Articles | Volume 21, issue 4
https://doi.org/10.5194/nhess-21-1229-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-21-1229-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
An efficient two-layer landslide-tsunami numerical model: effects of momentum transfer validated with physical experiments of waves generated by granular landslides
Institute of Earth Sciences, University of Lausanne, Lausanne,
1015, Switzerland
Michel Jaboyedoff
Institute of Earth Sciences, University of Lausanne, Lausanne,
1015, Switzerland
Ryan P. Mulligan
Department of Civil Engineering, Queen's University, Kingston, ON K7L 3N6, Ontario, Canada
Yury Podladchikov
Institute of Earth Sciences, University of Lausanne, Lausanne,
1015, Switzerland
W. Andy Take
Department of Civil Engineering, Queen's University, Kingston, ON K7L 3N6, Ontario, Canada
Related authors
No articles found.
Yury Alkhimenkov, Lyudmila Khakimova, and Yury Podladchikov
EGUsphere, https://doi.org/10.5194/egusphere-2024-3237, https://doi.org/10.5194/egusphere-2024-3237, 2024
Short summary
Short summary
This study examines stress drops and earthquake nucleation in elasto-plastic media using 2D simulations, highlighting the importance of high temporal and spatial resolutions in capturing stress evolution and strain fields. Stress drops reflect fault rupture mechanics and emulate earthquake behavior. The non-Gaussian distribution of stress drop amplitudes resembles "solid turbulence." Elasto-plastic models simulate key earthquake processes and could improve seismic hazard assessment.
Yury Alkhimenkov and Yury Y. Podladchikov
EGUsphere, https://doi.org/10.5194/egusphere-2024-3238, https://doi.org/10.5194/egusphere-2024-3238, 2024
Short summary
Short summary
This paper presents a rigorous derivation of Gassmann's equations, grounded in thermodynamic principles and conservation laws, addressing gaps and potential inconsistencies in the original formulation. It also explores Biot's poroelastic equations, demonstrating that Gassmann's equations are a specific case within Biot’s framework. The study affirms the robustness of Gassmann's equations when assumptions are met, and symbolic Maple routines are provided to ensure reproducibility of the results.
Laura L. Swatridge, Ryan P. Mulligan, Leon Boegman, and Shiliang Shan
Geosci. Model Dev., 17, 7751–7766, https://doi.org/10.5194/gmd-17-7751-2024, https://doi.org/10.5194/gmd-17-7751-2024, 2024
Short summary
Short summary
We develop an operational forecast system, Coastlines-LO, that can simulate water levels and surface waves in Lake Ontario driven by forecasts of wind speeds and pressure fields from an atmospheric model. The model has relatively low computational requirements, and results compare well with near-real-time observations, as well as with results from other existing forecast systems. Results show that with shorter forecast lengths, storm surge and wave predictions can improve in accuracy.
Yury Alkhimenkov and Yury Y. Podladchikov
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-160, https://doi.org/10.5194/gmd-2024-160, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
The Accelerated Pseudo-Transient (APT) method is an efficient way to solve partial differential equations, particularly well-suited for parallel computing. This paper explores the APT method's effectiveness in solving elastic, viscoelastic, and hydro-mechanical problems, focusing on quasi-static conditions in 1D, 2D, and 3D. The study examines the best numerical settings for fast and accurate solutions. The paper shows how the APT can handle complex problems in high-resolution models.
Charlotte Wolff, Marc-Henri Derron, Carlo Rivolta, and Michel Jaboyedoff
Geosci. Instrum. Method. Data Syst., 13, 225–248, https://doi.org/10.5194/gi-13-225-2024, https://doi.org/10.5194/gi-13-225-2024, 2024
Short summary
Short summary
The remote-sensing InSAR technique is vital for monitoring slope instabilities but requires understanding. This paper delves into differences between satellite and GB-InSAR. It offers a tool to determine the optimal GB-InSAR installation site, considering various technical, meteorological, and topographical factors. By generating detailed maps and simulating radar image characteristics, the tool eases the setup of monitoring campaigns for effective and accurate ground movement tracking.
Clément Hibert, François Noël, David Toe, Miloud Talib, Mathilde Desrues, Emmanuel Wyser, Ombeline Brenguier, Franck Bourrier, Renaud Toussaint, Jean-Philippe Malet, and Michel Jaboyedoff
Earth Surf. Dynam., 12, 641–656, https://doi.org/10.5194/esurf-12-641-2024, https://doi.org/10.5194/esurf-12-641-2024, 2024
Short summary
Short summary
Natural disasters such as landslides and rockfalls are mostly difficult to study because of the impossibility of making in situ measurements due to their destructive nature and spontaneous occurrence. Seismology is able to record the occurrence of such events from a distance and in real time. In this study, we show that, by using a machine learning approach, the mass and velocity of rockfalls can be estimated from the seismic signal they generate.
François Noël, Michel Jaboyedoff, Andrin Caviezel, Clément Hibert, Franck Bourrier, and Jean-Philippe Malet
Earth Surf. Dynam., 10, 1141–1164, https://doi.org/10.5194/esurf-10-1141-2022, https://doi.org/10.5194/esurf-10-1141-2022, 2022
Short summary
Short summary
Rockfall simulations are often performed to make sure infrastructure is safe. For that purpose, rockfall trajectory data are needed to calibrate the simulation models. In this paper, an affordable, flexible, and efficient trajectory reconstruction method is proposed. The method is tested by reconstructing trajectories from a full-scale rockfall experiment involving 2670 kg rocks and a flexible barrier. The results highlight improvements in precision and accuracy of the proposed method.
Ludovic Räss, Ivan Utkin, Thibault Duretz, Samuel Omlin, and Yuri Y. Podladchikov
Geosci. Model Dev., 15, 5757–5786, https://doi.org/10.5194/gmd-15-5757-2022, https://doi.org/10.5194/gmd-15-5757-2022, 2022
Short summary
Short summary
Continuum mechanics-based modelling of physical processes at large scale requires huge computational resources provided by massively parallel hardware such as graphical processing units. We present a suite of numerical algorithms, implemented using the Julia language, that efficiently leverages the parallelism. We demonstrate that our implementation is efficient, scalable and robust and showcase applications to various geophysical problems.
Shuqi Lin, Leon Boegman, Shiliang Shan, and Ryan Mulligan
Geosci. Model Dev., 15, 1331–1353, https://doi.org/10.5194/gmd-15-1331-2022, https://doi.org/10.5194/gmd-15-1331-2022, 2022
Short summary
Short summary
An operational hydrodynamics forecast system, COASTLINES, using the Windows Task Scheduler, Python, and MATLAB scripts, to automate application of a 3-D model (AEM3D) in Lake Erie was developed. The system predicted storm-surge and up-/downwelling events that are important for flood water and drinking water/fishery management. This example of the successful development of an operational forecast system can be adapted to simulate aquatic systems as required for management and public safety.
Emmanuel Wyser, Yury Alkhimenkov, Michel Jaboyedoff, and Yury Y. Podladchikov
Geosci. Model Dev., 14, 7749–7774, https://doi.org/10.5194/gmd-14-7749-2021, https://doi.org/10.5194/gmd-14-7749-2021, 2021
Short summary
Short summary
We propose an implementation of the material point method using graphical processing units (GPUs) to solve elastoplastic problems in three-dimensional configurations, such as the granular collapse or the slumping mechanics, i.e., landslide. The computational power of GPUs promotes fast code executions, compared to a traditional implementation using central processing units (CPUs). This allows us to study complex three-dimensional problems tackling high spatial resolution.
Negar Ghahramani, Andrew Mitchell, Nahyan M. Rana, Scott McDougall, Stephen G. Evans, and W. Andy Take
Nat. Hazards Earth Syst. Sci., 20, 3425–3438, https://doi.org/10.5194/nhess-20-3425-2020, https://doi.org/10.5194/nhess-20-3425-2020, 2020
Short summary
Short summary
Tailings flows result from the breach of tailings dams. These flows contain waste products of the mineral processing operations and can travel substantial distances, causing significant loss of life, environmental damage, and economic costs. This paper establishes a new tailings-flow runout classification system, describes a new database of events that have been mapped in detail using the new system, and examines the applicability of a semi-physical area–volume relationship using the new data.
Emmanuel Wyser, Yury Alkhimenkov, Michel Jaboyedoff, and Yury Y. Podladchikov
Geosci. Model Dev., 13, 6265–6284, https://doi.org/10.5194/gmd-13-6265-2020, https://doi.org/10.5194/gmd-13-6265-2020, 2020
Short summary
Short summary
In this work, we present an efficient and fast material point method (MPM) implementation in MATLAB. We first discuss the vectorization strategies to adapt this numerical method to a MATLAB implementation. We report excellent agreement of the solver compared with classical analysis among the MPM community, such as the cantilever beam problem. The solver achieves a performance gain of 28 compared with a classical iterative implementation.
Ludovic Räss, Aleksandar Licul, Frédéric Herman, Yury Y. Podladchikov, and Jenny Suckale
Geosci. Model Dev., 13, 955–976, https://doi.org/10.5194/gmd-13-955-2020, https://doi.org/10.5194/gmd-13-955-2020, 2020
Short summary
Short summary
Accurate predictions of future sea level rise require numerical models that predict rapidly deforming ice. Localised ice deformation can be captured numerically only with high temporal and spatial resolution. This paper’s goal is to propose a parallel FastICE solver for modelling ice deformation. Our model is particularly useful for improving our process-based understanding of localised ice deformation. Our solver reaches a parallel efficiency of 99 % on GPU-based supercomputers.
Martin Mergili, Michel Jaboyedoff, José Pullarello, and Shiva P. Pudasaini
Nat. Hazards Earth Syst. Sci., 20, 505–520, https://doi.org/10.5194/nhess-20-505-2020, https://doi.org/10.5194/nhess-20-505-2020, 2020
Short summary
Short summary
Computer simulations of complex landslide processes in mountain areas are important for informing risk management but are at the same time challenging in terms of parameterization and physical and numerical model implementation. Using the tool r.avaflow, we highlight the progress and the challenges with regard to such simulations on the example of the Piz Cengalo–Bondo landslide cascade in Switzerland, which started as an initial rockslide–rockfall and finally evolved into a debris flow.
Michel Jaboyedoff, Masahiro Chigira, Noriyuki Arai, Marc-Henri Derron, Benjamin Rudaz, and Ching-Ying Tsou
Earth Surf. Dynam., 7, 439–458, https://doi.org/10.5194/esurf-7-439-2019, https://doi.org/10.5194/esurf-7-439-2019, 2019
Short summary
Short summary
High-resolution digital elevation models (DEMs) can now be acquired using airborne laser scanners. This allows for a detailed analysis of the geometry of landslides. Several large landslides were triggered by Typhoon Talas in Japan in 2011. The comparison of pre- and post-DEMs allowed us to test a method of defining landslide failure surfaces before catastrophic movements. It provides new results about the curvature of the failure surface and the volume expansion of the deposit.
Jérémie Voumard, Antonio Abellán, Pierrick Nicolet, Ivanna Penna, Marie-Aurélie Chanut, Marc-Henri Derron, and Michel Jaboyedoff
Nat. Hazards Earth Syst. Sci., 17, 2093–2107, https://doi.org/10.5194/nhess-17-2093-2017, https://doi.org/10.5194/nhess-17-2093-2017, 2017
Short summary
Short summary
We discuss the challenges and limitations of surveying rock slope failures using 3-D reconstruction from images acquired from street view imagery (SVI) and processed with modern photogrammetric workflows. Despite some clear limitations and challenges, we demonstrate that this original approach could help obtain preliminary 3-D models of an area without on-field images. Furthermore, the pre-failure topography can be obtained for sites where it would not be available otherwise.
Antoine Guerin, Antonio Abellán, Battista Matasci, Michel Jaboyedoff, Marc-Henri Derron, and Ludovic Ravanel
Nat. Hazards Earth Syst. Sci., 17, 1207–1220, https://doi.org/10.5194/nhess-17-1207-2017, https://doi.org/10.5194/nhess-17-1207-2017, 2017
Short summary
Short summary
The coupling of terrestrial lidar scans acquired in 2011 and a photogrammetric model created from 30 old Web-retrieved images enabled reconstructing in 3-D the Drus west face before the 2005 rock avalanche and estimating the volume of this event. The volume is calculated as 292 680 m3 (±5.6 %). However, despite functioning well for the Drus (legendary peak), this method would have been difficult to implement on a less-well-known site with fewer images available to be collected and downloaded.
Pascal Horton, Charles Obled, and Michel Jaboyedoff
Hydrol. Earth Syst. Sci., 21, 3307–3323, https://doi.org/10.5194/hess-21-3307-2017, https://doi.org/10.5194/hess-21-3307-2017, 2017
Short summary
Short summary
The analogue method aims at forecasting precipitation by means of a statistical relationship with meteorological variables at a large scale, such as the general atmospheric circulation. A moving time window has been introduced here in order to allow finding better analogue situations at different hours of the day. This change resulted in a better analogy of the atmospheric circulation, with improved prediction skills, and even to a greater extent for days with heavy precipitation.
Ryan A. Kromer, Antonio Abellán, D. Jean Hutchinson, Matt Lato, Marie-Aurelie Chanut, Laurent Dubois, and Michel Jaboyedoff
Earth Surf. Dynam., 5, 293–310, https://doi.org/10.5194/esurf-5-293-2017, https://doi.org/10.5194/esurf-5-293-2017, 2017
Short summary
Short summary
We developed and tested an automated terrestrial laser scanning (ATLS) system with near-real-time change detection at the Séchilienne landslide. We monitored the landslide for a 6-week period collecting a point cloud every 30 min. We detected various slope processes including movement of scree material, pre-failure deformation of discrete rockfall events and deformation of the main landslide body. This system allows the study of slope processes a high level of temporal detail.
Roya Olyazadeh, Karen Sudmeier-Rieux, Michel Jaboyedoff, Marc-Henri Derron, and Sanjaya Devkota
Nat. Hazards Earth Syst. Sci., 17, 549–561, https://doi.org/10.5194/nhess-17-549-2017, https://doi.org/10.5194/nhess-17-549-2017, 2017
Short summary
Short summary
This work shows the progress and testing of an online–offline web-GIS application based on open-source technologies for landslide hazard and risk. It has satellite images as a base map in the offline mode and data collection in a centralized online database. The advantage of a mobile app coupled with satellite images over mapping in the office is improved identification of landslide type. This study was used for landslides in Nepal, but it can also be useful for other hazards like floods.
Zar Chi Aye, Roya Olyazadeh, Marc-Henri Derron, Michel Jaboyedoff, and Johann Lüthi
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2017-85, https://doi.org/10.5194/nhess-2017-85, 2017
Revised manuscript not accepted
Short summary
Short summary
In this paper, we present an open-source, web-GIS application (RISKGIS), developed for students learning in risk management of geohazards with real case studies. The aim is for students to better understand and become familiarized with approaches used by experts as well as for teachers to better evaluate and monitor student learning. A series of practical exercises is carried out with students and feedback are collected to identify the possibility and applicability of RISKGIS learning platform.
Jacques Bechet, Julien Duc, Alexandre Loye, Michel Jaboyedoff, Nicolle Mathys, Jean-Philippe Malet, Sébastien Klotz, Caroline Le Bouteiller, Benjamin Rudaz, and Julien Travelletti
Earth Surf. Dynam., 4, 781–798, https://doi.org/10.5194/esurf-4-781-2016, https://doi.org/10.5194/esurf-4-781-2016, 2016
Short summary
Short summary
This paper describes the erosion processes of a small black marl catchment. It is based on terrestrial laser scanner digital elevation model campaigns. A detailed sediment budget is performed, leading to a seasonal sediment transport pattern described spatially and temporally. The link with precipitation intensities and duration is analysed, leading to a conceptual model of erosion that provides clear input for future research regarding potential impacts of climate change on erosion processes.
Céline Longchamp, Antonio Abellan, Michel Jaboyedoff, and Irene Manzella
Earth Surf. Dynam., 4, 743–755, https://doi.org/10.5194/esurf-4-743-2016, https://doi.org/10.5194/esurf-4-743-2016, 2016
Short summary
Short summary
The main objective of this research is to analyze rock avalanche dynamics by means of a detailed structural analysis of the deposits coming from data of 3-D measurements. The studied deposits are of different magnitude: (1) decimeter level scale laboratory experiments and (2) well-studied rock avalanches.
Filtering techniques were developed and applied to a 3-D dataset in order to detect fault structures present in the deposits and to propose kinematic mechanisms for the propagation.
Alexandre Loye, Michel Jaboyedoff, Joshua Isaac Theule, and Frédéric Liébault
Earth Surf. Dynam., 4, 489–513, https://doi.org/10.5194/esurf-4-489-2016, https://doi.org/10.5194/esurf-4-489-2016, 2016
Short summary
Short summary
The sediment supply and storage changes from major channels of the Manival catchment (French Alps) were surveyed periodically for 16 months to study the coupling between sediment dynamics and torrent responses in terms of debris flow events. The spatial and seasonal variability of sediment delivery is displayed and analysed. This study shows that monitoring the changes within a torrent’s in-channel storage and its debris supply can improve knowledge on recharge thresholds leading to debris flow.
Pierrick Nicolet, Michel Jaboyedoff, Catherine Cloutier, Giovanni B. Crosta, and Sébastien Lévy
Nat. Hazards Earth Syst. Sci., 16, 995–1004, https://doi.org/10.5194/nhess-16-995-2016, https://doi.org/10.5194/nhess-16-995-2016, 2016
Short summary
Short summary
When calculating the risk of railway or road users being killed by a natural hazard, one has to calculate a temporal spatial probability, i.e. the probability of a vehicle being in the path of the falling mass when the mass falls, or the expected number of hit vehicles in the case of an event. This paper discusses different methods used to calculate this probability, in particular regarding the consideration of the dimensions of the falling mass and of the vehicles.
Julie D'Amato, Didier Hantz, Antoine Guerin, Michel Jaboyedoff, Laurent Baillet, and Armand Mariscal
Nat. Hazards Earth Syst. Sci., 16, 719–735, https://doi.org/10.5194/nhess-16-719-2016, https://doi.org/10.5194/nhess-16-719-2016, 2016
Short summary
Short summary
The influence of meteorological conditions on rockfall occurrence has been often highlighted, but quantitative analyses are rare. A near-continuous survey of a limestone cliff has shown that the rockfall frequency can be multiplied by 7 during freeze-thaw episodes and 26 when the mean rainfall intensity (since the beginning of the rainfall episode) is higher than 5 mm h−1. Based on these results, a three-level scale has been proposed for predicting the temporal variations of rockfall frequency.
Z. C. Aye, M. Jaboyedoff, M. H. Derron, C. J. van Westen, H. Y. Hussin, R. L. Ciurean, S. Frigerio, and A. Pasuto
Nat. Hazards Earth Syst. Sci., 16, 85–101, https://doi.org/10.5194/nhess-16-85-2016, https://doi.org/10.5194/nhess-16-85-2016, 2016
Short summary
Short summary
This paper presents the development and application of a prototype web-GIS tool for risk analysis, in particular for floods and landslides, based on open-source software and web technologies. The aim is to assist experts (risk managers) in analysing the impacts and consequences of a certain hazard event in a considered region, contributing to open-source and research community in natural hazards and risk assessment. The tool is demonstrated using a regional data set of Fella River basin, Italy.
J. Bechet, J. Duc, M. Jaboyedoff, A. Loye, and N. Mathys
Hydrol. Earth Syst. Sci., 19, 1849–1855, https://doi.org/10.5194/hess-19-1849-2015, https://doi.org/10.5194/hess-19-1849-2015, 2015
Short summary
Short summary
High-resolution three-dimensional point clouds are used to analyse erosion processes at the millimetre scale. The processes analysed here play a role in the closure of cracks. We demonstrated how micro-scale infiltration can influence the degradation of soil surface by inducing downward mass movements that are not reversible. This development will aid in designing future experiments to analyse processes such as swelling, crack closure, micro-landslides, etc.
A. Guerin, D. Hantz, J.-P. Rossetti, and M. Jaboyedoff
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhessd-2-123-2014, https://doi.org/10.5194/nhessd-2-123-2014, 2014
Revised manuscript not accepted
M. Böhme, M.-H. Derron, and M. Jaboyedoff
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhessd-2-81-2014, https://doi.org/10.5194/nhessd-2-81-2014, 2014
Revised manuscript not accepted
P. Nicolet, L. Foresti, O. Caspar, and M. Jaboyedoff
Nat. Hazards Earth Syst. Sci., 13, 3169–3184, https://doi.org/10.5194/nhess-13-3169-2013, https://doi.org/10.5194/nhess-13-3169-2013, 2013
J. Voumard, O. Caspar, M.-H. Derron, and M. Jaboyedoff
Nat. Hazards Earth Syst. Sci., 13, 2763–2777, https://doi.org/10.5194/nhess-13-2763-2013, https://doi.org/10.5194/nhess-13-2763-2013, 2013
P. Horton, M. Jaboyedoff, B. Rudaz, and M. Zimmermann
Nat. Hazards Earth Syst. Sci., 13, 869–885, https://doi.org/10.5194/nhess-13-869-2013, https://doi.org/10.5194/nhess-13-869-2013, 2013
Related subject area
Sea, Ocean and Coastal Hazards
Changing sea level, changing shorelines: integration of remote-sensing observations at the Terschelling barrier island
Regional modelling of extreme sea levels induced by hurricanes
New insights into combined surfzone, embayment, and estuarine bathing hazards
Dynamic projections of extreme sea levels for western Europe based on ocean and wind-wave modelling
Brief communication: From modelling to reality – flood modelling gaps highlighted by a recent severe storm surge event along the German Baltic Sea coast
Inundation and evacuation of shoreline populations during landslide-triggered tsunamis: an integrated numerical and statistical hazard assessment
Rapid simulation of wave runup on morphologically diverse, reef-lined coasts with the BEWARE-2 (Broad-range Estimator of Wave Attack in Reef Environments) meta-process model
A brief history of tsunamis in the Vanuatu Arc
Tsunami inundation and vulnerability analysis on the Makran coast, Pakistan
Influence of data source and copula statistics on estimates of compound flood extremes in a river mouth environment
Volcano tsunamis and their effects on moored vessel safety: the 2022 Tonga event
Modelling tsunami initial conditions due to rapid coseismic seafloor displacement: efficient numerical integration and a tool to build unit source databases
Review Article: A Comprehensive Review of Compound Flooding Literature with a Focus on Coastal and Estuarine Regions
Estuarine hurricane wind can intensify surge-dominated extreme water level in shallow and converging coastal systems
Revisiting regression methods for estimating long-term trends in sea surface temperature
Global application of a regional frequency analysis to extreme sea levels
Tsunami hazard assessment in the South China Sea based on geodetic locking of the Manila subduction zone
The impact of long-term changes in ocean waves and storm surge on coastal shoreline change: a case study of Bass Strait and south-east Australia
Brief communication: Implications of outstanding solitons for the occurrence of rogue waves at two additional sites in the North Sea
A systemic and comprehensive assessment of coastal hazard changes: method and application to France and its overseas territories
Simulating sea level extremes from synthetic low-pressure systems
Nonlinear processes in tsunami simulations for the Peruvian coast with focus on Lima and Callao
The potential of global coastal flood risk reduction using various DRR measures
Thresholds for estuarine compound flooding using a combined hydrodynamic–statistical modelling approach
Nearshore tsunami amplitudes across the Maldives archipelago due to worst-case seismic scenarios in the Indian Ocean
Evidence of Middle Holocene landslide-generated tsunamis recorded in lake sediments from Saqqaq, West Greenland
Investigation of historical severe storms and storm tides in the German Bight with century reanalysis data
Proposal for a new meteotsunami intensity index
Probabilistic Tsunami Hazard Analysis of Batukaras Village as a Tourism Village in Indonesia
Total water levels along the South Atlantic Bight during three along-shelf propagating tropical cyclones: relative contributions of storm surge and wave runup
Validated probabilistic approach to estimate flood direct impacts on the population and assets on European coastlines
Hurricane Irma: an unprecedented event over the last 3700 years? Geomorphological changes and sedimentological record in Codrington Lagoon, Barbuda
Bayesian extreme value analysis of extreme sea levels along the German Baltic coast using historical information
Storm characteristics influence nitrogen removal in an urban estuarine environment
A new European coastal flood database for low–medium intensity events
Boulder transport and wave height of a seventeenth-century South China Sea tsunami on Penghu Islands, Taiwan
A wave-resolving modeling study of rip current variability, rip hazard, and swimmer escape strategies on an embayed beach
Human displacements from Tropical Cyclone Idai attributable to climate change
Three decades of coastal subsidence in the slow-moving Nice Côte d'Azur Airport area (France) revealed by InSAR (interferometric synthetic-aperture radar): insights into the deformation mechanism
Modelling extreme water levels using intertidal topography and bathymetry derived from multispectral satellite images
Regional assessment of extreme sea levels and associated coastal flooding along the German Baltic Sea coast
Joint probability analysis of storm surges and waves caused by tropical cyclones for the estimation of protection standard: a case study on the eastern coast of the Leizhou Peninsula and the island of Hainan in China
Meteotsunami in the United Kingdom: the hidden hazard
Climate-induced storminess forces major increases in future storm surge hazard in the South China Sea region
Assessing Typhoon Soulik-induced morphodynamics over the Mokpo coastal region in South Korea based on a geospatial approach
Bayesian hierarchical modelling of sea-level extremes in the Finnish coastal region
Assessing the coastal hazard of Medicane Ianos through ensemble modelling
A predictive equation for wave setup using genetic programming
Contribution of solitons to enhanced rogue wave occurrence in shallow depths: a case study in the southern North Sea
Compound flood events: analysing the joint occurrence of extreme river discharge events and storm surges in northern and central Europe
Benedikt Aschenneller, Roelof Rietbroek, and Daphne van der Wal
Nat. Hazards Earth Syst. Sci., 24, 4145–4177, https://doi.org/10.5194/nhess-24-4145-2024, https://doi.org/10.5194/nhess-24-4145-2024, 2024
Short summary
Short summary
Shorelines retreat or advance in response to sea level changes, subsidence or uplift of the ground, and morphological processes (sedimentation and erosion). We show that the geometrical influence of each of these drivers on shoreline movements can be quantified by combining different remote sensing observations, including radar altimetry, lidar and optical satellite images. The focus here is to illustrate the uncertainties of these observations by comparing datasets that cover similar processes.
Alisée A. Chaigneau, Melisa Menéndez, Marta Ramírez-Pérez, and Alexandra Toimil
Nat. Hazards Earth Syst. Sci., 24, 4109–4131, https://doi.org/10.5194/nhess-24-4109-2024, https://doi.org/10.5194/nhess-24-4109-2024, 2024
Short summary
Short summary
Tropical cyclones drive extreme sea levels, causing large storm surges due to low atmospheric pressure and strong winds. This study explores factors affecting the numerical modelling of storm surges induced by hurricanes in the tropical Atlantic. Two ocean models are compared and used for sensitivity experiments. ERA5 atmospheric reanalysis forcing generally improves surge estimates compared to parametric wind models. Including ocean circulations reduces errors in surge estimates in some areas.
Christopher Stokes, Timothy Poate, Gerd Masselink, Tim Scott, and Steve Instance
Nat. Hazards Earth Syst. Sci., 24, 4049–4074, https://doi.org/10.5194/nhess-24-4049-2024, https://doi.org/10.5194/nhess-24-4049-2024, 2024
Short summary
Short summary
Currents at beaches with an estuary mouth have rarely been studied before. Using field measurements and computer modelling, we show that surfzone currents can be driven by both estuary flow and rip currents. We show that an estuary mouth beach can have flows reaching 1.5 m s−1 and have a high likelihood of taking bathers out of the surfzone. The river channels on the beach direct the flows, and even though they change position over time, it was possible to predict when peak hazards would occur.
Alisée A. Chaigneau, Angélique Melet, Aurore Voldoire, Maialen Irazoqui Apecechea, Guillaume Reffray, Stéphane Law-Chune, and Lotfi Aouf
Nat. Hazards Earth Syst. Sci., 24, 4031–4048, https://doi.org/10.5194/nhess-24-4031-2024, https://doi.org/10.5194/nhess-24-4031-2024, 2024
Short summary
Short summary
Climate-change-induced sea level rise increases the frequency of extreme sea levels. We analyze projected changes in extreme sea levels for western European coasts produced with high-resolution models (∼ 6 km). Unlike commonly used coarse-scale global climate models, this approach allows us to simulate key processes driving coastal sea level variations, such as long-term sea level rise, tides, storm surges induced by low atmospheric surface pressure and winds, waves, and their interactions.
Joshua Kiesel, Claudia Wolff, and Marvin Lorenz
Nat. Hazards Earth Syst. Sci., 24, 3841–3849, https://doi.org/10.5194/nhess-24-3841-2024, https://doi.org/10.5194/nhess-24-3841-2024, 2024
Short summary
Short summary
In October 2023, one of the strongest storm surges on record hit the southwestern Baltic Sea coast, causing severe impacts in the German federal state of Schleswig-Holstein, including dike failures. Recent studies on coastal flooding from the same region align well with the October 2023 surge, with differences in peak water levels of less than 30 cm. This rare coincidence is used to assess current capabilities and limitations of coastal flood modelling and derive key areas for future research.
Emmie Malika Bonilauri, Catherine Aaron, Matteo Cerminara, Raphaël Paris, Tomaso Esposti Ongaro, Benedetta Calusi, Domenico Mangione, and Andrew John Lang Harris
Nat. Hazards Earth Syst. Sci., 24, 3789–3813, https://doi.org/10.5194/nhess-24-3789-2024, https://doi.org/10.5194/nhess-24-3789-2024, 2024
Short summary
Short summary
Currently on the island of Stromboli, only 4 min of warning time is available for a locally generated tsunami. We combined tsunami simulations and human exposure to complete a risk analysis. We linked the predicted inundation area and the tsunami warning signals to assess the hazard posed by future tsunamis and to design escape routes to reach safe areas and to optimise evacuation times. Such products can be used by civil protection agencies on Stromboli.
Robert McCall, Curt Storlazzi, Floortje Roelvink, Stuart G. Pearson, Roel de Goede, and José A. Á. Antolínez
Nat. Hazards Earth Syst. Sci., 24, 3597–3625, https://doi.org/10.5194/nhess-24-3597-2024, https://doi.org/10.5194/nhess-24-3597-2024, 2024
Short summary
Short summary
Accurate predictions of wave-driven flooding are essential to manage risk on low-lying, reef-lined coasts. Models to provide this information are, however, computationally expensive. We present and validate a modeling system that simulates flood drivers on diverse and complex reef-lined coasts as competently as a full-physics model but at a fraction of the computational cost to run. This development paves the way for application in large-scale early-warning systems and flood risk assessments.
Jean H. M. Roger and Bernard Pelletier
Nat. Hazards Earth Syst. Sci., 24, 3461–3478, https://doi.org/10.5194/nhess-24-3461-2024, https://doi.org/10.5194/nhess-24-3461-2024, 2024
Short summary
Short summary
We present a catalogue of tsunamis that occurred in the Vanuatu Arc. It has been built based on the analysis of existing catalogues, historical documents, and sea-level data from five coastal tide gauges. Since 1863, 100 tsunamis of local, regional, or far-field origins have been listed; 15 of them show maximum wave amplitudes and/or run-up heights of above 1 m, and 8 are between 0.3 and 1 m. Details are provided for particular events, including debated events or events with no known origin(s).
Rashid Haider, Sajid Ali, Gösta Hoffmann, and Klaus Reicherter
Nat. Hazards Earth Syst. Sci., 24, 3279–3290, https://doi.org/10.5194/nhess-24-3279-2024, https://doi.org/10.5194/nhess-24-3279-2024, 2024
Short summary
Short summary
The coastlines bordering the Arabian Sea have yielded various tsunamites reflecting its high hazard potential and recurrences. My PhD project aims at the estimation and zonation of the hazards and risks associated with. This publication is a continuation of the previous publication (Haider et al., 2023), which focused on hazard estimation through a multi-proxy approach. This part of the study estimates the risk potential through integrated tsunami inundation analysis.
Kévin Dubois, Morten Andreas Dahl Larsen, Martin Drews, Erik Nilsson, and Anna Rutgersson
Nat. Hazards Earth Syst. Sci., 24, 3245–3265, https://doi.org/10.5194/nhess-24-3245-2024, https://doi.org/10.5194/nhess-24-3245-2024, 2024
Short summary
Short summary
Both extreme river discharge and storm surges can interact at the coast and lead to flooding. However, it is difficult to predict flood levels during such compound events because they are rare and complex. Here, we focus on the quantification of uncertainties and investigate the sources of limitations while carrying out such analyses at Halmstad, Sweden. Based on a sensitivity analysis, we emphasize that both the choice of data source and statistical methodology influence the results.
Sergio Padilla, Íñigo Aniel-Quiroga, Rachid Omira, Mauricio González, Jihwan Kim, and Maria A. Baptista
Nat. Hazards Earth Syst. Sci., 24, 3095–3113, https://doi.org/10.5194/nhess-24-3095-2024, https://doi.org/10.5194/nhess-24-3095-2024, 2024
Short summary
Short summary
The eruption of the Hunga Tonga–Hunga Ha'apai volcano in January 2022 triggered a global phenomenon, including an atmospheric wave and a volcano-meteorological tsunami (VMT). The tsunami, reaching as far as Callao, Peru, 10 000 km away, caused significant coastal impacts. This study delves into understanding these effects, particularly on vessel mooring safety. The findings underscore the importance of enhancing early warning systems and preparing port authorities for managing such rare events.
Alice Abbate, José M. González Vida, Manuel J. Castro Díaz, Fabrizio Romano, Hafize Başak Bayraktar, Andrey Babeyko, and Stefano Lorito
Nat. Hazards Earth Syst. Sci., 24, 2773–2791, https://doi.org/10.5194/nhess-24-2773-2024, https://doi.org/10.5194/nhess-24-2773-2024, 2024
Short summary
Short summary
Modelling tsunami generation due to a rapid submarine earthquake is a complex problem. Under a variety of realistic conditions in a subduction zone, we propose and test an efficient solution to this problem: a tool that can compute the generation of any potential tsunami in any ocean in the world. In the future, we will explore solutions that would also allow us to model tsunami generation by slower (time-dependent) seafloor displacement.
Joshua Green, Ivan Haigh, Niall Quinn, Jeff Neal, Thomas Wahl, Melissa Wood, Dirk Eilander, Marleen de Ruiter, Philip Ward, and Paula Camus
EGUsphere, https://doi.org/10.5194/egusphere-2024-2247, https://doi.org/10.5194/egusphere-2024-2247, 2024
Short summary
Short summary
Compound flooding, involving the combination or successive occurrence of two or more flood drivers, can amplify flood impacts in coastal/estuarine regions. This paper reviews the practices, trends, methodologies, applications, and findings of coastal compound flooding literature at regional to global scales. We explore the types of compound flood events, their mechanistic processes, and the range of terminology. Lastly, this review highlights knowledge gaps and implications for future practices.
Mithun Deb, James J. Benedict, Ning Sun, Zhaoqing Yang, Robert D. Hetland, David Judi, and Taiping Wang
Nat. Hazards Earth Syst. Sci., 24, 2461–2479, https://doi.org/10.5194/nhess-24-2461-2024, https://doi.org/10.5194/nhess-24-2461-2024, 2024
Short summary
Short summary
We coupled earth system, hydrology, and hydrodynamic models to generate plausible and physically consistent ensembles of hurricane events and their associated water levels from the open coast to tidal rivers of Delaware Bay and River. Our results show that the hurricane landfall locations and the estuarine wind can significantly amplify the extreme surge in a shallow and converging system, especially when the wind direction aligns with the surge propagation direction.
Ming-Huei Chang, Yen-Chen Huang, Yu-Hsin Cheng, Chuen-Teyr Terng, Jinyi Chen, and Jyh Cherng Jan
Nat. Hazards Earth Syst. Sci., 24, 2481–2494, https://doi.org/10.5194/nhess-24-2481-2024, https://doi.org/10.5194/nhess-24-2481-2024, 2024
Short summary
Short summary
Monitoring the long-term trends in sea surface warming is crucial for informed decision-making and adaptation. This study offers a comprehensive examination of prevalent trend extraction methods. We identify the least-squares regression as suitable for general tasks yet highlight the need to address seasonal signal-induced bias, i.e., the phase–distance imbalance. Our developed method, evaluated using simulated and real data, is unbiased and better than the conventional SST anomaly method.
Thomas P. Collings, Niall D. Quinn, Ivan D. Haigh, Joshua Green, Izzy Probyn, Hamish Wilkinson, Sanne Muis, William V. Sweet, and Paul D. Bates
Nat. Hazards Earth Syst. Sci., 24, 2403–2423, https://doi.org/10.5194/nhess-24-2403-2024, https://doi.org/10.5194/nhess-24-2403-2024, 2024
Short summary
Short summary
Coastal areas are at risk of flooding from rising sea levels and extreme weather events. This study applies a new approach to estimating the likelihood of coastal flooding around the world. The method uses data from observations and computer models to create a detailed map of where these coastal floods might occur. The approach can predict flooding in areas for which there are few or no data available. The results can be used to help prepare for and prevent this type of flooding.
Guangsheng Zhao and Xiaojing Niu
Nat. Hazards Earth Syst. Sci., 24, 2303–2313, https://doi.org/10.5194/nhess-24-2303-2024, https://doi.org/10.5194/nhess-24-2303-2024, 2024
Short summary
Short summary
The purpose of this study is to estimate the spatial distribution of the tsunami hazard in the South China Sea from the Manila subduction zone. The plate motion data are used to invert the degree of locking on the fault plane. The degree of locking is used to estimate the maximum possible magnitude of earthquakes and describe the slip distribution. A spatial distribution map of the 1000-year return period tsunami wave height in the South China Sea was obtained by tsunami hazard assessment.
Mandana Ghanavati, Ian R. Young, Ebru Kirezci, and Jin Liu
Nat. Hazards Earth Syst. Sci., 24, 2175–2190, https://doi.org/10.5194/nhess-24-2175-2024, https://doi.org/10.5194/nhess-24-2175-2024, 2024
Short summary
Short summary
The paper examines the changes in shoreline position of the coast of south-east Australia over a 26-year period to determine whether changes are consistent with observed changes in ocean wave and storm surge climate. The results show that in regions where there have been significant changes in wave energy flux or wave direction, there have also been changes in shoreline position consistent with non-equilibrium longshore drift.
Ina Teutsch, Ralf Weisse, and Sander Wahls
Nat. Hazards Earth Syst. Sci., 24, 2065–2069, https://doi.org/10.5194/nhess-24-2065-2024, https://doi.org/10.5194/nhess-24-2065-2024, 2024
Short summary
Short summary
We investigate buoy and radar measurement data from shallow depths in the southern North Sea. We analyze the role of solitons for the occurrence of rogue waves. This is done by computing the nonlinear soliton spectrum of each time series. In a previous study that considered a single measurement site, we found a connection between the shape of the soliton spectrum and the occurrence of rogue waves. In this study, results for two additional sites are reported.
Marc Igigabel, Marissa Yates, Michalis Vousdoukas, and Youssef Diab
Nat. Hazards Earth Syst. Sci., 24, 1951–1974, https://doi.org/10.5194/nhess-24-1951-2024, https://doi.org/10.5194/nhess-24-1951-2024, 2024
Short summary
Short summary
Changes in sea levels alone do not determine the evolution of coastal hazards. Coastal hazard changes should be assessed using additional factors describing geomorphological configurations, metocean event types (storms, cyclones, long swells, and tsunamis), and the marine environment (e.g., coral reef state and sea ice extent). The assessment completed here, at regional scale including the coasts of mainland and overseas France, highlights significant differences in hazard changes.
Jani Särkkä, Jani Räihä, Mika Rantanen, and Matti Kämäräinen
Nat. Hazards Earth Syst. Sci., 24, 1835–1842, https://doi.org/10.5194/nhess-24-1835-2024, https://doi.org/10.5194/nhess-24-1835-2024, 2024
Short summary
Short summary
We study the relationship between tracks of low-pressure systems and related sea level extremes. We perform the studies by introducing a method to simulate sea levels using synthetic low-pressure systems. We test the method using sites located along the Baltic Sea coast. We find high extremes, where the sea level extreme reaches up to 3.5 m. In addition, we add the maximal value of the mean level of the Baltic Sea (1 m), leading to a sea level of 4.5 m.
Alexey Androsov, Sven Harig, Natalia Zamora, Kim Knauer, and Natalja Rakowsky
Nat. Hazards Earth Syst. Sci., 24, 1635–1656, https://doi.org/10.5194/nhess-24-1635-2024, https://doi.org/10.5194/nhess-24-1635-2024, 2024
Short summary
Short summary
Two numerical codes are used in a comparative analysis of the calculation of the tsunami wave due to an earthquake along the Peruvian coast. The comparison primarily evaluates the flow velocity fields in flooded areas. The relative importance of the various parts of the equations is determined, focusing on the nonlinear terms. The influence of the nonlinearity on the degree and volume of flooding, flow velocity, and small-scale fluctuations is determined.
Eric Mortensen, Timothy Tiggeloven, Toon Haer, Bas van Bemmel, Dewi Le Bars, Sanne Muis, Dirk Eilander, Frederiek Sperna Weiland, Arno Bouwman, Willem Ligtvoet, and Philip J. Ward
Nat. Hazards Earth Syst. Sci., 24, 1381–1400, https://doi.org/10.5194/nhess-24-1381-2024, https://doi.org/10.5194/nhess-24-1381-2024, 2024
Short summary
Short summary
Current levels of coastal flood risk are projected to increase in coming decades due to various reasons, e.g. sea-level rise, land subsidence, and coastal urbanization: action is needed to minimize this future risk. We evaluate dykes and coastal levees, foreshore vegetation, zoning restrictions, and dry-proofing on a global scale to estimate what levels of risk reductions are possible. We demonstrate that there are several potential adaptation pathways forward for certain areas of the world.
Charlotte Lyddon, Nguyen Chien, Grigorios Vasilopoulos, Michael Ridgill, Sogol Moradian, Agnieszka Olbert, Thomas Coulthard, Andrew Barkwith, and Peter Robins
Nat. Hazards Earth Syst. Sci., 24, 973–997, https://doi.org/10.5194/nhess-24-973-2024, https://doi.org/10.5194/nhess-24-973-2024, 2024
Short summary
Short summary
Recent storms in the UK, like Storm Ciara in 2020, show how vulnerable estuaries are to the combined effect of sea level and river discharge. We show the combinations of sea levels and river discharges that cause flooding in the Conwy estuary, N Wales. The results showed flooding was amplified under moderate conditions in the middle estuary and elsewhere sea state or river flow dominated the hazard. Combined sea and river thresholds can improve prediction and early warning of compound flooding.
Shuaib Rasheed, Simon C. Warder, Yves Plancherel, and Matthew D. Piggott
Nat. Hazards Earth Syst. Sci., 24, 737–755, https://doi.org/10.5194/nhess-24-737-2024, https://doi.org/10.5194/nhess-24-737-2024, 2024
Short summary
Short summary
Here we use a high-resolution bathymetry dataset of the Maldives archipelago, as well as corresponding high numerical model resolution, to carry out a scenario-based tsunami hazard assessment for the entire Maldives archipelago to investigate the potential impact of plausible far-field tsunamis across the Indian Ocean at the island scale. The results indicate that several factors contribute to mitigating and amplifying tsunami waves at the island scale.
Niels J. Korsgaard, Kristian Svennevig, Anne S. Søndergaard, Gregor Luetzenburg, Mimmi Oksman, and Nicolaj K. Larsen
Nat. Hazards Earth Syst. Sci., 24, 757–772, https://doi.org/10.5194/nhess-24-757-2024, https://doi.org/10.5194/nhess-24-757-2024, 2024
Short summary
Short summary
A tsunami wave will leave evidence of erosion and deposition in coastal lakes, making it possible to determine the runup height and when it occurred. Here, we use four lakes now located at elevations of 19–91 m a.s.l. close to the settlement of Saqqaq, West Greenland, to show that at least two giant tsunamis occurred 7300–7600 years ago with runup heights larger than 40 m. We infer that any tsunamis from at least nine giga-scale landslides must have happened 8500–10 000 years ago.
Elke Magda Inge Meyer and Lidia Gaslikova
Nat. Hazards Earth Syst. Sci., 24, 481–499, https://doi.org/10.5194/nhess-24-481-2024, https://doi.org/10.5194/nhess-24-481-2024, 2024
Short summary
Short summary
Storm tides for eight extreme historical storms in the German Bight are modelled using sets of slightly varying atmospheric conditions from the century reanalyses. Comparisons with the water level observations from the gauges Norderney, Cuxhaven and Husum show that single members of the reanalyses are suitable for the reconstruction of extreme storms. Storms with more northerly tracks show less variability within a set and have more potential for accurate reconstruction of extreme water levels.
Clare Lewis, Tim Smyth, Jess Neumann, and Hannah Cloke
Nat. Hazards Earth Syst. Sci., 24, 121–131, https://doi.org/10.5194/nhess-24-121-2024, https://doi.org/10.5194/nhess-24-121-2024, 2024
Short summary
Short summary
Meteotsunami are the result of atmospheric disturbances and can impact coastlines causing injury, loss of life, and damage to assets. This paper introduces a novel intensity index to allow for the quantification of these events at the shoreline. This has the potential to assist in the field of natural hazard assessment. It was trialled in the UK but designed for global applicability and to become a widely accepted standard in coastal planning, meteotsunami forecasting, and early warning systems.
Wiwin Windupranata, Muhammad Wahyu Al Ghifari, Candida Aulia De Silva Nusantara, Marsyanisa Shafa, Intan Hayatiningsih, Iyan Eka Mulia, and Alqinthara Nuraghnia
EGUsphere, https://doi.org/10.5194/egusphere-2023-2860, https://doi.org/10.5194/egusphere-2023-2860, 2024
Short summary
Short summary
Batukaras Village is a village on the southern coast of Java Island which is prone to tsunami hazards. To assess the potential tsunami hazard in the area, PTHA method was employed. It resulted in tsunami heights of 0.84 m, 1.63 m, 2.97 m, and 5.7 m for each earthquake return period of 250 years, 500 years, 1000 years, and 2500 years, respectively. The largest contribution of earthquake sources comes from the West Java-Central Java megathrust segment.
Chu-En Hsu, Katherine A. Serafin, Xiao Yu, Christie A. Hegermiller, John C. Warner, and Maitane Olabarrieta
Nat. Hazards Earth Syst. Sci., 23, 3895–3912, https://doi.org/10.5194/nhess-23-3895-2023, https://doi.org/10.5194/nhess-23-3895-2023, 2023
Short summary
Short summary
Total water levels (TWLs) induced by tropical cyclones (TCs) are among the leading hazards faced by coastal communities. Using numerical models, we examined how TWL components (surge and wave runup) along the South Atlantic Bight varied during hurricanes Matthew (2016), Dorian (2019), and Isaias (2020). Peak surge and peak wave runup were dominated by wind speeds and relative positions to TCs. The exceedance time of TWLs was controlled by normalized distances to TC and TC translation speeds.
Enrico Duo, Juan Montes, Marine Le Gal, Tomás Fernández-Montblanc, Paolo Ciavola, and Clara Armaroli
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-197, https://doi.org/10.5194/nhess-2023-197, 2023
Revised manuscript accepted for NHESS
Short summary
Short summary
The present work, developed within the EU H2020 European Coastal Flood Awareness System ECFAS project, presents an approach used to estimate coastal flood direct impacts on population, buildings, and roads along the European coasts. The findings demonstrate that the ECFAS Impact approach offers valuable estimates for affected populations, reliable damage assessments for buildings and roads, and improved accuracy compared to traditional grid-based approaches.
Maude Biguenet, Eric Chaumillon, Pierre Sabatier, Antoine Bastien, Emeline Geba, Fabien Arnaud, Thibault Coulombier, and Nathalie Feuillet
Nat. Hazards Earth Syst. Sci., 23, 3761–3788, https://doi.org/10.5194/nhess-23-3761-2023, https://doi.org/10.5194/nhess-23-3761-2023, 2023
Short summary
Short summary
This work documents the impact of Hurricane Irma (2017) on the Codrington barrier and lagoon on Barbuda Island. Irma caused two wide breaches in the sandy barrier, which remained unopened for 250 years. The thick and extensive sand sheet at the top of the lagoon fill was attributed to Irma. This unique deposit in a 3700-year record confirms Irma's exceptional character. This case study illustrates the consequences of high-intensity hurricanes in low-lying islands in a global warming context.
Leigh Richard MacPherson, Arne Arns, Svenja Fischer, Fernando Javier Méndez, and Jürgen Jensen
Nat. Hazards Earth Syst. Sci., 23, 3685–3701, https://doi.org/10.5194/nhess-23-3685-2023, https://doi.org/10.5194/nhess-23-3685-2023, 2023
Short summary
Short summary
Efficient adaptation planning for coastal flooding caused by extreme sea levels requires accurate assessments of the underlying hazard. Tide-gauge data alone are often insufficient for providing the desired accuracy but may be supplemented with historical information. We estimate extreme sea levels along the German Baltic coast and show that relying solely on tide-gauge data leads to underestimations. Incorporating historical information leads to improved estimates with reduced uncertainties.
Anne Margaret H. Smiley, Suzanne P. Thompson, Nathan S. Hall, and Michael F. Piehler
Nat. Hazards Earth Syst. Sci., 23, 3635–3649, https://doi.org/10.5194/nhess-23-3635-2023, https://doi.org/10.5194/nhess-23-3635-2023, 2023
Short summary
Short summary
Floodwaters can deliver reactive nitrogen to sensitive aquatic systems and diminish water quality. We assessed the nitrogen removal capabilities of flooded habitats and urban landscapes. Differences in processing rates across land cover treatments and between nutrient treatments suggest that abundance and spatial distributions of habitats, as well as storm characteristics, influence landscape-scale nitrogen removal. Results have important implications for coastal development and climate change.
Marine Le Gal, Tomás Fernández-Montblanc, Enrico Duo, Juan Montes Perez, Paulo Cabrita, Paola Souto Ceccon, Véra Gastal, Paolo Ciavola, and Clara Armaroli
Nat. Hazards Earth Syst. Sci., 23, 3585–3602, https://doi.org/10.5194/nhess-23-3585-2023, https://doi.org/10.5194/nhess-23-3585-2023, 2023
Short summary
Short summary
Assessing coastal hazards is crucial to mitigate flooding disasters. In this regard, coastal flood databases are valuable tools. This paper describes a new coastal flood map catalogue covering the entire European coastline, as well as the methodology to build it and its accuracy. The catalogue focuses on frequent extreme events and relies on synthetic scenarios estimated from local storm conditions. Flood-prone areas and regions sensitive to storm duration and water level peak were identified.
Neng-Ti Yu, Cheng-Hao Lu, I-Chin Yen, Jia-Hong Chen, Jiun-Yee Yen, and Shyh-Jeng Chyi
Nat. Hazards Earth Syst. Sci., 23, 3525–3542, https://doi.org/10.5194/nhess-23-3525-2023, https://doi.org/10.5194/nhess-23-3525-2023, 2023
Short summary
Short summary
A paleotsunami deposit of cliff-top basalt debris was identified on the Penghu Islands in the southern Taiwan Strait and related to the 1661 earthquake in southwest Taiwan. A minimum wave height of 3.2 m is estimated to have rotated the biggest boulder for over 30 m landwards onto the cliff top at 2.5 m a.s.l. The event must have been huge compared to the 1994 M 6.4 earthquake with the ensuing 0.4 m high tsunami in the same area, validating the intimidating tsunami risks in the South China Sea.
Ye Yuan, Huaiwei Yang, Fujiang Yu, Yi Gao, Benxia Li, and Chuang Xing
Nat. Hazards Earth Syst. Sci., 23, 3487–3507, https://doi.org/10.5194/nhess-23-3487-2023, https://doi.org/10.5194/nhess-23-3487-2023, 2023
Short summary
Short summary
Rip currents are narrow jets of offshore-directed flow that originated in the surf zone, which can take swimmers of all ability levels into deeper water unawares. In this study, a 1 m fine-resolution wave-resolving model was configured to study rip current variability and the optimal swimmer escape strategies. Multiple factors contribute to the survival of swimmers. However, for weak-to-moderate rip and longshore currents, swimming onshore consistently seems to be the most successful strategy.
Benedikt Mester, Thomas Vogt, Seth Bryant, Christian Otto, Katja Frieler, and Jacob Schewe
Nat. Hazards Earth Syst. Sci., 23, 3467–3485, https://doi.org/10.5194/nhess-23-3467-2023, https://doi.org/10.5194/nhess-23-3467-2023, 2023
Short summary
Short summary
In 2019, Cyclone Idai displaced more than 478 000 people in Mozambique. In our study, we use coastal flood modeling and satellite imagery to construct a counterfactual cyclone event without the effects of climate change. We show that 12 600–14 900 displacements can be attributed to sea level rise and the intensification of storm wind speeds due to global warming. Our impact attribution study is the first one on human displacement and one of very few for a low-income country.
Olivier Cavalié, Frédéric Cappa, and Béatrice Pinel-Puysségur
Nat. Hazards Earth Syst. Sci., 23, 3235–3246, https://doi.org/10.5194/nhess-23-3235-2023, https://doi.org/10.5194/nhess-23-3235-2023, 2023
Short summary
Short summary
Coastal areas are fragile ecosystems that face multiple hazards. In this study, we measured the downward motion of the Nice Côte d'Azur Airport (France) that was built on reclaimed area and found that it has subsided from 16 mm yr-1 in the 1990s to 8 mm yr-1 today. A continuous remote monitoring of the platform will provide key data for a detailed investigation of future subsidence maps, and this contribution will help to evaluate the potential failure of part of the airport platform.
Wagner L. L. Costa, Karin R. Bryan, and Giovanni Coco
Nat. Hazards Earth Syst. Sci., 23, 3125–3146, https://doi.org/10.5194/nhess-23-3125-2023, https://doi.org/10.5194/nhess-23-3125-2023, 2023
Short summary
Short summary
For predicting flooding events at the coast, topo-bathymetric data are essential. However, elevation data can be unavailable. To tackle this issue, recent efforts have centred on the use of satellite-derived topography (SDT) and bathymetry (SDB). This work is aimed at evaluating their accuracy and use for flooding prediction in enclosed estuaries. Results show that the use of SDT and SDB in numerical modelling can produce similar predictions when compared to the surveyed elevation data.
Joshua Kiesel, Marvin Lorenz, Marcel König, Ulf Gräwe, and Athanasios T. Vafeidis
Nat. Hazards Earth Syst. Sci., 23, 2961–2985, https://doi.org/10.5194/nhess-23-2961-2023, https://doi.org/10.5194/nhess-23-2961-2023, 2023
Short summary
Short summary
Among the Baltic Sea littoral states, Germany is anticipated to experience considerable damage as a result of increased coastal flooding due to sea-level rise (SLR). Here we apply a new modelling framework to simulate how flooding along the German Baltic Sea coast may change until 2100 if dikes are not upgraded. We find that the study region is highly exposed to flooding, and we emphasise the importance of current plans to update coastal protection in the future.
Zhang Haixia, Cheng Meng, and Fang Weihua
Nat. Hazards Earth Syst. Sci., 23, 2697–2717, https://doi.org/10.5194/nhess-23-2697-2023, https://doi.org/10.5194/nhess-23-2697-2023, 2023
Short summary
Short summary
Simultaneous storm surge and waves can cause great damage due to cascading effects. Quantitative joint probability analysis is critical to determine their optimal protection design values. The joint probability of the surge and wave for the eastern coasts of Leizhou Peninsula and Hainan are estimated with a Gumbel copula based on 62 years of numerically simulated data, and the optimal design values under various joint return periods are derived using the non-linear programming method.
Clare Lewis, Tim Smyth, David Williams, Jess Neumann, and Hannah Cloke
Nat. Hazards Earth Syst. Sci., 23, 2531–2546, https://doi.org/10.5194/nhess-23-2531-2023, https://doi.org/10.5194/nhess-23-2531-2023, 2023
Short summary
Short summary
Meteotsunami are globally occurring water waves initiated by atmospheric disturbances. Previous research has suggested that in the UK, meteotsunami are a rare phenomenon and tend to occur in the summer months. This article presents a revised and updated catalogue of 98 meteotsunami that occurred between 1750 and 2022. Results also demonstrate a larger percentage of winter events and a geographical pattern highlighting the
hotspotregions that experience these events.
Melissa Wood, Ivan D. Haigh, Quan Quan Le, Hung Nghia Nguyen, Hoang Ba Tran, Stephen E. Darby, Robert Marsh, Nikolaos Skliris, Joël J.-M. Hirschi, Robert J. Nicholls, and Nadia Bloemendaal
Nat. Hazards Earth Syst. Sci., 23, 2475–2504, https://doi.org/10.5194/nhess-23-2475-2023, https://doi.org/10.5194/nhess-23-2475-2023, 2023
Short summary
Short summary
We used a novel database of simulated tropical cyclone tracks to explore whether typhoon-induced storm surges present a future flood risk to low-lying coastal communities around the South China Sea. We found that future climate change is likely to change tropical cyclone behaviour to an extent that this increases the severity and frequency of storm surges to Vietnam, southern China, and Thailand. Consequently, coastal flood defences need to be reviewed for resilience against this future hazard.
Sang-Guk Yum, Moon-Soo Song, and Manik Das Adhikari
Nat. Hazards Earth Syst. Sci., 23, 2449–2474, https://doi.org/10.5194/nhess-23-2449-2023, https://doi.org/10.5194/nhess-23-2449-2023, 2023
Short summary
Short summary
This study performed analysis on typhoon-induced coastal morphodynamics for the Mokpo coast. Wetland vegetation was severely impacted by Typhoon Soulik, with 87.35 % of shoreline transects experiencing seaward migration. This result highlights the fact that sediment resuspension controls the land alteration process over the typhoon period. The land accretion process dominated during the pre- to post-typhoon periods.
Olle Räty, Marko Laine, Ulpu Leijala, Jani Särkkä, and Milla M. Johansson
Nat. Hazards Earth Syst. Sci., 23, 2403–2418, https://doi.org/10.5194/nhess-23-2403-2023, https://doi.org/10.5194/nhess-23-2403-2023, 2023
Short summary
Short summary
We studied annual maximum sea levels in the Finnish coastal region. Our aim was to better quantify the uncertainty in them compared to previous studies. Using four statistical models, we found out that hierarchical models, which shared information on sea-level extremes across Finnish tide gauges, had lower uncertainty in their results in comparison with tide-gauge-specific fits. These models also suggested that the shape of the distribution for extreme sea levels is similar on the Finnish coast.
Christian Ferrarin, Florian Pantillon, Silvio Davolio, Marco Bajo, Mario Marcello Miglietta, Elenio Avolio, Diego S. Carrió, Ioannis Pytharoulis, Claudio Sanchez, Platon Patlakas, Juan Jesús González-Alemán, and Emmanouil Flaounas
Nat. Hazards Earth Syst. Sci., 23, 2273–2287, https://doi.org/10.5194/nhess-23-2273-2023, https://doi.org/10.5194/nhess-23-2273-2023, 2023
Short summary
Short summary
The combined use of meteorological and ocean models enabled the analysis of extreme sea conditions driven by Medicane Ianos, which hit the western coast of Greece on 18 September 2020, flooding and damaging the coast. The large spread associated with the ensemble highlighted the high model uncertainty in simulating such an extreme weather event. The different simulations have been used for outlining hazard scenarios that represent a fundamental component of the coastal risk assessment.
Charline Dalinghaus, Giovanni Coco, and Pablo Higuera
Nat. Hazards Earth Syst. Sci., 23, 2157–2169, https://doi.org/10.5194/nhess-23-2157-2023, https://doi.org/10.5194/nhess-23-2157-2023, 2023
Short summary
Short summary
Wave setup is a critical component of coastal flooding. Consequently, understanding and being able to predict wave setup is vital to protect coastal resources and the population living near the shore. Here, we applied machine learning to improve the accuracy of present predictors of wave setup. The results show that the new predictors outperform existing formulas demonstrating the capability of machine learning models to provide a physically sound description of wave setup.
Ina Teutsch, Markus Brühl, Ralf Weisse, and Sander Wahls
Nat. Hazards Earth Syst. Sci., 23, 2053–2073, https://doi.org/10.5194/nhess-23-2053-2023, https://doi.org/10.5194/nhess-23-2053-2023, 2023
Short summary
Short summary
Rogue waves exceed twice the significant wave height. They occur more often than expected in the shallow waters off Norderney. When applying a nonlinear Fourier transform for the Korteweg–de Vries equation to wave data from Norderney, we found differences in the soliton spectra of time series with and without rogue waves. A strongly outstanding soliton in the spectrum indicated an enhanced probability for rogue waves. We could attribute spectral solitons to the measured rogue waves.
Philipp Heinrich, Stefan Hagemann, Ralf Weisse, Corinna Schrum, Ute Daewel, and Lidia Gaslikova
Nat. Hazards Earth Syst. Sci., 23, 1967–1985, https://doi.org/10.5194/nhess-23-1967-2023, https://doi.org/10.5194/nhess-23-1967-2023, 2023
Short summary
Short summary
High seawater levels co-occurring with high river discharges have the potential to cause destructive flooding. For the past decades, the number of such compound events was larger than expected by pure chance for most of the west-facing coasts in Europe. Additionally rivers with smaller catchments showed higher numbers. In most cases, such events were associated with a large-scale weather pattern characterized by westerly winds and strong rainfall.
Cited articles
Abadie, S., Morichon, D., Grilli, S., and Glockner, S.: Numerical simulation
of waves generated by landslides using a multiple-fluid Navier-Stokes model,
Coastal Eng., 57, 779–794, 2010.
Bosa, S. and Petti, M.: Shallow water numerical model of the wave generated
by the Vajont landslide, Environ. Model. Softw., 26, 406–418,
https://doi.org/10.1016/j.envsoft.2010.10.001, 2011.
Clous, L. and Abadie, S.: Simulation of energy transfers 935 in waves
generated by granular slides, Landslides, 16, 1663–1679,, 2019.
Enet, F. and Grilli, S. T.: Experimental study of tsunami generation by
three-dimensional rigid underwater landslide, J. Waterw. Port Coast.,
133, 442–454, https://doi.org/10.1061/(ASCE)0733-950X(2007)133:6(442),
2007.
Fischer, J. T., Kowalski, J., and Pudasaini, S. P.: Topographic curvature
effects in applied avalanche modeling, Cold Reg. Sci. Technol., 74, 21–30,
https://doi.org/10.1016/j.coldregions.2012.01.005, 2012.
Franz, M., Podladchikov, Y., Jaboyedoff, M., and Derron, M.-H.:
Landslide-triggered tsunami modelling in alpine lakes, in: International
Conference Vajont 1963–2013. Thoughts and analyses after 50 years since the
catastrophic landslide, edited by: Genevois, R. and Prestininzi, A., Italian
Journal of Engineering Geology and Environment – Book Series, Sapienza
Università Editrice, Rome, Italy, 409–416,
https://doi.org/10.4408/IJEGE.2013-06.B-39, 2013.
Franz, M., Jaboyedoff, J., Podladchikov, Y., and Locat, J.: Testing a
landslide-generated tsunami model. The case of the Nicolet Landslide
(Québec, Canada), in: Proceeding of the 68th Canadian Geotechnical
Conf., GEOQuébec 2015, Québec City, Canada, 20–23 September 2015, ID: PAP711, 2015.
Franz, M., Carrea, D., Abellán., A., Derron, M.-H., and Jaboyedoff, M.:
Use of targets to track 3D displacements in highly vegetated areas affected
by landslide, Landslides, 13, 821–831,
https://doi.org/10.1007/s10346-016-0685-7, 2016.
Franz, M., Rudaz, B., Jaboyedoff, M., and Podladchikov, Y.: Fast assessment
of landslide-generated tsunami and associated risks by coupling SLBL with
shallow water model, in: Proceeding of the 69th Canadian Geotechnical
Conf., GEOVancouver 2016, Vancouver, Canada, 2–5 October 2016, ID: 003926, 2016.
Fritz, H. M.: Initial phase of landslide generated impulse waves, PhD thesis, ETH Zurich, Zurich, 2002.
Fritz, H. M., Hager, W. H., and Minor, H.-E.: Near field characteristics of
landslide generated impulse waves, J. Waterw. Port Coast., 130, 287–302,
2004.
Fritz, H. M., Mohammed, F., and Yoo, J.: Lituya Bay Landslide impact
generated mega-tsunami 50(th) anniversary, Pure Appl. Geophys., 166,
153–175, https://doi.org/10.1007/s00024-008-0435-4, 2009.
Ganerød, G. V., Grøneng, G., Rønning, J. S., Dalsegg, E., Elvebakk,
H., Tønnesen, J. F., Kveldsvik, V., Eiken, T., Blikra, L. H., and
Braathen, A.: Geological model of the Åknes rockslide, western Norway,
Eng. Geol., 102, 1–18, 2008.
Ghetti, A.: Esame sul modello degli effetti di un'eventuale frana nel
lago-serbatoio del Vajont. Istituto di Idraulica e Costruzioni Idrauliche
dell'Università di Padova. Centro modelli idraulici “E. Scimemi”,
S. A. D. E. Rapporto interno inedito, 12 pp., 14 fotographie, 2 tabelle, 8
tavole, Venezia, 1962 (in Italian).
Ghirotti, M., Masetti, D., Massironi, M., Oddone, E., Sapigni, M., Zampieri,
D., and Wolter, A.: The 1963 Vajont Landslide (Northeast Alps, Italy) –
Post-Conference Field trip (october 10th, 2013), in: International
Conference Vajont 1963–2013. Thoughts and analyses after 50 years since the
catastrophic landslide, edited by: Genevois, R. and Prestininzi, A., Italian
Journal of Engineering Geology and Environment – Book Series, Sapienza
Università Editrice, Rome, Italy, 2013.
Harbitz, C. B., Glimsdal, S., Løvholt, F., Kveldsvik, V., Pedersen, G.
K., and Jensen, A.: Rockslide tsunamis in complex fjords: From an unstable
rock slope at Åkerneset to tsunami risk in western Norway, Coast. Eng.,
88, 101–122, https://doi.org/10.1016/j.coastaleng.2014.02.003, 2014.
Heller, V.: Scale effects in physical hydraulic engineering models, J.
Hydraul. Res., 49, 293–306, 2011.
Heller, V. and Hager, W. H.: Impulse product parameter in landslide
generated impulse waves, J. Waterw. Port Coast., 136, 145–155, 2010.
Heller, V., Hager, W. H., and Minor, H.-E.: Landslide generated impulse
waves in reservoirs: Basics and computation, VAW Manual 4257, Laboratory of
Hydraulics, Hydrology and glaciology, ETHZ, Zürich, Switzerland, 172
pp., 2009.
Hungr, O. and Evans, S. G.: Rock avalanche runout prediction using dynamic
model, in: Proceedings of the 7th International Symposium on Landslides,
Trondheim, Norway, 17–21 June 1996, 233–238, 1996.
Hungr, O. and McDougall, S.: Two numerical models for landslide dynamic
analysis, Comput. Geosci., 35, 978–992,
https://doi.org/10.1016/j.cageo.2007.12.003, 2009.
Iverson R. M.: The Physics of debris flows, Rev. Geophys., 35, 245–296, https://doi.org/10.1029/97RG00426, 1997.
Iverson, R. M. and Denlinger, R. P.: Flow of variably fluidized granular masses across three‐dimensional terrain: 1. Coulomb mixture theory, J. Geophys. Res.-Sol. Ea., 106, 537–552, 2001.
Jaboyedoff, M., Demers, D., Locat, J., Locat, A., Locat, P., Oppikoffer, T.,
Robitaille, D., and Turmel, D.: Use of terrestrial laser scanning for the
characterization of retrogressive landslide in sensitive clay and rotational
landslides in river banks, Can. Geotech. J., 46, 1379–1390,
https://doi.org/10.1139/T09-073, 2009.
Kafle, J., Kattel, P., Mergili, M., Fischer, J. T., and Pudasaini, S. P.:
Dynamic response of submarine obstacles to two-phase landslide and tsunami
impact on reservoirs, Acta Mech., 230, 3143–3169, 2019.
Kamphuis, J. W. and Bowering, R. J.: Impulse waves generated by landslides,
in: Proceedings of the 12th International Conference on Coastal Engineering, 13–18 September 1970, Washington, D.C., United States, 575–588, 1970.
Kelfoun, K.: Suitability of simple rheological laws for the numerical
simulation of dense pyroclastic flows and long-runout volcanic avalanches,
J. Geophys. Res., 116, B08209, https://doi.org/10.1029/2010JB007622, 2011.
Kelfoun, K., Giachetti, T., and Lazabazuy, P.: Landslide-generated tsunami
at Réunion Island, J. Geophys. Res., 115, F04012, https://doi.org/10.1029/2009JF001381, 2010.
Kim, G.-B., Cheng, W., Sunny, R. C., Horrillo, J. J., McFall, B. C.,
Mohammed, F., Fritz, H. M., Beget, J., and Kowalik, Z.: Three dimensional
landslide generated tsunamis: numerical and physical model comparison,
Landslides, 17, 1145–1161, https://doi.org/10.1007/s10346-019-01308-2, 2020.
Kremer, K., Simpson, G., and Girardclos, S.: Giant Lake Geneva tsunami in AD
563, Nat. Geosci., 5, 756–757, https://doi.org/10.1038/ngeo1618, 2012.
Kremer, K., Marillier, F., Hilbe, M., Simpson, G., Dupuy, D., Yrro, B. J.,
Rachoud-Schneider, A.-M., Corboud, P., Bellwald, B., and Wildi, W.: Lake
dwellers occupation gap in Lake Geneva (France–Switzerland) possibly
explained by an earthquake–mass movement–tsunami event during Early Bronze
Age, Earth. Planet. Sc. Lett., 385, 28–39,
https://doi.org/10.1016/j.epsl.2013.09.017, 2014.
Lacasse, S., Eidsvig, U., Nadim, F., Høeg, K., and Blikra, L. H.: Event
tree analysis of Åknes rock slide hazard, in: Proceedings of the 4th
Canadian Conference on Geohazards, Université Laval, Québec City,
Canada, 20–24 May 2008, 2008.
L'Heureux, J.-S., Eilertsen, R. S., Glimsdal, S., Issler, D., Solberg,
I.-L., and Harbitz, C. B.: The 1978 quick clay landslide at Rissa, mid
Norway: subaqueous morphology and tsunami simulations, in: Submarine Mass
Movements and Their Consequences, edited by: Yamada, Y., Kawamura, K.,
Ikehara, K., Ogawa, Y., Urgeles, R., Mosher, D., Chaytor, J., and Strasser,
M., Springer, vol. 31, Springer, Dordrecht, 507–516, 2012.
Longchamp, C., Caspar, O., Jaboyedoff, M., and Podlachikov, Y.: Saint-Venant
equations and friction law for modelling self-channeling granular flows:
from analogue to numerical simulation, Appl. Math., 6, 1161–1173,
https://doi.org/10.4236/am.2015.67106, 2015.
Løvholt, F., Lynett, P., and Pedersen, G.: Simulating run-up on steep slopes with operational Boussinesq models; capabilities, spurious effects and instabilities, Nonlin. Processes Geophys., 20, 379–395, https://doi.org/10.5194/npg-20-379-2013, 2013.
Løvholt, F., Glimsdal, S., Lynett, P., and Pedersen, G.: Simulating tsunami propagation in fjords with long-wave models, Nat. Hazards Earth Syst. Sci., 15, 657–669, https://doi.org/10.5194/nhess-15-657-2015, 2015.
Lui, P. L. F., Wu, T. R., Raichlen, F., Synolakis, C. E., and Borrero, J.
C.: Runup and rundown generated by three-dimensional sliding masses, J.
Fluid Mech., 536:107-144, 2005.
Ma, G., Kirby, J. T., Hsu, T.-J., and Shi, F.: A two-layer granular
landslide model for tsunami wave generation: Theory and computation, Ocean
Model., 93, 40–55, 2015.
Mandli, K. T.: A numerical method for the two layer shallow water equations
with dry states, Ocean Model., 72, 80–91, 2013.
Marras, S. and Mandli, K. T.: Modeling and simulation of tsunami impact: a
short review of recent advances and future challenges, Geosciences, 11, 5,
https://doi.org/10.3390/geosciences11010005, 2021.
McDougall, S.: A new continuum dynamic model for the analysis of extremely
rapid landslide motion across complex 3D terrain, PhD thesis, University
of British Columbia, Vancouver, Canada, 2006.
Miller, G. S., Take, W. A., Mulligan, R. P., and McDougall, S.: Tsunami
generated by long and thin granular landslides in a large flume, J. Geophys.
Res.-Oceans, 122, 653–668, https://doi.org/10.1002/2016JC012177, 2017.
Mulligan, R. P., Take, W. A., and Miller, G. S.: Propagation and runup of
tsunami generated by gravitationally accelerated granular landslides, in:
Proceeding of the 6th International Conference on the Application of
Physical Modelling in Coastal and Port Engineering and Science (Coastlab16),
International Association for Hydro-Environment Engineering and Research
(IAHR), Ottawa, Canada, 10–13 May 2016, 6 pp., 2016.
Pope, S. B.: Turbulent Flows, Cambridge University Press, Cambridge, UK, 771 pp., 2000.
Pouliquen, O. and Forterre, Y.: Friction law for dense granular flows:
application to the motion of a mass down a rough inclined plane, J. Fluid
Mech., 453, 133–151, 2001.
Pudasaini, S. P.: A general two-phase debris flow model, J. Geophys.
Res.-Earth, 117, F03010, https://doi.org/10.1029/2011JF002186, 2012.
Pudasaini, S. P. and Hutter, K.: Avalanche Dynamics: Dynamics of
rapid flows of dense granular avalanches, Springer Science & Business
Media, Berlin, Heidelberg, Germany, 2007.
Pudasaini, S. P. and Krautblatter, M.: A two-phase mechanical model for
rock-ice avalanches, J. Geophys. Res.-Earth, 119, 2272–2290,
https://doi.org/10.1002/2014JF003183, 2014.
Roberts, N. J., McKillop, R. J., Lawrence, M. S., Psutka J. F., Clague, J.
J., Brideau, M.-A., and Ward, B. C.: Impact of the 2007 landslide-generated
tsunami in Chehalis Lake, Canada, in: Landslide science and practice, edited
by: Margottini, C., Canuti, P., and Sassa, K., Springer, Berlin, Heidelberg,
Germany, 133–140, https://doi.org/10.1007/978-3-642-31319-6_19, 2013.
Ruffini, G., Heller, V., and Briganti, R.: Numerical modelling of
landslide-tsunami propagation in a wide range of idealised water body
geometries, Coastal Eng., 153, 103518, https://doi.org/10.1016/j.coastaleng.2019.103518, 2019.
Schnellmann, M., Anselmetti, F. S., Giardini, D., and McKenzie, J. A.:
15,000 Years of mass-movement history in Lake Lucerne: Implications for
seismic and tsunami hazards, Eclogae Geol. Helv., 99, 409–428, 2006.
Simpson, G. and Castelltort, S.: Coupled model of surface water flow,
sediment transport and morphological evolution, Comput. Geosci., 32,
1600–1614, 2006.
Skvortsov, A.: Numerical simulation of landslide-generated tsunamis with
application to the 1975 failure in Kitimat Arm, British Columbia, Canada,
MSc. thesis, University of Victoria, Victoria, Canada, 2005.
Slingerland, R. L. and Voight, B.: Occurrences, properties, and predictive
models of landslide-generated water waves, in: Rockslides and avalanches, 2:
Engineering sites, Developments in Geotechnical Engineering vol. 14B, edited
by: Voight, B., Elsevier, Amsterdam, the Netherlands, 317–394, 1979.
Tappin, D. R., Watts, P., and Grilli, S. T.: The Papua New Guinea tsunami of 17 July 1998: anatomy of a catastrophic event, Nat. Hazards Earth Syst. Sci., 8, 243–266, https://doi.org/10.5194/nhess-8-243-2008, 2008.
Tan, H., Ruffini, G., Heller, V., and Chen, S.: A numerical
landslide-tsunami hazard assessment technique applied on hypothetical
scenarios at Es Vedrà, offshore Ibiza, J. Mar. Sci. Eng., 6, 1–22, 2018.
Tinti, S. and Tonini, R.: The UBO-TSUFD tsunami inundation model: validation and application to a tsunami case study focused on the city of Catania, Italy, Nat. Hazards Earth Syst. Sci., 13, 1795–1816, https://doi.org/10.5194/nhess-13-1795-2013, 2013.
Tinti, S., Pagnoni, G., and Zaniboni, F.: The landslides and tsunamis of the
30th of December 2002 in Stromboli analysed through numerical simulations,
B. Volcanol., 68, 462–479, 2006.
Tinti, S., Zaniboni, F., Pagnoni, G., and Manucci, A.: Stromboli Island
(Italy): Scenarios of tsunami generated by submarine landslide, Pure Appl.
Geophys., 165, 2143–2167, https://doi.org/10.1007/s00024-008-0420-y
2008.
Toro, E. F.: Shock-capturing methods for free-surface shallow flows, Wiley,
New York, 2001.
Turcotte, D. L. and Schubert, G.: Geodynamics, 2nd Edition,
Cambridge University Press, 472 pp., New York, USA, 2002.
Voellmy, A.: Uber die Zerstörungskraft von Lawinen, Schweizerische
Bauzeitung, 73, 212–285, 1955 (in German).
Ward, S. N. and Day, S.: The 1963 Landslide and Flood at Vaiont Reservoir
Italy. A tsunami ball simulation, Ital. J. Geosci., 130, 16–26,
https://doi.org/10.3301/IJG.2010.21, 2011.
Weiss, R., Fritz, H. M., and Wünnemann, K.: Hybrid modeling of the
mega-tsunami runup in Lituya Bay after half a century, Geophys. Res. Lett.,
36, L09602, https://doi.org/10.1029/2009GL037814, 2009.
Xiao, L., Ward, S., and Wang, J.: Tsunami squares approach to
landslide-generated waves: Application to Gongjiafang Landslide, Three
Gorges Reservoir, China, Pure Appl. Geophys., 172, 3639–3654, 2015.
Zweifel, A.: Impulswellen: Effecte der Rutschdichte und der Wassertiefe, PhD thesis, ETH Zurich, Zurich, 2004 (in German).
Short summary
A landslide-generated tsunami is a complex phenomenon that involves landslide dynamics, wave dynamics and their interaction. This phenomenon threatens numerous lives and infrastructures around the world. To assess this natural hazard, we developed an efficient numerical model able to simulate the landslide, the momentum transfer and the wave all at once. The good agreement between the numerical simulations and physical experiments validates our model and its novel momentum transfer approach.
A landslide-generated tsunami is a complex phenomenon that involves landslide dynamics, wave...
Altmetrics
Final-revised paper
Preprint