Articles | Volume 21, issue 4
https://doi.org/10.5194/nhess-21-1229-2021
https://doi.org/10.5194/nhess-21-1229-2021
Research article
 | 
20 Apr 2021
Research article |  | 20 Apr 2021

An efficient two-layer landslide-tsunami numerical model: effects of momentum transfer validated with physical experiments of waves generated by granular landslides

Martin Franz, Michel Jaboyedoff, Ryan P. Mulligan, Yury Podladchikov, and W. Andy Take

Related authors

Accelerated pseudo-transient method for elastic, viscoelastic, and coupled hydromechanical problems with applications
Yury Alkhimenkov and Yury Y. Podladchikov
Geosci. Model Dev., 18, 563–583, https://doi.org/10.5194/gmd-18-563-2025,https://doi.org/10.5194/gmd-18-563-2025, 2025
Short summary
Stress drops and earthquake nucleation in the simplest pressure-sensitive ideal elasto-plastic media
Yury Alkhimenkov, Lyudmila Khakimova, and Yury Podladchikov
EGUsphere, https://doi.org/10.5194/egusphere-2024-3237,https://doi.org/10.5194/egusphere-2024-3237, 2024
Short summary
Thermodynamically admissible derivation of Biot's poroelastic equations and Gassmann's equations from conservation laws
Yury Alkhimenkov and Yury Y. Podladchikov
EGUsphere, https://doi.org/10.5194/egusphere-2024-3238,https://doi.org/10.5194/egusphere-2024-3238, 2024
This preprint is open for discussion and under review for Solid Earth (SE).
Short summary
Development and performance of a high-resolution surface wave and storm surge forecast model: application to a large lake
Laura L. Swatridge, Ryan P. Mulligan, Leon Boegman, and Shiliang Shan
Geosci. Model Dev., 17, 7751–7766, https://doi.org/10.5194/gmd-17-7751-2024,https://doi.org/10.5194/gmd-17-7751-2024, 2024
Short summary
A tool for estimating ground-based InSAR acquisition characteristics prior to monitoring installation and survey and its differences from satellite InSAR
Charlotte Wolff, Marc-Henri Derron, Carlo Rivolta, and Michel Jaboyedoff
Geosci. Instrum. Method. Data Syst., 13, 225–248, https://doi.org/10.5194/gi-13-225-2024,https://doi.org/10.5194/gi-13-225-2024, 2024
Short summary

Related subject area

Sea, Ocean and Coastal Hazards
Validated probabilistic approach to estimate flood direct impacts on the population and assets on European coastlines
Enrico Duo, Juan Montes, Marine Le Gal, Tomás Fernández-Montblanc, Paolo Ciavola, and Clara Armaroli
Nat. Hazards Earth Syst. Sci., 25, 13–39, https://doi.org/10.5194/nhess-25-13-2025,https://doi.org/10.5194/nhess-25-13-2025, 2025
Short summary
Changing sea level, changing shorelines: integration of remote-sensing observations at the Terschelling barrier island
Benedikt Aschenneller, Roelof Rietbroek, and Daphne van der Wal
Nat. Hazards Earth Syst. Sci., 24, 4145–4177, https://doi.org/10.5194/nhess-24-4145-2024,https://doi.org/10.5194/nhess-24-4145-2024, 2024
Short summary
Regional modelling of extreme sea levels induced by hurricanes
Alisée A. Chaigneau, Melisa Menéndez, Marta Ramírez-Pérez, and Alexandra Toimil
Nat. Hazards Earth Syst. Sci., 24, 4109–4131, https://doi.org/10.5194/nhess-24-4109-2024,https://doi.org/10.5194/nhess-24-4109-2024, 2024
Short summary
New insights into combined surfzone, embayment, and estuarine bathing hazards
Christopher Stokes, Timothy Poate, Gerd Masselink, Tim Scott, and Steve Instance
Nat. Hazards Earth Syst. Sci., 24, 4049–4074, https://doi.org/10.5194/nhess-24-4049-2024,https://doi.org/10.5194/nhess-24-4049-2024, 2024
Short summary
Dynamic projections of extreme sea levels for western Europe based on ocean and wind-wave modelling
Alisée A. Chaigneau, Angélique Melet, Aurore Voldoire, Maialen Irazoqui Apecechea, Guillaume Reffray, Stéphane Law-Chune, and Lotfi Aouf
Nat. Hazards Earth Syst. Sci., 24, 4031–4048, https://doi.org/10.5194/nhess-24-4031-2024,https://doi.org/10.5194/nhess-24-4031-2024, 2024
Short summary

Cited articles

Abadie, S., Morichon, D., Grilli, S., and Glockner, S.: Numerical simulation of waves generated by landslides using a multiple-fluid Navier-Stokes model, Coastal Eng., 57, 779–794, 2010. 
Bosa, S. and Petti, M.: Shallow water numerical model of the wave generated by the Vajont landslide, Environ. Model. Softw., 26, 406–418, https://doi.org/10.1016/j.envsoft.2010.10.001, 2011. 
Clous, L. and Abadie, S.: Simulation of energy transfers 935 in waves generated by granular slides, Landslides, 16, 1663–1679,, 2019. 
Enet, F. and Grilli, S. T.: Experimental study of tsunami generation by three-dimensional rigid underwater landslide, J. Waterw. Port Coast., 133, 442–454, https://doi.org/10.1061/(ASCE)0733-950X(2007)133:6(442), 2007. 
Fischer, J. T., Kowalski, J., and Pudasaini, S. P.: Topographic curvature effects in applied avalanche modeling, Cold Reg. Sci. Technol., 74, 21–30, https://doi.org/10.1016/j.coldregions.2012.01.005, 2012. 
Download
Short summary
A landslide-generated tsunami is a complex phenomenon that involves landslide dynamics, wave dynamics and their interaction. This phenomenon threatens numerous lives and infrastructures around the world. To assess this natural hazard, we developed an efficient numerical model able to simulate the landslide, the momentum transfer and the wave all at once. The good agreement between the numerical simulations and physical experiments validates our model and its novel momentum transfer approach.
Share
Altmetrics
Final-revised paper
Preprint