5194/hess-19-1849-2015, 2015
Short summary
Short summary
High-resolution three-dimensional point clouds are used to analyse erosion processes at the millimetre scale. The processes analysed here play a role in the closure of cracks. We demonstrated how micro-scale infiltration can influence the degradation of soil surface by inducing downward mass movements that are not reversible. This development will aid in designing future experiments to analyse processes such as swelling, crack closure, micro-landslides, etc.
A. Guerin, D. Hantz, J.-P. Rossetti, and M. Jaboyedoff
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhessd-2-123-2014, https://doi.org/10.5194/nhessd-2-123-2014, 2014
Revised manuscript not accepted
M. Böhme, M.-H. Derron, and M. Jaboyedoff
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhessd-2-81-2014, https://doi.org/10.5194/nhessd-2-81-2014, 2014
Revised manuscript not accepted
P. Nicolet, L. Foresti, O. Caspar, and M. Jaboyedoff
Nat. Hazards Earth Syst. Sci., 13, 3169–3184, https://doi.org/10.5194/nhess-13-3169-2013, https://doi.org/10.5194/nhess-13-3169-2013, 2013
J. Voumard, O. Caspar, M.-H. Derron, and M. Jaboyedoff
Nat. Hazards Earth Syst. Sci., 13, 2763–2777, https://doi.org/10.5194/nhess-13-2763-2013, https://doi.org/10.5194/nhess-13-2763-2013, 2013
P. Horton, M. Jaboyedoff, B. Rudaz, and M. Zimmermann
Nat. Hazards Earth Syst. Sci., 13, 869–885, https://doi.org/10.5194/nhess-13-869-2013, https://doi.org/10.5194/nhess-13-869-2013, 2013
Related subject area
Sea, Ocean and Coastal Hazards
Meteotsunami in the United Kingdom: the hidden hazard
Climate-induced storminess forces major increases in future storm surge hazard in the South China Sea region
Assessing Typhoon Soulik-induced morphodynamics over the Mokpo coastal region in South Korea based on a geospatial approach
Bayesian hierarchical modelling of sea-level extremes in the Finnish coastal region
Assessing the coastal hazard of Medicane Ianos through ensemble modelling
A predictive equation for wave setup using genetic programming
Contribution of solitons to enhanced rogue wave occurrence in shallow depths: a case study in the southern North Sea
Compound flood events: analysing the joint occurrence of extreme river discharge events and storm surges in northern and central Europe
Improvements to the detection and analysis of external surges in the North Sea
Optimal probabilistic placement of facilities using a surrogate model for 3D tsunami simulations
Enabling dynamic modelling of coastal flooding by defining storm tide hydrographs
The role of preconditioning for extreme storm surges in the western Baltic Sea
Freak wave events in 2005–2021: statistics and analysis of favourable wave and wind conditions
Probabilistic projections and past trends of sea level rise in Finland
The effect of deep ocean currents on ocean- bottom seismometers records
An interdisciplinary agent-based evacuation model: integrating the natural environment, built environment, and social system for community preparedness and resilience
Coastal extreme sea levels in the Caribbean Sea induced by tropical cyclones
Characteristics of consecutive tsunamis and resulting tsunami behaviors in southern Taiwan induced by the Hengchun earthquake doublet on 26 December 2006
Potential tsunami hazard of the southern Vanuatu subduction zone: tectonics, case study of the Matthew Island tsunami of 10 February 2021 and implication in regional hazard assessment
Detecting anomalous sea-level states in North Sea tide gauge data using an autoassociative neural network
Observations of extreme wave runup events on the US Pacific Northwest coast
Warning water level determination and its spatial distribution in coastal areas of China
A global open-source database of flood-protection levees on river deltas (openDELvE)
Hazard assessment and hydrodynamic, morphodynamic, and hydrological response to Hurricane Gamma and Hurricane Delta on the northern Yucatán Peninsula
Estimating dune erosion at the regional scale using a meta-model based on neural networks
Simulation of tsunami induced by a submarine landslide in a glaciomarine margin: the case of Storfjorden LS-1 (southwestern Svalbard Islands)
Multi-hazard analysis of flood and tsunamis on the western Mediterranean coast of Turkey
Importance of non-stationary analysis for assessing extreme sea levels under sea level rise
Wind-wave characteristics and extremes along the Emilia-Romagna coast
Partitioning the contributions of dependent offshore forcing conditions in the probabilistic assessment of future coastal flooding
Joint probability analysis of storm surge and wave caused by tropical cyclone for the estimation of protection standard: a case study on the eastern coast of the Leizhou Peninsula and Hainan Island of China
Identification and ranking of subaerial volcanic tsunami hazard sources in Southeast Asia
Modelling geographical and built-environment attributes as predictors of human vulnerability during tsunami evacuations: a multi-case-study and paths to improvement
Modelling the sequential earthquake–tsunami response of coastal road embankment infrastructure
Historical tsunamis of Taiwan in the 18th century: the 1781 Jiateng Harbor flooding and 1782 tsunami event
Multilevel multifidelity Monte Carlo methods for assessing uncertainty in coastal flooding
Reconstruction of wind and surge of the 1906 storm tide at the German North Sea coast
Developing a framework for the assessment of current and future flood risk in Venice, Italy
Storm surge hazard over Bengal delta: a probabilistic–deterministic modelling approach
Compound flood impact of water level and rainfall during tropical cyclone periods in a coastal city: the case of Shanghai
Generating reliable estimates of tropical-cyclone-induced coastal hazards along the Bay of Bengal for current and future climates using synthetic tracks
The role of heat wave events in the occurrence and persistence of thermal stratification in the southern North Sea
Tsunami hazard in Lombok and Bali, Indonesia, due to the Flores back-arc thrust
Real-time coastal flood hazard assessment using DEM-based hydrogeomorphic classifiers
Rapid tsunami force prediction by mode-decomposition-based surrogate modeling
Characteristics of two tsunamis generated by successive Mw 7.4 and Mw 8.1 earthquakes in the Kermadec Islands on 4 March 2021
Mesoscale simulation of typhoon-generated storm surge: methodology and Shanghai case study
Nearshore Tsunami amplitudes across the Maldives archipelago due to worst case seismic scenarios in the Indian Ocean
Submarine landslide source modeling using the 3D slope stability analysis method for the 2018 Palu, Sulawesi, tsunami
Characteristics and beach safety knowledge of beachgoers on unpatrolled surf beaches in Australia
Clare Lewis, Tim Smyth, David Williams, Jess Neumann, and Hannah Cloke
Nat. Hazards Earth Syst. Sci., 23, 2531–2546, https://doi.org/10.5194/nhess-23-2531-2023, https://doi.org/10.5194/nhess-23-2531-2023, 2023
Short summary
Short summary
Meteotsunami are globally occurring water waves initiated by atmospheric disturbances. Previous research has suggested that in the UK, meteotsunami are a rare phenomenon and tend to occur in the summer months. This article presents a revised and updated catalogue of 98 meteotsunami that occurred between 1750 and 2022. Results also demonstrate a larger percentage of winter events and a geographical pattern highlighting the
hotspotregions that experience these events.
Melissa Wood, Ivan D. Haigh, Quan Quan Le, Hung Nghia Nguyen, Hoang Ba Tran, Stephen E. Darby, Robert Marsh, Nikolaos Skliris, Joël J.-M. Hirschi, Robert J. Nicholls, and Nadia Bloemendaal
Nat. Hazards Earth Syst. Sci., 23, 2475–2504, https://doi.org/10.5194/nhess-23-2475-2023, https://doi.org/10.5194/nhess-23-2475-2023, 2023
Short summary
Short summary
We used a novel database of simulated tropical cyclone tracks to explore whether typhoon-induced storm surges present a future flood risk to low-lying coastal communities around the South China Sea. We found that future climate change is likely to change tropical cyclone behaviour to an extent that this increases the severity and frequency of storm surges to Vietnam, southern China, and Thailand. Consequently, coastal flood defences need to be reviewed for resilience against this future hazard.
Sang-Guk Yum, Moon-Soo Song, and Manik Das Adhikari
Nat. Hazards Earth Syst. Sci., 23, 2449–2474, https://doi.org/10.5194/nhess-23-2449-2023, https://doi.org/10.5194/nhess-23-2449-2023, 2023
Short summary
Short summary
This study performed analysis on typhoon-induced coastal morphodynamics for the Mokpo coast. Wetland vegetation was severely impacted by Typhoon Soulik, with 87.35 % of shoreline transects experiencing seaward migration. This result highlights the fact that sediment resuspension controls the land alteration process over the typhoon period. The land accretion process dominated during the pre- to post-typhoon periods.
Olle Räty, Marko Laine, Ulpu Leijala, Jani Särkkä, and Milla M. Johansson
Nat. Hazards Earth Syst. Sci., 23, 2403–2418, https://doi.org/10.5194/nhess-23-2403-2023, https://doi.org/10.5194/nhess-23-2403-2023, 2023
Short summary
Short summary
We studied annual maximum sea levels in the Finnish coastal region. Our aim was to better quantify the uncertainty in them compared to previous studies. Using four statistical models, we found out that hierarchical models, which shared information on sea-level extremes across Finnish tide gauges, had lower uncertainty in their results in comparison with tide-gauge-specific fits. These models also suggested that the shape of the distribution for extreme sea levels is similar on the Finnish coast.
Christian Ferrarin, Florian Pantillon, Silvio Davolio, Marco Bajo, Mario Marcello Miglietta, Elenio Avolio, Diego S. Carrió, Ioannis Pytharoulis, Claudio Sanchez, Platon Patlakas, Juan Jesús González-Alemán, and Emmanouil Flaounas
Nat. Hazards Earth Syst. Sci., 23, 2273–2287, https://doi.org/10.5194/nhess-23-2273-2023, https://doi.org/10.5194/nhess-23-2273-2023, 2023
Short summary
Short summary
The combined use of meteorological and ocean models enabled the analysis of extreme sea conditions driven by Medicane Ianos, which hit the western coast of Greece on 18 September 2020, flooding and damaging the coast. The large spread associated with the ensemble highlighted the high model uncertainty in simulating such an extreme weather event. The different simulations have been used for outlining hazard scenarios that represent a fundamental component of the coastal risk assessment.
Charline Dalinghaus, Giovanni Coco, and Pablo Higuera
Nat. Hazards Earth Syst. Sci., 23, 2157–2169, https://doi.org/10.5194/nhess-23-2157-2023, https://doi.org/10.5194/nhess-23-2157-2023, 2023
Short summary
Short summary
Wave setup is a critical component of coastal flooding. Consequently, understanding and being able to predict wave setup is vital to protect coastal resources and the population living near the shore. Here, we applied machine learning to improve the accuracy of present predictors of wave setup. The results show that the new predictors outperform existing formulas demonstrating the capability of machine learning models to provide a physically sound description of wave setup.
Ina Teutsch, Markus Brühl, Ralf Weisse, and Sander Wahls
Nat. Hazards Earth Syst. Sci., 23, 2053–2073, https://doi.org/10.5194/nhess-23-2053-2023, https://doi.org/10.5194/nhess-23-2053-2023, 2023
Short summary
Short summary
Rogue waves exceed twice the significant wave height. They occur more often than expected in the shallow waters off Norderney. When applying a nonlinear Fourier transform for the Korteweg–de Vries equation to wave data from Norderney, we found differences in the soliton spectra of time series with and without rogue waves. A strongly outstanding soliton in the spectrum indicated an enhanced probability for rogue waves. We could attribute spectral solitons to the measured rogue waves.
Philipp Heinrich, Stefan Hagemann, Ralf Weisse, Corinna Schrum, Ute Daewel, and Lidia Gaslikova
Nat. Hazards Earth Syst. Sci., 23, 1967–1985, https://doi.org/10.5194/nhess-23-1967-2023, https://doi.org/10.5194/nhess-23-1967-2023, 2023
Short summary
Short summary
High seawater levels co-occurring with high river discharges have the potential to cause destructive flooding. For the past decades, the number of such compound events was larger than expected by pure chance for most of the west-facing coasts in Europe. Additionally rivers with smaller catchments showed higher numbers. In most cases, such events were associated with a large-scale weather pattern characterized by westerly winds and strong rainfall.
Alexander Böhme, Birgit Gerkensmeier, Benedikt Bratz, Clemens Krautwald, Olaf Müller, Nils Goseberg, and Gabriele Gönnert
Nat. Hazards Earth Syst. Sci., 23, 1947–1966, https://doi.org/10.5194/nhess-23-1947-2023, https://doi.org/10.5194/nhess-23-1947-2023, 2023
Short summary
Short summary
External surges in the North Sea are caused by low-pressure cells travelling over the northeast Atlantic. They influence extreme water levels on the German coast and have to be considered in the design process of coastal defence structures. This study collects data about external surges from 1995–2020 and analyses their causes, behaviours and potential trends. External surges often occur less than 72 h apart, enabling a single storm surge to be influenced by more than one external surge.
Kenta Tozato, Shuji Moriguchi, Shinsuke Takase, Yu Otake, Michael R. Motley, Anawat Suppasri, and Kenjiro Terada
Nat. Hazards Earth Syst. Sci., 23, 1891–1909, https://doi.org/10.5194/nhess-23-1891-2023, https://doi.org/10.5194/nhess-23-1891-2023, 2023
Short summary
Short summary
This study presents a framework that efficiently investigates the optimal placement of facilities probabilistically based on advanced numerical simulation. Surrogate models for the numerical simulation are constructed using a mode decomposition technique. Monte Carlo simulations using the surrogate models are performed to evaluate failure probabilities. Using the results of the Monte Carlo simulations and the genetic algorithm, optimal placements can be investigated probabilistically.
Job C. M. Dullaart, Sanne Muis, Hans de Moel, Philip J. Ward, Dirk Eilander, and Jeroen C. J. H. Aerts
Nat. Hazards Earth Syst. Sci., 23, 1847–1862, https://doi.org/10.5194/nhess-23-1847-2023, https://doi.org/10.5194/nhess-23-1847-2023, 2023
Short summary
Short summary
Coastal flooding is driven by storm surges and high tides and can be devastating. To gain an understanding of the threat posed by coastal flooding and to identify areas that are especially at risk, now and in the future, it is crucial to accurately model coastal inundation and assess the coastal flood hazard. Here, we present a global dataset with hydrographs that represent the typical evolution of an extreme sea level. These can be used to model coastal inundation more accurately.
Elin Andrée, Jian Su, Morten Andreas Dahl Larsen, Martin Drews, Martin Stendel, and Kristine Skovgaard Madsen
Nat. Hazards Earth Syst. Sci., 23, 1817–1834, https://doi.org/10.5194/nhess-23-1817-2023, https://doi.org/10.5194/nhess-23-1817-2023, 2023
Short summary
Short summary
When natural processes interact, they may compound each other. The combined effect can amplify extreme sea levels, such as when a storm occurs at a time when the water level is already higher than usual. We used numerical modelling of a record-breaking storm surge in 1872 to show that other prior sea-level conditions could have further worsened the outcome. Our research highlights the need to consider the physical context of extreme sea levels in measures to reduce coastal flood risk.
Ekaterina Didenkulova, Ira Didenkulova, and Igor Medvedev
Nat. Hazards Earth Syst. Sci., 23, 1653–1663, https://doi.org/10.5194/nhess-23-1653-2023, https://doi.org/10.5194/nhess-23-1653-2023, 2023
Short summary
Short summary
The paper is dedicated to freak wave accidents which happened in the world ocean in 2005–2021 and that were described in mass media sources. The database accounts for 429 events, all of which resulted in ship or coastal and offshore structure damage and/or human losses. In agreement with each freak wave event, we put background wave and wind conditions extracted from the climate reanalysis ERA5. We analyse their statistics and discuss the favourable conditions for freak wave occurrence.
Havu Pellikka, Milla M. Johansson, Maaria Nordman, and Kimmo Ruosteenoja
Nat. Hazards Earth Syst. Sci., 23, 1613–1630, https://doi.org/10.5194/nhess-23-1613-2023, https://doi.org/10.5194/nhess-23-1613-2023, 2023
Short summary
Short summary
We explore the rate of past and future sea level rise at the Finnish coast, northeastern Baltic Sea, in 1901–2100. For this analysis, we use tide gauge observations, modelling results, and a probabilistic method to combine information from several sea level rise projections. We provide projections of local mean sea level by 2100 as probability distributions. The results can be used in adaptation planning in various sectors with different risk tolerance, e.g. land use planning or nuclear safety.
Carlos Corela, Afonso Loureiro, José Luis Duarte, Luis Matias, Tiago Rebelo, and Tiago Bartolomeu
Nat. Hazards Earth Syst. Sci., 23, 1433–1451, https://doi.org/10.5194/nhess-23-1433-2023, https://doi.org/10.5194/nhess-23-1433-2023, 2023
Short summary
Short summary
We show that ocean-bottom seismometers are controlled by bottom currents, but these are not always a function of the tidal forcing. Instead we suggest that the ocean bottom has a flow regime resulting from two possible contributions: the permanent low-frequency bottom current and the tidal current along the full tidal cycle, between neap and spring tides. In the short-period noise band the ocean current generates harmonic tremors that corrupt the dataset records.
Chen Chen, Charles Koll, Haizhong Wang, and Michael K. Lindell
Nat. Hazards Earth Syst. Sci., 23, 733–749, https://doi.org/10.5194/nhess-23-733-2023, https://doi.org/10.5194/nhess-23-733-2023, 2023
Short summary
Short summary
This paper uses empirical-data-based simulation to analyze how to evacuate efficiently from disasters. We find that departure delay time and evacuation decision have significant impacts on evacuation results. Evacuation results are more sensitive to walking speed, departure delay time, evacuation participation, and destinations than to other variables. This model can help authorities to prioritize resources for hazard education, community disaster preparedness, and resilience plans.
Ariadna Martín, Angel Amores, Alejandro Orfila, Tim Toomey, and Marta Marcos
Nat. Hazards Earth Syst. Sci., 23, 587–600, https://doi.org/10.5194/nhess-23-587-2023, https://doi.org/10.5194/nhess-23-587-2023, 2023
Short summary
Short summary
Tropical cyclones (TCs) are among the potentially most hazardous phenomena affecting the coasts of the Caribbean Sea. This work simulates the coastal hazards in terms of sea surface elevation and waves that originate through the passage of these events. A set of 1000 TCs have been simulated, obtained from a set of synthetic cyclones that are consistent with present-day climate. Given the large number of hurricanes used, robust values of extreme sea levels and waves are computed along the coasts.
An-Chi Cheng, Anawat Suppasri, Kwanchai Pakoksung, and Fumihiko Imamura
Nat. Hazards Earth Syst. Sci., 23, 447–479, https://doi.org/10.5194/nhess-23-447-2023, https://doi.org/10.5194/nhess-23-447-2023, 2023
Short summary
Short summary
Consecutive earthquakes occurred offshore of southern Taiwan on 26 December 2006. This event revealed unusual tsunami generation and propagation, as well as unexpected consequences for the southern Taiwanese coast (i.e., amplified waves and prolonged durations). This study aims to elucidate the source characteristics of the 2006 tsunami and the important behaviors responsible for tsunami hazards in Taiwan such as wave trapping and shelf resonance.
Jean Roger, Bernard Pelletier, Aditya Gusman, William Power, Xiaoming Wang, David Burbidge, and Maxime Duphil
Nat. Hazards Earth Syst. Sci., 23, 393–414, https://doi.org/10.5194/nhess-23-393-2023, https://doi.org/10.5194/nhess-23-393-2023, 2023
Short summary
Short summary
On 10 February 2021 a magnitude 7.7 earthquake occurring at the southernmost part of the Vanuatu subduction zone triggered a regional tsunami that was recorded on many coastal gauges and DART stations of the south-west Pacific region. Beginning with a review of the tectonic setup and its implication in terms of tsunami generation in the region, this study aims to show our ability to reproduce a small tsunami with different types of rupture models and to discuss a larger magnitude 8.2 scenario.
Kathrin Wahle, Emil V. Stanev, and Joanna Staneva
Nat. Hazards Earth Syst. Sci., 23, 415–428, https://doi.org/10.5194/nhess-23-415-2023, https://doi.org/10.5194/nhess-23-415-2023, 2023
Short summary
Short summary
Knowledge of what causes maximum water levels is often key in coastal management. Processes, such as storm surge and atmospheric forcing, alter the predicted tide. Whilst most of these processes are modeled in present-day ocean forecasting, there is still a need for a better understanding of situations where modeled and observed water levels deviate from each other. Here, we will use machine learning to detect such anomalies within a network of sea-level observations in the North Sea.
Chuan Li, H. Tuba Özkan-Haller, Gabriel García Medina, Robert A. Holman, Peter Ruggiero, Treena M. Jensen, David B. Elson, and William R. Schneider
Nat. Hazards Earth Syst. Sci., 23, 107–126, https://doi.org/10.5194/nhess-23-107-2023, https://doi.org/10.5194/nhess-23-107-2023, 2023
Short summary
Short summary
In this work, we examine a set of observed extreme, non-earthquake-related and non-landslide-related wave runup events. Runup events with similar characteristics have previously been attributed to trapped waves, atmospheric disturbances, and abrupt breaking of long waves. However, we find that none of these mechanisms were likely at work in the observations we examined. We show that instead, these runup events were more likely due to energetic growth of bound infragravity waves.
Shan Liu, Xianwu Shi, Qiang Liu, Jun Tan, Yuxi Sun, Qingrong Liu, and Haoshuang Guo
Nat. Hazards Earth Syst. Sci., 23, 127–138, https://doi.org/10.5194/nhess-23-127-2023, https://doi.org/10.5194/nhess-23-127-2023, 2023
Short summary
Short summary
This study proposes a quantitative method for the determination of warning water levels. The proposed method is a multidimensional scale, centered on the consideration of various factors that characterize various coastlines. The implications of our study are not only scientific, as we provide a method for water level determination that is rooted in the scientific method (and reproducible across various contexts beyond China), but they are also deeply practical.
Jaap H. Nienhuis, Jana R. Cox, Joey O'Dell, Douglas A. Edmonds, and Paolo Scussolini
Nat. Hazards Earth Syst. Sci., 22, 4087–4101, https://doi.org/10.5194/nhess-22-4087-2022, https://doi.org/10.5194/nhess-22-4087-2022, 2022
Short summary
Short summary
Humans build levees to protect themselves against floods. We need to know where they are to correctly predict flooding, for example from sea level rise. Here we have looked through documents to find levees, and checked that they exist using satellite imagery. We developed a global levee map, available at www.opendelve.eu, and we found that 24 % of people in deltas are protected by levees.
Alec Torres-Freyermuth, Gabriela Medellín, Jorge A. Kurczyn, Roger Pacheco-Castro, Jaime Arriaga, Christian M. Appendini, María Eugenia Allende-Arandía, Juan A. Gómez, Gemma L. Franklin, and Jorge Zavala-Hidalgo
Nat. Hazards Earth Syst. Sci., 22, 4063–4085, https://doi.org/10.5194/nhess-22-4063-2022, https://doi.org/10.5194/nhess-22-4063-2022, 2022
Short summary
Short summary
Barrier islands in tropical regions are prone to coastal flooding and erosion during hurricane events. The Yucatán coast was impacted by hurricanes Gamma and Delta. Inner shelf, coastal, and inland observations were acquired. Beach morphology changes show alongshore gradients. Flooding occurred on the back barrier due to heavy inland rain and the coastal aquifer's confinement. Modeling systems failed to reproduce the coastal hydrodynamic response due to uncertainties in the boundary conditions.
Panagiotis Athanasiou, Ap van Dongeren, Alessio Giardino, Michalis Vousdoukas, Jose A. A. Antolinez, and Roshanka Ranasinghe
Nat. Hazards Earth Syst. Sci., 22, 3897–3915, https://doi.org/10.5194/nhess-22-3897-2022, https://doi.org/10.5194/nhess-22-3897-2022, 2022
Short summary
Short summary
Sandy dunes protect the hinterland from coastal flooding during storms. Thus, models that can efficiently predict dune erosion are critical for coastal zone management and early warning systems. Here we develop such a model for the Dutch coast based on machine learning techniques, allowing for dune erosion estimations in a matter of seconds relative to available computationally expensive models. Validation of the model against benchmark data and observations shows good agreement.
María Teresa Pedrosa-González, José Manuel González-Vida, Jesús Galindo-Záldivar, Sergio Ortega, Manuel Jesús Castro, David Casas, and Gemma Ercilla
Nat. Hazards Earth Syst. Sci., 22, 3839–3858, https://doi.org/10.5194/nhess-22-3839-2022, https://doi.org/10.5194/nhess-22-3839-2022, 2022
Short summary
Short summary
The L-ML-HySEA (Landslide Multilayer Hyperbolic Systems and Efficient Algorithms) model of the tsunami triggered by the Storfjorden LS-1 landslide provides new insights into the sliding mechanism and bathymetry controlling the propagation, amplitude values and shoaling effects as well as coastal impact times. This case study provides new perspectives on tsunami hazard assessment in polar margins, where global climatic change and its related ocean warming may contribute to landslide trigger.
Cuneyt Yavuz, Kutay Yilmaz, and Gorkem Onder
Nat. Hazards Earth Syst. Sci., 22, 3725–3736, https://doi.org/10.5194/nhess-22-3725-2022, https://doi.org/10.5194/nhess-22-3725-2022, 2022
Short summary
Short summary
Even if the coincidence of flood and tsunami hazards may be experienced once in a blue moon, it should also be investigated due to the uncertainty of the time of occurrence of these natural hazards. The objective of this study is to reveal a statistical methodology to evaluate the aggregate potential hazard levels due to flood hazards with the presence of earthquake-triggered tsunamis. The proposed methodology is applied to Fethiye city, located on the Western Mediterranean coast of Turkey.
Damiano Baldan, Elisa Coraci, Franco Crosato, Maurizio Ferla, Andrea Bonometto, and Sara Morucci
Nat. Hazards Earth Syst. Sci., 22, 3663–3677, https://doi.org/10.5194/nhess-22-3663-2022, https://doi.org/10.5194/nhess-22-3663-2022, 2022
Short summary
Short summary
Extreme-event analysis is widely used to provide information for the design of coastal protection structures. Non-stationarity due to sea level rise can affect such estimates. Using different methods on a long time series of sea level data, we show that estimates of the magnitude of extreme events in the future can be inexact due to relative sea level rise. Thus, considering non-stationarity is important when analyzing extreme-sea-level events.
Umesh Pranavam Ayyappan Pillai, Nadia Pinardi, Ivan Federico, Salvatore Causio, Francesco Trotta, Silvia Unguendoli, and Andrea Valentini
Nat. Hazards Earth Syst. Sci., 22, 3413–3433, https://doi.org/10.5194/nhess-22-3413-2022, https://doi.org/10.5194/nhess-22-3413-2022, 2022
Short summary
Short summary
The study presents the application of high-resolution coastal modelling for wave hindcasting on the Emilia-Romagna coastal belt. The generated coastal databases which provide an understanding of the prevailing wind-wave characteristics can aid in predicting coastal impacts.
Jeremy Rohmer, Deborah Idier, Remi Thieblemont, Goneri Le Cozannet, and François Bachoc
Nat. Hazards Earth Syst. Sci., 22, 3167–3182, https://doi.org/10.5194/nhess-22-3167-2022, https://doi.org/10.5194/nhess-22-3167-2022, 2022
Short summary
Short summary
We quantify the influence of wave–wind characteristics, offshore water level and sea level rise (projected up to 2200) on the occurrence of flooding events at Gâvres, French Atlantic coast. Our results outline the overwhelming influence of sea level rise over time compared to the others. By showing the robustness of our conclusions to the errors in the estimation procedure, our approach proves to be valuable for exploring and characterizing uncertainties in assessments of future flooding.
Zhang Haixia, Cheng Meng, and Fang Weihua
EGUsphere, https://doi.org/10.5194/egusphere-2022-847, https://doi.org/10.5194/egusphere-2022-847, 2022
Short summary
Short summary
Quantitatively estimating combined hazard provides guidance for disaster prevention, mitigation. The GEV and Gumbel copula function are suitable for fitting the marginal and joint distribution characteristics in this study area. When one variable is constant, the simultaneous, joint, and conditional risk probability tends to decrease as the other variable increases. We can estimate the optimal design criteria for different joint return periods by the constraint condition and objective functions.
Edgar U. Zorn, Aiym Orynbaikyzy, Simon Plank, Andrey Babeyko, Herlan Darmawan, Ismail Fata Robbany, and Thomas R. Walter
Nat. Hazards Earth Syst. Sci., 22, 3083–3104, https://doi.org/10.5194/nhess-22-3083-2022, https://doi.org/10.5194/nhess-22-3083-2022, 2022
Short summary
Short summary
Tsunamis caused by volcanoes are a challenge for warning systems as they are difficult to predict and detect. In Southeast Asia there are many active volcanoes close to the coast, so it is important to identify the most likely volcanoes to cause tsunamis in the future. For this purpose, we developed a point-based score system, allowing us to rank volcanoes by the hazard they pose. The results may be used to improve local monitoring and preparedness in the affected areas.
Jorge León, Alejandra Gubler, and Alonso Ogueda
Nat. Hazards Earth Syst. Sci., 22, 2857–2878, https://doi.org/10.5194/nhess-22-2857-2022, https://doi.org/10.5194/nhess-22-2857-2022, 2022
Short summary
Short summary
Our research focuses on how the geophysical characteristics of coastal cities can determine evacuees' vulnerability during a tsunami evacuation. We identify, analyse, and rank some of those essential characteristics by examining seven case studies in Chile through computer-based inundation, evacuation, and statistical regressive modelling. These results could lead to urban planning guidelines to enhance future evacuations and increase resilience to global tsunamis.
Azucena Román-de la Sancha, Rodolfo Silva, Omar S. Areu-Rangel, Manuel Gerardo Verduzco-Zapata, Edgar Mendoza, Norma Patricia López-Acosta, Alexandra Ossa, and Silvia García
Nat. Hazards Earth Syst. Sci., 22, 2589–2609, https://doi.org/10.5194/nhess-22-2589-2022, https://doi.org/10.5194/nhess-22-2589-2022, 2022
Short summary
Short summary
Transport networks in coastal urban areas are vulnerable to seismic events, with damage likely due to both ground motions and tsunami loading. The paper presents an approach that captures the earthquake–tsunami effects on transport infrastructure in a coastal area, taking into consideration the combined strains of the two events. The model is applied to a case in Manzanillo, Mexico, using ground motion records of the 1995 earthquake–tsunami event.
Tien-Chi Liu, Tso-Ren Wu, and Shu-Kun Hsu
Nat. Hazards Earth Syst. Sci., 22, 2517–2530, https://doi.org/10.5194/nhess-22-2517-2022, https://doi.org/10.5194/nhess-22-2517-2022, 2022
Short summary
Short summary
The findings from historical reports and numerical studies suggest the 1781 Jiateng Harbor flooding and the 1782 tsunami should be two independent incidents. Local tsunamis generated in southwest Taiwan could be responsible for the 1781 flooding, while the existence of the 1782 tsunami remains doubtful. With the documents of a storm event on 22 May 1782, the possibility that the significant water level of the 1782 tsunami was caused by storm surges or multiple hazards could not be ignored.
Mariana C. A. Clare, Tim W. B. Leijnse, Robert T. McCall, Ferdinand L. M. Diermanse, Colin J. Cotter, and Matthew D. Piggott
Nat. Hazards Earth Syst. Sci., 22, 2491–2515, https://doi.org/10.5194/nhess-22-2491-2022, https://doi.org/10.5194/nhess-22-2491-2022, 2022
Short summary
Short summary
Assessing uncertainty is computationally expensive because it requires multiple runs of expensive models. We take the novel approach of assessing uncertainty from coastal flooding using a multilevel multifidelity (MLMF) method which combines the efficiency of less accurate models with the accuracy of more expensive models at different resolutions. This significantly reduces the computational cost but maintains accuracy, making previously unfeasible real-world studies possible.
Elke Magda Inge Meyer, Ralf Weisse, Iris Grabemann, Birger Tinz, and Robert Scholz
Nat. Hazards Earth Syst. Sci., 22, 2419–2432, https://doi.org/10.5194/nhess-22-2419-2022, https://doi.org/10.5194/nhess-22-2419-2022, 2022
Short summary
Short summary
The severe storm tide of 13 March 1906 is still one of the most severe storm events for the East Frisian coast. Water levels from this event are considered for designing dike lines. For the first time, we investigate this event with a hydrodynamic model by forcing with atmospheric data from 147 ensemble members from century reanalysis projects and a manual reconstruction of the synoptic situation. Water levels were notably high due to a coincidence of high spring tides and high surge.
Julius Schlumberger, Christian Ferrarin, Sebastiaan N. Jonkman, Manuel Andres Diaz Loaiza, Alessandro Antonini, and Sandra Fatorić
Nat. Hazards Earth Syst. Sci., 22, 2381–2400, https://doi.org/10.5194/nhess-22-2381-2022, https://doi.org/10.5194/nhess-22-2381-2022, 2022
Short summary
Short summary
Flooding has serious impacts on the old town of Venice. This paper presents a framework combining a flood model with a flood-impact model to support improving protection against future floods in Venice despite the recently built MOSE barrier. Applying the framework to seven plausible flood scenarios, it was found that individual protection has a significant damage-mediating effect if the MOSE barrier does not operate as anticipated. Contingency planning thus remains important in Venice.
Md Jamal Uddin Khan, Fabien Durand, Kerry Emanuel, Yann Krien, Laurent Testut, and A. K. M. Saiful Islam
Nat. Hazards Earth Syst. Sci., 22, 2359–2379, https://doi.org/10.5194/nhess-22-2359-2022, https://doi.org/10.5194/nhess-22-2359-2022, 2022
Short summary
Short summary
Cyclonic storm surges constitute a major threat to lives and properties along the vast coastline of the Bengal delta. From a combination of cyclone and storm surge modelling, we present a robust probabilistic estimate of the storm surge flooding hazard under the current climate. The estimated extreme water levels vary regionally, and the inland flooding is strongly controlled by the embankments. More than 1/10 of the coastal population is currently exposed to 50-year return period flooding.
Hanqing Xu, Zhan Tian, Laixiang Sun, Qinghua Ye, Elisa Ragno, Jeremy Bricker, Ganquan Mao, Jinkai Tan, Jun Wang, Qian Ke, Shuai Wang, and Ralf Toumi
Nat. Hazards Earth Syst. Sci., 22, 2347–2358, https://doi.org/10.5194/nhess-22-2347-2022, https://doi.org/10.5194/nhess-22-2347-2022, 2022
Short summary
Short summary
A hydrodynamic model and copula methodology were used to set up a joint distribution of the peak water level and the inland rainfall during tropical cyclone periods, and to calculate the marginal contributions of the individual drivers. The results indicate that the relative sea level rise has significantly amplified the peak water level. The astronomical tide is the leading driver, followed by the contribution from the storm surge.
Tim Willem Bart Leijnse, Alessio Giardino, Kees Nederhoff, and Sofia Caires
Nat. Hazards Earth Syst. Sci., 22, 1863–1891, https://doi.org/10.5194/nhess-22-1863-2022, https://doi.org/10.5194/nhess-22-1863-2022, 2022
Short summary
Short summary
Deriving reliable estimates of design conditions resulting from tropical cyclones is a challenge of high relevance to coastal engineering. Here, having few historical observations is overcome by using the Tropical Cyclone Wind Statistical Estimation Tool (TCWiSE) to create thousands of synthetic realizations, representative of 1000 years of tropical cyclone activity for the Bay of Bengal. The use of synthetic tracks is shown to provide more reliable wind speed, storm surge and wave estimates.
Wei Chen, Joanna Staneva, Sebastian Grayek, Johannes Schulz-Stellenfleth, and Jens Greinert
Nat. Hazards Earth Syst. Sci., 22, 1683–1698, https://doi.org/10.5194/nhess-22-1683-2022, https://doi.org/10.5194/nhess-22-1683-2022, 2022
Short summary
Short summary
This study links the occurrence and persistence of density stratification in the southern North Sea to the increased number of extreme marine heat waves. The study further identified the role of the cold spells at the early stage of a year to the intensity of thermal stratification in summer. In a broader context, the research will have fundamental significance for further discussion of the secondary effects of heat wave events, such as in ecosystems, fisheries, and sediment dynamics.
Raquel P. Felix, Judith A. Hubbard, Kyle E. Bradley, Karen H. Lythgoe, Linlin Li, and Adam D. Switzer
Nat. Hazards Earth Syst. Sci., 22, 1665–1682, https://doi.org/10.5194/nhess-22-1665-2022, https://doi.org/10.5194/nhess-22-1665-2022, 2022
Short summary
Short summary
The Flores Thrust lies along the north coasts of Bali and Lombok. We model how an earthquake on this fault could trigger a tsunami that would impact the regional capital cities of Mataram and Denpasar. We show that for 3–5 m of slip on the fault (a Mw 7.5–7.9+ earthquake), the cities would experience a wave ca. 1.6–2.7 and ca. 0.6–1.4 m high, arriving in < 9 and ca. 23–27 min, respectively. They would also experience subsidence of 20–40 cm, resulting in long-term exposure to coastal hazards.
Keighobad Jafarzadegan, David F. Muñoz, Hamed Moftakhari, Joseph L. Gutenson, Gaurav Savant, and Hamid Moradkhani
Nat. Hazards Earth Syst. Sci., 22, 1419–1435, https://doi.org/10.5194/nhess-22-1419-2022, https://doi.org/10.5194/nhess-22-1419-2022, 2022
Short summary
Short summary
The high population settled in coastal regions and the potential damage imposed by coastal floods highlight the need for improving coastal flood hazard assessment techniques. This study introduces a topography-based approach for rapid estimation of flood hazard areas in the Savannah River delta. Our validation results demonstrate that, besides the high efficiency of the proposed approach, the estimated areas accurately overlap with reference flood maps.
Kenta Tozato, Shinsuke Takase, Shuji Moriguchi, Kenjiro Terada, Yu Otake, Yo Fukutani, Kazuya Nojima, Masaaki Sakuraba, and Hiromu Yokosu
Nat. Hazards Earth Syst. Sci., 22, 1267–1285, https://doi.org/10.5194/nhess-22-1267-2022, https://doi.org/10.5194/nhess-22-1267-2022, 2022
Short summary
Short summary
This study presents a novel framework for rapid tsunami force predictions through the application of mode-decomposition-based surrogate modeling with 2D–3D coupled numerical simulations. A numerical example is presented to demonstrate the applicability of the proposed framework to one of the tsunami-affected areas during the Great East Japan Earthquake of 2011.
Yuchen Wang, Mohammad Heidarzadeh, Kenji Satake, and Gui Hu
Nat. Hazards Earth Syst. Sci., 22, 1073–1082, https://doi.org/10.5194/nhess-22-1073-2022, https://doi.org/10.5194/nhess-22-1073-2022, 2022
Short summary
Short summary
Tsunami waveforms contain the features of its source, propagation path, and local topography. On 4 March 2021, two tsunamis were generated by earthquakes in the Kermadec Islands, New Zealand, within 2 h. This rare case gives us a valuable opportunity to study the characteristics of two tsunamis. We analyzed the records of two tsunamis at tide gauges with spectral analysis tools. It is found that two tsunamis superpose during the few hours after the arrival of the second tsunami.
Shuyun Dong, Wayne J. Stephenson, Sarah Wakes, Zhongyuan Chen, and Jianzhong Ge
Nat. Hazards Earth Syst. Sci., 22, 931–945, https://doi.org/10.5194/nhess-22-931-2022, https://doi.org/10.5194/nhess-22-931-2022, 2022
Short summary
Short summary
Mesoscale simulation provides a general approach that could be implemented to fulfill the purpose of planning and has relatively low requirements for computation time and data while still providing reasonable accuracy. The method is generally applicable to all coastal cities around the world for examining the effect of future climate change on typhoon-generated storm surge even where historical observed data are inadequate or not available.
Shuaib Rasheed, Simon C. Warder, Yves Plancherel, and Matthew D. Piggott
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-95, https://doi.org/10.5194/nhess-2022-95, 2022
Revised manuscript accepted for NHESS
Short summary
Short summary
Here we use a high resolution bathymetry dataset of the Maldives archipelago, and corresponding high numerical model resolution, to carry out a scenario-based tsunami hazard assessment for the entire Maldives archipelago to investigate the potential impact of plausible far-field tsunamis across the Indian Ocean at the island scale. The results indicate that seeveral factors contribute to mitigating and amplifying tsunami waves at the island scale.
Chatuphorn Somphong, Anawat Suppasri, Kwanchai Pakoksung, Tsuyoshi Nagasawa, Yuya Narita, Ryunosuke Tawatari, Shohei Iwai, Yukio Mabuchi, Saneiki Fujita, Shuji Moriguchi, Kenjiro Terada, Cipta Athanasius, and Fumihiko Imamura
Nat. Hazards Earth Syst. Sci., 22, 891–907, https://doi.org/10.5194/nhess-22-891-2022, https://doi.org/10.5194/nhess-22-891-2022, 2022
Short summary
Short summary
The majority of past research used hypothesized landslides to simulate tsunamis, but they were still unable to properly explain the observed data. In this study, submarine landslides were simulated by using a slope-failure-theory-based numerical model for the first time. The findings were verified with post-event field observational data. They indicated the potential presence of submarine landslide sources in the southern part of the bay and were consistent with the observational tsunamis.
Lea Uebelhoer, William Koon, Mitchell D. Harley, Jasmin C. Lawes, and Robert W. Brander
Nat. Hazards Earth Syst. Sci., 22, 909–926, https://doi.org/10.5194/nhess-22-909-2022, https://doi.org/10.5194/nhess-22-909-2022, 2022
Short summary
Short summary
Beachgoers at unpatrolled Australian beaches were surveyed to gain an understanding of their demographics, beach safety knowledge, and behaviour. Most visited unpatrolled beaches out of convenience and because they wanted to visit a quiet location. Despite being infrequent beachgoers, with poor swimming and hazard identification skills, most intended to enter the water. Authorities should go beyond the
swim between the flagssafety message, as people will always swim at unpatrolled beaches.
Cited articles
Abadie, S., Morichon, D., Grilli, S., and Glockner, S.: Numerical simulation
of waves generated by landslides using a multiple-fluid Navier-Stokes model,
Coastal Eng., 57, 779–794, 2010.
Bosa, S. and Petti, M.: Shallow water numerical model of the wave generated
by the Vajont landslide, Environ. Model. Softw., 26, 406–418,
https://doi.org/10.1016/j.envsoft.2010.10.001, 2011.
Clous, L. and Abadie, S.: Simulation of energy transfers 935 in waves
generated by granular slides, Landslides, 16, 1663–1679,, 2019.
Enet, F. and Grilli, S. T.: Experimental study of tsunami generation by
three-dimensional rigid underwater landslide, J. Waterw. Port Coast.,
133, 442–454, https://doi.org/10.1061/(ASCE)0733-950X(2007)133:6(442),
2007.
Fischer, J. T., Kowalski, J., and Pudasaini, S. P.: Topographic curvature
effects in applied avalanche modeling, Cold Reg. Sci. Technol., 74, 21–30,
https://doi.org/10.1016/j.coldregions.2012.01.005, 2012.
Franz, M., Podladchikov, Y., Jaboyedoff, M., and Derron, M.-H.:
Landslide-triggered tsunami modelling in alpine lakes, in: International
Conference Vajont 1963–2013. Thoughts and analyses after 50 years since the
catastrophic landslide, edited by: Genevois, R. and Prestininzi, A., Italian
Journal of Engineering Geology and Environment – Book Series, Sapienza
Università Editrice, Rome, Italy, 409–416,
https://doi.org/10.4408/IJEGE.2013-06.B-39, 2013.
Franz, M., Jaboyedoff, J., Podladchikov, Y., and Locat, J.: Testing a
landslide-generated tsunami model. The case of the Nicolet Landslide
(Québec, Canada), in: Proceeding of the 68th Canadian Geotechnical
Conf., GEOQuébec 2015, Québec City, Canada, 20–23 September 2015, ID: PAP711, 2015.
Franz, M., Carrea, D., Abellán., A., Derron, M.-H., and Jaboyedoff, M.:
Use of targets to track 3D displacements in highly vegetated areas affected
by landslide, Landslides, 13, 821–831,
https://doi.org/10.1007/s10346-016-0685-7, 2016.
Franz, M., Rudaz, B., Jaboyedoff, M., and Podladchikov, Y.: Fast assessment
of landslide-generated tsunami and associated risks by coupling SLBL with
shallow water model, in: Proceeding of the 69th Canadian Geotechnical
Conf., GEOVancouver 2016, Vancouver, Canada, 2–5 October 2016, ID: 003926, 2016.
Fritz, H. M.: Initial phase of landslide generated impulse waves, PhD thesis, ETH Zurich, Zurich, 2002.
Fritz, H. M., Hager, W. H., and Minor, H.-E.: Near field characteristics of
landslide generated impulse waves, J. Waterw. Port Coast., 130, 287–302,
2004.
Fritz, H. M., Mohammed, F., and Yoo, J.: Lituya Bay Landslide impact
generated mega-tsunami 50(th) anniversary, Pure Appl. Geophys., 166,
153–175, https://doi.org/10.1007/s00024-008-0435-4, 2009.
Ganerød, G. V., Grøneng, G., Rønning, J. S., Dalsegg, E., Elvebakk,
H., Tønnesen, J. F., Kveldsvik, V., Eiken, T., Blikra, L. H., and
Braathen, A.: Geological model of the Åknes rockslide, western Norway,
Eng. Geol., 102, 1–18, 2008.
Ghetti, A.: Esame sul modello degli effetti di un'eventuale frana nel
lago-serbatoio del Vajont. Istituto di Idraulica e Costruzioni Idrauliche
dell'Università di Padova. Centro modelli idraulici “E. Scimemi”,
S. A. D. E. Rapporto interno inedito, 12 pp., 14 fotographie, 2 tabelle, 8
tavole, Venezia, 1962 (in Italian).
Ghirotti, M., Masetti, D., Massironi, M., Oddone, E., Sapigni, M., Zampieri,
D., and Wolter, A.: The 1963 Vajont Landslide (Northeast Alps, Italy) –
Post-Conference Field trip (october 10th, 2013), in: International
Conference Vajont 1963–2013. Thoughts and analyses after 50 years since the
catastrophic landslide, edited by: Genevois, R. and Prestininzi, A., Italian
Journal of Engineering Geology and Environment – Book Series, Sapienza
Università Editrice, Rome, Italy, 2013.
Harbitz, C. B., Glimsdal, S., Løvholt, F., Kveldsvik, V., Pedersen, G.
K., and Jensen, A.: Rockslide tsunamis in complex fjords: From an unstable
rock slope at Åkerneset to tsunami risk in western Norway, Coast. Eng.,
88, 101–122, https://doi.org/10.1016/j.coastaleng.2014.02.003, 2014.
Heller, V.: Scale effects in physical hydraulic engineering models, J.
Hydraul. Res., 49, 293–306, 2011.
Heller, V. and Hager, W. H.: Impulse product parameter in landslide
generated impulse waves, J. Waterw. Port Coast., 136, 145–155, 2010.
Heller, V., Hager, W. H., and Minor, H.-E.: Landslide generated impulse
waves in reservoirs: Basics and computation, VAW Manual 4257, Laboratory of
Hydraulics, Hydrology and glaciology, ETHZ, Zürich, Switzerland, 172
pp., 2009.
Hungr, O. and Evans, S. G.: Rock avalanche runout prediction using dynamic
model, in: Proceedings of the 7th International Symposium on Landslides,
Trondheim, Norway, 17–21 June 1996, 233–238, 1996.
Hungr, O. and McDougall, S.: Two numerical models for landslide dynamic
analysis, Comput. Geosci., 35, 978–992,
https://doi.org/10.1016/j.cageo.2007.12.003, 2009.
Iverson R. M.: The Physics of debris flows, Rev. Geophys., 35, 245–296, https://doi.org/10.1029/97RG00426, 1997.
Iverson, R. M. and Denlinger, R. P.: Flow of variably fluidized granular masses across three‐dimensional terrain: 1. Coulomb mixture theory, J. Geophys. Res.-Sol. Ea., 106, 537–552, 2001.
Jaboyedoff, M., Demers, D., Locat, J., Locat, A., Locat, P., Oppikoffer, T.,
Robitaille, D., and Turmel, D.: Use of terrestrial laser scanning for the
characterization of retrogressive landslide in sensitive clay and rotational
landslides in river banks, Can. Geotech. J., 46, 1379–1390,
https://doi.org/10.1139/T09-073, 2009.
Kafle, J., Kattel, P., Mergili, M., Fischer, J. T., and Pudasaini, S. P.:
Dynamic response of submarine obstacles to two-phase landslide and tsunami
impact on reservoirs, Acta Mech., 230, 3143–3169, 2019.
Kamphuis, J. W. and Bowering, R. J.: Impulse waves generated by landslides,
in: Proceedings of the 12th International Conference on Coastal Engineering, 13–18 September 1970, Washington, D.C., United States, 575–588, 1970.
Kelfoun, K.: Suitability of simple rheological laws for the numerical
simulation of dense pyroclastic flows and long-runout volcanic avalanches,
J. Geophys. Res., 116, B08209, https://doi.org/10.1029/2010JB007622, 2011.
Kelfoun, K., Giachetti, T., and Lazabazuy, P.: Landslide-generated tsunami
at Réunion Island, J. Geophys. Res., 115, F04012, https://doi.org/10.1029/2009JF001381, 2010.
Kim, G.-B., Cheng, W., Sunny, R. C., Horrillo, J. J., McFall, B. C.,
Mohammed, F., Fritz, H. M., Beget, J., and Kowalik, Z.: Three dimensional
landslide generated tsunamis: numerical and physical model comparison,
Landslides, 17, 1145–1161, https://doi.org/10.1007/s10346-019-01308-2, 2020.
Kremer, K., Simpson, G., and Girardclos, S.: Giant Lake Geneva tsunami in AD
563, Nat. Geosci., 5, 756–757, https://doi.org/10.1038/ngeo1618, 2012.
Kremer, K., Marillier, F., Hilbe, M., Simpson, G., Dupuy, D., Yrro, B. J.,
Rachoud-Schneider, A.-M., Corboud, P., Bellwald, B., and Wildi, W.: Lake
dwellers occupation gap in Lake Geneva (France–Switzerland) possibly
explained by an earthquake–mass movement–tsunami event during Early Bronze
Age, Earth. Planet. Sc. Lett., 385, 28–39,
https://doi.org/10.1016/j.epsl.2013.09.017, 2014.
Lacasse, S., Eidsvig, U., Nadim, F., Høeg, K., and Blikra, L. H.: Event
tree analysis of Åknes rock slide hazard, in: Proceedings of the 4th
Canadian Conference on Geohazards, Université Laval, Québec City,
Canada, 20–24 May 2008, 2008.
L'Heureux, J.-S., Eilertsen, R. S., Glimsdal, S., Issler, D., Solberg,
I.-L., and Harbitz, C. B.: The 1978 quick clay landslide at Rissa, mid
Norway: subaqueous morphology and tsunami simulations, in: Submarine Mass
Movements and Their Consequences, edited by: Yamada, Y., Kawamura, K.,
Ikehara, K., Ogawa, Y., Urgeles, R., Mosher, D., Chaytor, J., and Strasser,
M., Springer, vol. 31, Springer, Dordrecht, 507–516, 2012.
Longchamp, C., Caspar, O., Jaboyedoff, M., and Podlachikov, Y.: Saint-Venant
equations and friction law for modelling self-channeling granular flows:
from analogue to numerical simulation, Appl. Math., 6, 1161–1173,
https://doi.org/10.4236/am.2015.67106, 2015.
Løvholt, F., Lynett, P., and Pedersen, G.: Simulating run-up on steep slopes with operational Boussinesq models; capabilities, spurious effects and instabilities, Nonlin. Processes Geophys., 20, 379–395, https://doi.org/10.5194/npg-20-379-2013, 2013.
Løvholt, F., Glimsdal, S., Lynett, P., and Pedersen, G.: Simulating tsunami propagation in fjords with long-wave models, Nat. Hazards Earth Syst. Sci., 15, 657–669, https://doi.org/10.5194/nhess-15-657-2015, 2015.
Lui, P. L. F., Wu, T. R., Raichlen, F., Synolakis, C. E., and Borrero, J.
C.: Runup and rundown generated by three-dimensional sliding masses, J.
Fluid Mech., 536:107-144, 2005.
Ma, G., Kirby, J. T., Hsu, T.-J., and Shi, F.: A two-layer granular
landslide model for tsunami wave generation: Theory and computation, Ocean
Model., 93, 40–55, 2015.
Mandli, K. T.: A numerical method for the two layer shallow water equations
with dry states, Ocean Model., 72, 80–91, 2013.
Marras, S. and Mandli, K. T.: Modeling and simulation of tsunami impact: a
short review of recent advances and future challenges, Geosciences, 11, 5,
https://doi.org/10.3390/geosciences11010005, 2021.
McDougall, S.: A new continuum dynamic model for the analysis of extremely
rapid landslide motion across complex 3D terrain, PhD thesis, University
of British Columbia, Vancouver, Canada, 2006.
Miller, G. S., Take, W. A., Mulligan, R. P., and McDougall, S.: Tsunami
generated by long and thin granular landslides in a large flume, J. Geophys.
Res.-Oceans, 122, 653–668, https://doi.org/10.1002/2016JC012177, 2017.
Mulligan, R. P., Take, W. A., and Miller, G. S.: Propagation and runup of
tsunami generated by gravitationally accelerated granular landslides, in:
Proceeding of the 6th International Conference on the Application of
Physical Modelling in Coastal and Port Engineering and Science (Coastlab16),
International Association for Hydro-Environment Engineering and Research
(IAHR), Ottawa, Canada, 10–13 May 2016, 6 pp., 2016.
Pope, S. B.: Turbulent Flows, Cambridge University Press, Cambridge, UK, 771 pp., 2000.
Pouliquen, O. and Forterre, Y.: Friction law for dense granular flows:
application to the motion of a mass down a rough inclined plane, J. Fluid
Mech., 453, 133–151, 2001.
Pudasaini, S. P.: A general two-phase debris flow model, J. Geophys.
Res.-Earth, 117, F03010, https://doi.org/10.1029/2011JF002186, 2012.
Pudasaini, S. P. and Hutter, K.: Avalanche Dynamics: Dynamics of
rapid flows of dense granular avalanches, Springer Science & Business
Media, Berlin, Heidelberg, Germany, 2007.
Pudasaini, S. P. and Krautblatter, M.: A two-phase mechanical model for
rock-ice avalanches, J. Geophys. Res.-Earth, 119, 2272–2290,
https://doi.org/10.1002/2014JF003183, 2014.
Roberts, N. J., McKillop, R. J., Lawrence, M. S., Psutka J. F., Clague, J.
J., Brideau, M.-A., and Ward, B. C.: Impact of the 2007 landslide-generated
tsunami in Chehalis Lake, Canada, in: Landslide science and practice, edited
by: Margottini, C., Canuti, P., and Sassa, K., Springer, Berlin, Heidelberg,
Germany, 133–140, https://doi.org/10.1007/978-3-642-31319-6_19, 2013.
Ruffini, G., Heller, V., and Briganti, R.: Numerical modelling of
landslide-tsunami propagation in a wide range of idealised water body
geometries, Coastal Eng., 153, 103518, https://doi.org/10.1016/j.coastaleng.2019.103518, 2019.
Schnellmann, M., Anselmetti, F. S., Giardini, D., and McKenzie, J. A.:
15,000 Years of mass-movement history in Lake Lucerne: Implications for
seismic and tsunami hazards, Eclogae Geol. Helv., 99, 409–428, 2006.
Simpson, G. and Castelltort, S.: Coupled model of surface water flow,
sediment transport and morphological evolution, Comput. Geosci., 32,
1600–1614, 2006.
Skvortsov, A.: Numerical simulation of landslide-generated tsunamis with
application to the 1975 failure in Kitimat Arm, British Columbia, Canada,
MSc. thesis, University of Victoria, Victoria, Canada, 2005.
Slingerland, R. L. and Voight, B.: Occurrences, properties, and predictive
models of landslide-generated water waves, in: Rockslides and avalanches, 2:
Engineering sites, Developments in Geotechnical Engineering vol. 14B, edited
by: Voight, B., Elsevier, Amsterdam, the Netherlands, 317–394, 1979.
Tappin, D. R., Watts, P., and Grilli, S. T.: The Papua New Guinea tsunami of 17 July 1998: anatomy of a catastrophic event, Nat. Hazards Earth Syst. Sci., 8, 243–266, https://doi.org/10.5194/nhess-8-243-2008, 2008.
Tan, H., Ruffini, G., Heller, V., and Chen, S.: A numerical
landslide-tsunami hazard assessment technique applied on hypothetical
scenarios at Es Vedrà, offshore Ibiza, J. Mar. Sci. Eng., 6, 1–22, 2018.
Tinti, S. and Tonini, R.: The UBO-TSUFD tsunami inundation model: validation and application to a tsunami case study focused on the city of Catania, Italy, Nat. Hazards Earth Syst. Sci., 13, 1795–1816, https://doi.org/10.5194/nhess-13-1795-2013, 2013.
Tinti, S., Pagnoni, G., and Zaniboni, F.: The landslides and tsunamis of the
30th of December 2002 in Stromboli analysed through numerical simulations,
B. Volcanol., 68, 462–479, 2006.
Tinti, S., Zaniboni, F., Pagnoni, G., and Manucci, A.: Stromboli Island
(Italy): Scenarios of tsunami generated by submarine landslide, Pure Appl.
Geophys., 165, 2143–2167, https://doi.org/10.1007/s00024-008-0420-y
2008.
Toro, E. F.: Shock-capturing methods for free-surface shallow flows, Wiley,
New York, 2001.
Turcotte, D. L. and Schubert, G.: Geodynamics, 2nd Edition,
Cambridge University Press, 472 pp., New York, USA, 2002.
Voellmy, A.: Uber die Zerstörungskraft von Lawinen, Schweizerische
Bauzeitung, 73, 212–285, 1955 (in German).
Ward, S. N. and Day, S.: The 1963 Landslide and Flood at Vaiont Reservoir
Italy. A tsunami ball simulation, Ital. J. Geosci., 130, 16–26,
https://doi.org/10.3301/IJG.2010.21, 2011.
Weiss, R., Fritz, H. M., and Wünnemann, K.: Hybrid modeling of the
mega-tsunami runup in Lituya Bay after half a century, Geophys. Res. Lett.,
36, L09602, https://doi.org/10.1029/2009GL037814, 2009.
Xiao, L., Ward, S., and Wang, J.: Tsunami squares approach to
landslide-generated waves: Application to Gongjiafang Landslide, Three
Gorges Reservoir, China, Pure Appl. Geophys., 172, 3639–3654, 2015.
Zweifel, A.: Impulswellen: Effecte der Rutschdichte und der Wassertiefe, PhD thesis, ETH Zurich, Zurich, 2004 (in German).
Short summary
A landslide-generated tsunami is a complex phenomenon that involves landslide dynamics, wave dynamics and their interaction. This phenomenon threatens numerous lives and infrastructures around the world. To assess this natural hazard, we developed an efficient numerical model able to simulate the landslide, the momentum transfer and the wave all at once. The good agreement between the numerical simulations and physical experiments validates our model and its novel momentum transfer approach.
A landslide-generated tsunami is a complex phenomenon that involves landslide dynamics, wave...
Altmetrics
Final-revised paper
Preprint