Articles | Volume 20, issue 3
Nat. Hazards Earth Syst. Sci., 20, 859–875, 2020
https://doi.org/10.5194/nhess-20-859-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue: Remote sensing, modelling-based hazard and risk assessment,...
Research article 27 Mar 2020
Research article | 27 Mar 2020
Estimation of evapotranspiration by the Food and Agricultural Organization of the United Nations (FAO) Penman–Monteith temperature (PMT) and Hargreaves–Samani (HS) models under temporal and spatial criteria – a case study in Duero basin (Spain)
Rubén Moratiel et al.
Related authors
Juan José Martín-Sotoca, Antonio Saa-Requejo, Rubén Moratiel, Nicolas Dalezios, Ioannis Faraslis, and Ana María Tarquis
Nat. Hazards Earth Syst. Sci., 19, 1685–1702, https://doi.org/10.5194/nhess-19-1685-2019, https://doi.org/10.5194/nhess-19-1685-2019, 2019
Short summary
Short summary
Vegetation indices based on satellite images, such as the normalized difference vegetation index (NDVI), have been used for damaged pasture insurance. The occurrence of damage is usually defined by NDVI thresholds mainly based on normal statistics. In this work a pasture area in Spain was delimited by MODIS images. A statistical analysis of NDVI was applied to search for alternative distributions. Results show that generalized extreme value distributions present a better fit than normal ones.
R. Moratiel, A. Martínez-Cob, and B. Latorre
Nat. Hazards Earth Syst. Sci., 13, 1401–1410, https://doi.org/10.5194/nhess-13-1401-2013, https://doi.org/10.5194/nhess-13-1401-2013, 2013
Jonathan Rizzi, Ana M. Tarquis, Anne Gobin, Mikhail Semenov, Wenwu Zhao, and Paolo Tarolli
Nat. Hazards Earth Syst. Sci., 21, 3873–3877, https://doi.org/10.5194/nhess-21-3873-2021, https://doi.org/10.5194/nhess-21-3873-2021, 2021
Panagiotis T. Nastos, Nicolas R. Dalezios, Ioannis N. Faraslis, Kostas Mitrakopoulos, Anna Blanta, Marios Spiliotopoulos, Stavros Sakellariou, Pantelis Sidiropoulos, and Ana M. Tarquis
Nat. Hazards Earth Syst. Sci., 21, 1935–1954, https://doi.org/10.5194/nhess-21-1935-2021, https://doi.org/10.5194/nhess-21-1935-2021, 2021
Short summary
Short summary
Risk assessment consists of three steps: identification, estimation and evaluation. Nevertheless, the risk management framework also includes a fourth step, the need for feedback on all the risk assessment undertakings. However, there is a lack of such feedback, which constitutes a serious deficiency in the reduction of environmental hazards at the present time. The objective of this review paper consists of addressing meteorological hazards and extremes within the risk management framework.
Irene Blanco-Gutiérrez, Rhys Manners, Consuelo Varela-Ortega, Ana M. Tarquis, Lucieta G. Martorano, and Marisol Toledo
Nat. Hazards Earth Syst. Sci., 20, 797–813, https://doi.org/10.5194/nhess-20-797-2020, https://doi.org/10.5194/nhess-20-797-2020, 2020
Short summary
Short summary
The Amazon rainforest is being destroyed, resulting in negative ecological and social impacts. We explore how stakeholders perceive the causes of the Amazon's degradation in Bolivia and Brazil and develop a series of scenarios to help strengthen the balance between human development and environmental conservation. The results suggest that the application of governance and well-integrated technical and social reform strategies encourages positive regional changes even under climate change.
Omar Roberto Valverde-Arias, Paloma Esteve, Ana María Tarquis, and Alberto Garrido
Nat. Hazards Earth Syst. Sci., 20, 345–362, https://doi.org/10.5194/nhess-20-345-2020, https://doi.org/10.5194/nhess-20-345-2020, 2020
Short summary
Short summary
We designed an index-based insurance (IBI) for drought and flood in rice crops in Babahoyo (Ecuador). We assessed Babahoyo's soil, climatic and topographic variability, finding two homogeneous zones inside this area. We set differentiated insurance premiums according to the particular risk status of each zone. Results demonstrate that this IBI is an efficient risk transfer tool for policyholders. This insurance design could contribute to stabilizing farmers' incomes and rice production.
María del Pilar Jiménez-Donaire, Ana Tarquis, and Juan Vicente Giráldez
Nat. Hazards Earth Syst. Sci., 20, 21–33, https://doi.org/10.5194/nhess-20-21-2020, https://doi.org/10.5194/nhess-20-21-2020, 2020
Short summary
Short summary
A new combined drought indicator (CDI) is proposed that integrates rainfall, soil moisture and vegetation dynamics. The performance of this indicator was evaluated against crop damage data from agricultural insurance schemes in five different areas in SW Spain. Results show that this indicator was able to predict important droughts in 2004–2005 and 2011–2012, marked by crop damage of between 70 % and 95 % of the total insured area. This opens important applications for improving insurance schemes.
Juan José Martín-Sotoca, Antonio Saa-Requejo, Rubén Moratiel, Nicolas Dalezios, Ioannis Faraslis, and Ana María Tarquis
Nat. Hazards Earth Syst. Sci., 19, 1685–1702, https://doi.org/10.5194/nhess-19-1685-2019, https://doi.org/10.5194/nhess-19-1685-2019, 2019
Short summary
Short summary
Vegetation indices based on satellite images, such as the normalized difference vegetation index (NDVI), have been used for damaged pasture insurance. The occurrence of damage is usually defined by NDVI thresholds mainly based on normal statistics. In this work a pasture area in Spain was delimited by MODIS images. A statistical analysis of NDVI was applied to search for alternative distributions. Results show that generalized extreme value distributions present a better fit than normal ones.
Carmelo Alonso, Ana M. Tarquis, Ignacio Zúñiga, and Rosa M. Benito
Nonlin. Processes Geophys., 24, 141–155, https://doi.org/10.5194/npg-24-141-2017, https://doi.org/10.5194/npg-24-141-2017, 2017
Short summary
Short summary
NDVI and EVI vegetation indexes, estimated from satellite images, can been used to estimate root zone soil moisture. However, depending on the spatial and radiometric resolution of the sensors used, estimations could change. In this work, images taken by satellites IKONOS-2 and LANDSAT-7 of the same location are compared on the four bands involved in these vegetation indexes. The results show that spatial resolution has a similar scaling effect in the four bands, but not radiometric resolution.
Ana M. Tarquis, María Teresa Castellanos, Maria Carmen Cartagena, Augusto Arce, Francisco Ribas, María Jesús Cabello, Juan López de Herrera, and Nigel R. A. Bird
Nonlin. Processes Geophys., 24, 77–87, https://doi.org/10.5194/npg-24-77-2017, https://doi.org/10.5194/npg-24-77-2017, 2017
Short summary
Short summary
Melon crop got different levels of N that constituted a contribution to the variation of soil N at mainly larger scales. During its development a proportion of the N was taken up, adding a second factor of variability at smaller scales. After the melon harvest, the wheat was sown across the plots and harvested at the end of the season. Wheat was used as a N sink crop and allowed us to evaluate the soil N residual. Multiscale and relative entropy were applied to study N scale dependencies.
N. R. Dalezios, A. Blanta, N. V. Spyropoulos, and A. M. Tarquis
Nat. Hazards Earth Syst. Sci., 14, 2435–2448, https://doi.org/10.5194/nhess-14-2435-2014, https://doi.org/10.5194/nhess-14-2435-2014, 2014
P. Cely, A. M. Tarquis, J. Paz-Ferreiro, A. Méndez, and G. Gascó
Solid Earth, 5, 585–594, https://doi.org/10.5194/se-5-585-2014, https://doi.org/10.5194/se-5-585-2014, 2014
A. Matulka, P. López, J. M. Redondo, and A. Tarquis
Nonlin. Processes Geophys., 21, 269–278, https://doi.org/10.5194/npg-21-269-2014, https://doi.org/10.5194/npg-21-269-2014, 2014
R. Moratiel, A. Martínez-Cob, and B. Latorre
Nat. Hazards Earth Syst. Sci., 13, 1401–1410, https://doi.org/10.5194/nhess-13-1401-2013, https://doi.org/10.5194/nhess-13-1401-2013, 2013
Related subject area
Hydrological Hazards
Modeling of a compound flood induced by the levee breach at Qianbujing Creek, Shanghai, during Typhoon Fitow
Improving flood damage assessments in data-scarce areas by retrieval of building characteristics through UAV image segmentation and machine learning – a case study of the 2019 floods in southern Malawi
Assessment of direct economic losses of flood disasters based on spatial valuation of land use and quantification of vulnerabilities: a case study on the 2014 flood in Lishui city of China
Evaluating integrated water management strategies to inform hydrological drought mitigation
Global riverine flood risk – how do hydrogeomorphic floodplain maps compare to flood hazard maps?
Review article. Factors leading to the occurrence of flood fatalities: a systematic review of research papers published between 2010 and 2020
Global flood exposure from different sized rivers
A paradigm of extreme rainfall pluvial floods in complex urban areas: the flood event of 15 July 2020 in Palermo (Italy)
Space-time clustering of climate extremes amplify global climate impacts, leading to fat-tailed risk
Leveraging multi-model season-ahead streamflow forecasts to trigger advanced flood preparedness in Peru
Assessment of centennial (1918–2019) drought features in the Campania region by historical in situ measurements (southern Italy)
Selecting and analysing climate change adaptation measures at six research sites across Europe
Assessing local impacts of the 1700 CE Cascadia earthquake and tsunami using tree-ring growth histories: a case study in South Beach, Oregon, USA
Temporal changes in rainfall intensity-duration thresholds for post-wildfire flash floods and sensitivity to spatiotemporal distributions of rainfall
Assessing climate-change-induced flood risk in the Conasauga River watershed: an application of ensemble hydrodynamic inundation modeling
Integrated mapping of water-related disasters using the analytical hierarchy process under land use change and climate change issues in Laos
Soil moisture and streamflow deficit anomaly index: an approach to quantify drought hazards by combining deficit and anomaly
Flash Flood warning in context: combining local knowledge and large-scale hydro-meteorological patterns
The uncertainty of flood frequency analyses in hydrodynamic model simulations
Flood risk assessment of the European road network
The impact of hydrological model structure on the simulation of extreme runoff events
Hydrometeorological analysis and forecasting of a 3 d flash-flood-triggering desert rainstorm
Land subsidence due to groundwater pumping: hazard probability assessment through the combination of Bayesian model and fuzzy set theory
Quantification of continuous flood hazard using random forest classification and flood insurance claims at large spatial scales: a pilot study in southeast Texas
Assessing Chinese flood protection and its social divergence
Typhoon rainstorm simulations with radar data assimilation on the southeast coast of China
Simulating historical flood events at the continental scale: observational validation of a large-scale hydrodynamic model
A dynamic bidirectional coupled surface flow model for flood inundation simulation
A revision of the Combined Drought Indicator (CDI) used in the European Drought Observatory (EDO)
Compound flood events: different pathways–different impacts–different coping options?
Drought propagation and its impact on groundwater hydrology of wetlands: a case study on the Doode Bemde nature reserve (Belgium)
Modelling the Brumadinho tailings dam failure, the subsequent loss of life and how it could have been reduced
Assessment of probability distributions and analysis of the minimum storage draft rate in the equatorial region
Downsizing parameter ensembles for simulations of rare floods
Dynamic maps of human exposure to floods based on mobile phone data
What controls the coarse sediment yield to a Mediterranean delta? The case of the Llobregat River (NE Iberian Peninsula)
Open check dams and large wood: head losses and release conditions
Forecasting flood hazards in real time: a surrogate model for hydrometeorological events in an Andean watershed
Comparison of estimates of global flood models for flood hazard and exposed gross domestic product: a China case study
Evaluation of EURO-CORDEX (Coordinated Regional Climate Downscaling Experiment for the Euro-Mediterranean area) historical simulations by high-quality observational datasets in southern Italy: insights on drought assessment
A multidisciplinary drought catalogue for southwestern Germany dating back to 1801
Simulation of extreme rainfall and streamflow events in small Mediterranean watersheds with a one-way-coupled atmospheric–hydrologic modelling system
Annual flood damage influenced by El Niño in the Kan River basin, Iran
Multivariate statistical modelling of the drivers of compound flood events in south Florida
Building hazard maps with differentiated risk perception for flood impact assessment
Challenges in flood modeling over data-scarce regions: how to exploit globally available soil moisture products to estimate antecedent soil wetness conditions in Morocco
A risk-based network analysis of distributed in-stream leaky barriers for flood risk management
Testing the impact of direct and indirect flood warnings on population behaviour using an agent-based model
Hydrogeomorphological analysis and modelling for a comprehensive understanding of flash-flood damage processes: the 9 October 2018 event in northeastern Mallorca
Hydrological impacts of climate change on small ungauged catchments – results from a global climate model–regional climate model–hydrologic model chain
Yuhan Yang, Jie Yin, Weiguo Zhang, Yan Zhang, Yi Lu, Yufan Liu, Aoyue Xiao, Yunxiao Wang, and Wenming Song
Nat. Hazards Earth Syst. Sci., 21, 3563–3572, https://doi.org/10.5194/nhess-21-3563-2021, https://doi.org/10.5194/nhess-21-3563-2021, 2021
Short summary
Short summary
This is the first time the compound flooding process of heavy rain and levee-breach-induced flooding has been modeled. Real-life cases of historical flooding events have been adequately investigated. Our results provide a comprehensive view of the spatial patterns of the flood evolution, the dynamic process, and mechanism of these cases, which can help decision makers to develop effective emergency response plans and flood adaptation strategies.
Lucas Wouters, Anaïs Couasnon, Marleen C. de Ruiter, Marc J. C. van den Homberg, Aklilu Teklesadik, and Hans de Moel
Nat. Hazards Earth Syst. Sci., 21, 3199–3218, https://doi.org/10.5194/nhess-21-3199-2021, https://doi.org/10.5194/nhess-21-3199-2021, 2021
Short summary
Short summary
This research introduces a novel approach to estimate flood damage in Malawi by applying a machine learning model to UAV imagery. We think that the development of such a model is an essential step to enable the swift allocation of resources for recovery by humanitarian decision-makers. By comparing this method (EUR 10 140) to a conventional land-use-based approach (EUR 15 782) for a specific flood event, recommendations are made for future assessments.
Haixia Zhang, Weihua Fang, Hua Zhang, and Lu Yu
Nat. Hazards Earth Syst. Sci., 21, 3161–3174, https://doi.org/10.5194/nhess-21-3161-2021, https://doi.org/10.5194/nhess-21-3161-2021, 2021
Short summary
Short summary
Taking a single flood disaster in Lishui city as an example, a rapid and refined assessment of economic loss is studied and verified, which can effectively simulate the distribution of loss ratio and loss value. It includes the construction of land use type and value based on data fusion and an expert questionnaire survey, the fitting and calibration of vulnerability curves based on an existing database and disaster loss reporting, and estimation of loss ratio and loss value by spatial analysis.
Doris E. Wendt, John P. Bloomfield, Anne F. Van Loon, Margaret Garcia, Benedikt Heudorfer, Joshua Larsen, and David M. Hannah
Nat. Hazards Earth Syst. Sci., 21, 3113–3139, https://doi.org/10.5194/nhess-21-3113-2021, https://doi.org/10.5194/nhess-21-3113-2021, 2021
Short summary
Short summary
Managing water demand and supply during droughts is complex, as highly pressured human–water systems can overuse water sources to maintain water supply. We evaluated the impact of drought policies on water resources using a socio-hydrological model. For a range of hydrogeological conditions, we found that integrated drought policies reduce baseflow and groundwater droughts most if extra surface water is imported, reducing the pressure on water resources during droughts.
Sara Lindersson, Luigia Brandimarte, Johanna Mård, and Giuliano Di Baldassarre
Nat. Hazards Earth Syst. Sci., 21, 2921–2948, https://doi.org/10.5194/nhess-21-2921-2021, https://doi.org/10.5194/nhess-21-2921-2021, 2021
Short summary
Short summary
Riverine flood risk assessments require the identification of areas prone to potential flooding. We find that (topography-based) hydrogeomorphic floodplain maps can in many cases be useful for riverine flood risk assessments, particularly where hydrologic data are scarce. For 26 countries across the global south, we also demonstrate how dataset choice influences the estimated number of people living within flood-prone zones.
Olga Petrucci
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2021-269, https://doi.org/10.5194/nhess-2021-269, 2021
Revised manuscript accepted for NHESS
Short summary
Short summary
This systematic review highlights flood mortality factors and the strategies to mitigate them, as obtained from 44 scientific articles published between 2010 and 2020. The findings are the classification of flood mortality drivers in two groups, and the identification of strategies to cope with them. Future studies should fill the data gaps about flood fatalities in developing countries and information on people who have survived floods, that can be useful in educational campaigns.
Mark V. Bernhofen, Mark A. Trigg, P. Andrew Sleigh, Christopher C. Sampson, and Andrew M. Smith
Nat. Hazards Earth Syst. Sci., 21, 2829–2847, https://doi.org/10.5194/nhess-21-2829-2021, https://doi.org/10.5194/nhess-21-2829-2021, 2021
Short summary
Short summary
The use of different global datasets to calculate flood exposure can lead to differences in global flood exposure estimates. In this study, we use three global population datasets and a simple measure of a river’s flood susceptibility (based on the terrain alone) to explore how the choice of population data and the size of river represented in global flood models affect global and national flood exposure estimates.
Antonio Francipane, Dario Pumo, Marco Sinagra, Goffredo La Loggia, and Leonardo Valerio Noto
Nat. Hazards Earth Syst. Sci., 21, 2563–2580, https://doi.org/10.5194/nhess-21-2563-2021, https://doi.org/10.5194/nhess-21-2563-2021, 2021
Short summary
Short summary
In the last few years, some cities in the Mediterranean area have witnessed an increase in extreme rainfall events such as urban floods. The study focuses on a particularly intense urban flood that occurred in Palermo on 15 July 2020, which highlighted the need for a shift in the way stormwater in urban settlements is managed. We think that the framework used to study the impacts of the event and some conclusive remarks could be easily transferred to other urban contexts.
Luc Bonnafous and Upmanu Lall
Nat. Hazards Earth Syst. Sci., 21, 2277–2284, https://doi.org/10.5194/nhess-21-2277-2021, https://doi.org/10.5194/nhess-21-2277-2021, 2021
Short summary
Short summary
Extreme climate events can cause human and economic catastrophe at the global scale. For specific sectors, such as humanitarian aid or insurance, being able to understand how (i.e., with which frequency and intensity) these events can occur simultaneously at different locations or several times in a given amount of time and hit critical assets is all-important to design contingency plans. Here we develop an indicator to study co-occurence in space and time of wet and dry extremes.
Colin Keating, Donghoon Lee, Juan Bazo, and Paul Block
Nat. Hazards Earth Syst. Sci., 21, 2215–2231, https://doi.org/10.5194/nhess-21-2215-2021, https://doi.org/10.5194/nhess-21-2215-2021, 2021
Short summary
Short summary
Disaster planning has historically underallocated resources for flood preparedness, but evidence supports reduced vulnerability via early actions. We evaluate the ability of multiple season-ahead streamflow prediction models to appropriately trigger early actions for the flood-prone Marañón River and Piura River in Peru. Our findings suggest that locally tailored statistical models may offer improved performance compared to operational physically based global models in low-data environments.
Antonia Longobardi, Ouafik Boulariah, and Paolo Villani
Nat. Hazards Earth Syst. Sci., 21, 2181–2196, https://doi.org/10.5194/nhess-21-2181-2021, https://doi.org/10.5194/nhess-21-2181-2021, 2021
Short summary
Short summary
The current research was aimed at the description of historical drought periods that have characterized a broad area of the Mediterranean Basin and the Campania region, located in southern Italy. Knowledge of the past conditions would increase the awareness of the communities with respect to the frequency and severity of critical conditions which have affected and might further affect the environment in which they live.
Henk-Jan van Alphen, Clemens Strehl, Fabian Vollmer, Eduard Interwies, Anasha Petersen, Stefan Görlitz, Luca Locatelli, Montse Martinez Puentes, Maria Guerrero Hidalga, Elias Giannakis, Teun Spek, Marc Scheibel, Erle Kristvik, Fernanda Rocha, and Emmy Bergsma
Nat. Hazards Earth Syst. Sci., 21, 2145–2161, https://doi.org/10.5194/nhess-21-2145-2021, https://doi.org/10.5194/nhess-21-2145-2021, 2021
Short summary
Short summary
This paper presents an approach to selecting and analysing climate change adaptation measures, using a combination of scientific analysis and stakeholder interaction. This approach was applied in six cases across Europe, concerning drought and extreme precipitation. Although the cases vary widely, the approach yielded decision-relevant outcomes for the development of adaptation strategies, regarding socio-economic impacts of measures and potential barriers to implementation.
Robert P. Dziak, Bryan A. Black, Yong Wei, and Susan G. Merle
Nat. Hazards Earth Syst. Sci., 21, 1971–1982, https://doi.org/10.5194/nhess-21-1971-2021, https://doi.org/10.5194/nhess-21-1971-2021, 2021
Short summary
Short summary
On 26 January 1700 CE, a massive earthquake and tsunami struck the US Pacific Northwest west coast. The tsunami caused severe damage to coastal forests in Washington State. However, evidence of the impact on coastal Oregon trees has been difficult to find. We present some of the first evidence of tree-ring growth changes caused by the 1700 tsunami from an old-growth Douglas-fir stand located in South Beach, Oregon. We also present a tsunami inundation model of the 1700 earthquake.
Tao Liu, Luke A. McGuire, Nina Oakley, and Forest Cannon
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2021-157, https://doi.org/10.5194/nhess-2021-157, 2021
Revised manuscript under review for NHESS
Short summary
Short summary
A well-constrained rainfall-runoff model forced by radar-derived precipitation is used to define rainfall intensity-duration (ID) thresholds for flash flood. The rainfall ID doubles in five years after a severe wildfire in a watershed in southern California, USA. Rainfall ID perform stably well when the intense pulses of rainfall over durations of 30–60 minutes that cover at least 15 %–25 % of the watershed. This finding could help issuing flash flood warnings based on radar-derived precipitation.
Tigstu T. Dullo, George K. Darkwah, Sudershan Gangrade, Mario Morales-Hernández, M. Bulbul Sharif, Alfred J. Kalyanapu, Shih-Chieh Kao, Sheikh Ghafoor, and Moetasim Ashfaq
Nat. Hazards Earth Syst. Sci., 21, 1739–1757, https://doi.org/10.5194/nhess-21-1739-2021, https://doi.org/10.5194/nhess-21-1739-2021, 2021
Short summary
Short summary
We studied the effect of potential future climate change on floods, flood protection, and electricity infrastructure in the Conasauga River watershed in the US using ensemble hydrodynamic modeling. We used a GPU-accelerated Two-dimensional Runoff Inundation Toolkit for Operational Needs (TRITON) hydrodynamic model to simulate floods. Overall, this study demonstrates how a fast hydrodynamic model can enhance flood frequency maps and vulnerability assessment under changing climatic conditions.
Sengphrachanh Phakonkham, So Kazama, and Daisuke Komori
Nat. Hazards Earth Syst. Sci., 21, 1551–1567, https://doi.org/10.5194/nhess-21-1551-2021, https://doi.org/10.5194/nhess-21-1551-2021, 2021
Short summary
Short summary
The main objective of this study was to propose a new approach to integrating hazard maps to detect hazardous areas on a national scale, for which area-limited data are available. The analytical hierarchy process (AHP) was used as a tool to combine the different hazard maps into an integrated hazard map. The results from integrated hazard maps can identify dangerous areas from both individual and integrated hazards.
Eklavyya Popat and Petra Döll
Nat. Hazards Earth Syst. Sci., 21, 1337–1354, https://doi.org/10.5194/nhess-21-1337-2021, https://doi.org/10.5194/nhess-21-1337-2021, 2021
Short summary
Short summary
Two drought hazard indices are presented that combine drought deficit and anomaly aspects: one for soil moisture drought (SMDAI) where we simplified the DSI and the other for streamflow drought (QDAI), which is to our knowledge the first ever deficit anomaly drought index including surface water demand. Both indices are tested at the global scale with WaterGAP 2.2d outputs, providing more differentiated spatial and temporal patterns distinguishing the actual degree of respective drought hazard.
Agathe Bucherie, Micha Werner, Marc van den Homberg, and Simon Tembo
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2021-107, https://doi.org/10.5194/nhess-2021-107, 2021
Short summary
Short summary
Local communities in North Malawi have a well-developed knowledge of the conditions leading to flash flood, spatially and temporally. Scientific analysis of catchment geomorphology and global re-analysis datasets corroborates this local knowledge, underlining the potential of these large scale scientific datasets. Combining local knowledge with contemporary scientific datasets provides a common understanding of flash flood events, contributing to a more people-centred warning to flash floods.
Xudong Zhou, Wenchao Ma, Wataru Echizenya, and Dai Yamazaki
Nat. Hazards Earth Syst. Sci., 21, 1071–1085, https://doi.org/10.5194/nhess-21-1071-2021, https://doi.org/10.5194/nhess-21-1071-2021, 2021
Short summary
Short summary
This article assesses different uncertainties in the analysis of flood risk and found the runoff generated before the river routing is the primary uncertainty source. This calls for attention to be focused on selecting an appropriate runoff for the flood analysis. The uncertainties are reflected in the flood water depth, inundation area and the exposure of the population and economy to the floods.
Kees C. H. van Ginkel, Francesco Dottori, Lorenzo Alfieri, Luc Feyen, and Elco E. Koks
Nat. Hazards Earth Syst. Sci., 21, 1011–1027, https://doi.org/10.5194/nhess-21-1011-2021, https://doi.org/10.5194/nhess-21-1011-2021, 2021
Short summary
Short summary
This study presents a state-of-the-art approach to assess flood damage for each unique road segment in Europe. We find a mean total flood risk of EUR 230 million per year for all individual road segments combined. We identify flood hotspots in the Alps, along the Sava River, and on the Scandinavian Peninsula. To achieve this, we propose a new set of damage curves for roads and challenge the community to validate and improve these. Analysis of network effects can be easily added to our analysis.
Gijs van Kempen, Karin van der Wiel, and Lieke Anna Melsen
Nat. Hazards Earth Syst. Sci., 21, 961–976, https://doi.org/10.5194/nhess-21-961-2021, https://doi.org/10.5194/nhess-21-961-2021, 2021
Short summary
Short summary
In this study, we combine climate model results with a hydrological model to investigate uncertainties in flood and drought risk. With the climate model, 2000 years of
current climatewas created. The hydrological model consisted of several building blocks that we could adapt. In this way, we could investigate the effect of these hydrological building blocks on high- and low-flow risk in four different climate zones with return periods of up to 500 years.
Yair Rinat, Francesco Marra, Moshe Armon, Asher Metzger, Yoav Levi, Pavel Khain, Elyakom Vadislavsky, Marcelo Rosensaft, and Efrat Morin
Nat. Hazards Earth Syst. Sci., 21, 917–939, https://doi.org/10.5194/nhess-21-917-2021, https://doi.org/10.5194/nhess-21-917-2021, 2021
Short summary
Short summary
Flash floods are among the most devastating and lethal natural hazards worldwide. The study of such events is important as flash floods are poorly understood and documented processes, especially in deserts. A small portion of the studied basin (1 %–20 %) experienced extreme rainfall intensities resulting in local flash floods of high magnitudes. Flash floods started and reached their peak within tens of minutes. Forecasts poorly predicted the flash floods mostly due to location inaccuracy.
Huijun Li, Lin Zhu, Gaoxuan Guo, Yan Zhang, Zhenxue Dai, Xiaojuan Li, Linzhen Chang, and Pietro Teatini
Nat. Hazards Earth Syst. Sci., 21, 823–835, https://doi.org/10.5194/nhess-21-823-2021, https://doi.org/10.5194/nhess-21-823-2021, 2021
Short summary
Short summary
We propose a method that integrates fuzzy set theory and a weighted Bayesian model to evaluate the hazard probability of land subsidence based on Interferometric Synthetic Aperture Radar technology. The proposed model can represent the uncertainty and ambiguity in the evaluation process, and results can be compared to traditional qualitative methods.
William Mobley, Antonia Sebastian, Russell Blessing, Wesley E. Highfield, Laura Stearns, and Samuel D. Brody
Nat. Hazards Earth Syst. Sci., 21, 807–822, https://doi.org/10.5194/nhess-21-807-2021, https://doi.org/10.5194/nhess-21-807-2021, 2021
Short summary
Short summary
In southeast Texas, flood impacts are exacerbated by increases in impervious surfaces, human inaction, outdated FEMA-defined floodplains and modeling assumptions, and changing environmental conditions. The current flood maps are inadequate indicators of flood risk, especially in urban areas. This study proposes a novel method to model flood hazard and impact in urban areas. Specifically, we used novel flood risk modeling techniques to produce annualized flood hazard maps.
Dan Wang, Paolo Scussolini, and Shiqiang Du
Nat. Hazards Earth Syst. Sci., 21, 743–755, https://doi.org/10.5194/nhess-21-743-2021, https://doi.org/10.5194/nhess-21-743-2021, 2021
Short summary
Short summary
Flood protection level (FPL) is vital for risk analysis and management but scarce in realty particularly for developing countries. This paper develops a policy-based FPL dataset for China and validates it using local FPL designs. The FPLs are much higher than that in a global database, suggesting Chinese flood risk could be lower with the policy-required FPLs. Moreover, the FPLs are lower for western China and vulnerable people, implying a spatial and social divergence of the FPLs.
Jiyang Tian, Ronghua Liu, Liuqian Ding, Liang Guo, and Bingyu Zhang
Nat. Hazards Earth Syst. Sci., 21, 723–742, https://doi.org/10.5194/nhess-21-723-2021, https://doi.org/10.5194/nhess-21-723-2021, 2021
Short summary
Short summary
A typhoon always comes with heavy rainfall which leads to great loss. The aim of this study is to explore the reasonable use of Doppler radar data assimilation to correct the initial and lateral boundary conditions of the numerical weather prediction (NWP) systems for typhoon rainstorm forecasts at catchment scale. The results show that assimilating radial velocity at a time interval of 1 h can significantly improve the rainfall simulations and outperform the other assimilation modes.
Oliver E. J. Wing, Andrew M. Smith, Michael L. Marston, Jeremy R. Porter, Mike F. Amodeo, Christopher C. Sampson, and Paul D. Bates
Nat. Hazards Earth Syst. Sci., 21, 559–575, https://doi.org/10.5194/nhess-21-559-2021, https://doi.org/10.5194/nhess-21-559-2021, 2021
Short summary
Short summary
Global flood models are difficult to validate. They generally output theoretical flood events of a given probability rather than an observed event that they can be tested against. Here, we adapt a US-wide flood model to enable the rapid simulation of historical flood events in order to more robustly understand model biases. For 35 flood events, we highlight the challenges of model validation amidst observational data errors yet evidence the increasing skill of large-scale models.
Chunbo Jiang, Qi Zhou, Wangyang Yu, Chen Yang, and Binliang Lin
Nat. Hazards Earth Syst. Sci., 21, 497–515, https://doi.org/10.5194/nhess-21-497-2021, https://doi.org/10.5194/nhess-21-497-2021, 2021
Short summary
Short summary
We proposed a new dynamic coupling model for flood simulation and prediction. The model can dynamically alter the coupling boundary position based on the characteristic theory to determine the non-inundation and inundation regions, taking into account both mass and momentum exchange. Then the model was validated by several classic numerical test cases as well as experiment data and implemented in a real study case. Results show its capability for flood simulation and risk assessments.
Carmelo Cammalleri, Carolina Arias-Muñoz, Paulo Barbosa, Alfred de Jager, Diego Magni, Dario Masante, Marco Mazzeschi, Niall McCormick, Gustavo Naumann, Jonathan Spinoni, and Jürgen Vogt
Nat. Hazards Earth Syst. Sci., 21, 481–495, https://doi.org/10.5194/nhess-21-481-2021, https://doi.org/10.5194/nhess-21-481-2021, 2021
Short summary
Short summary
Building on almost ten years of expertise and operational application of the Combined Drought Indicator (CDI) for the monitoring of agricultural droughts in Europe within the European Commission's European Drought Observatory (EDO), this paper proposes a revised version of the index. This paper shows that the proposed revised CDI reliably reproduces the evolution of major droughts, outperforming the current version of the indicator, especially for long-lasting events.
Annegret H. Thieken, Guilherme S. Mohor, Heidi Kreibich, and Meike Müller
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2021-27, https://doi.org/10.5194/nhess-2021-27, 2021
Revised manuscript accepted for NHESS
Short summary
Short summary
Different floods hit Germany recently. While there was a river flood with some dike breaches in 2013, flooding in 2016 resulted directly from heavy rainfall, causing overflowing drainage systems in urban areas and destructive flash floods in steep catchments. Based on survey data, we analyzed how residents coped with these different floods. We observed significantly different flood impacts, warnings, behavior and recovery offering entry points for tailored risk communication and support.
Buruk Kitachew Wossenyeleh, Kaleb Asnake Worku, Boud Verbeiren, and Marijke Huysmans
Nat. Hazards Earth Syst. Sci., 21, 39–51, https://doi.org/10.5194/nhess-21-39-2021, https://doi.org/10.5194/nhess-21-39-2021, 2021
Short summary
Short summary
Droughts are mainly caused by a reduction of precipitation, and they affect both surface and groundwater resources. Drought propagates through the hydrological cycle and may impact vulnerable ecosystems. We investigated drought propagation in the hydrological cycle, focusing on assessing its impact on a groundwater-fed wetland ecosystem in the Doode Bemde wetland in central Belgium. We used a method combining meteorological drought indices, water balance models and groundwater models.
Darren Lumbroso, Mark Davison, Richard Body, and Gregor Petkovšek
Nat. Hazards Earth Syst. Sci., 21, 21–37, https://doi.org/10.5194/nhess-21-21-2021, https://doi.org/10.5194/nhess-21-21-2021, 2021
Short summary
Short summary
A tailings dam is an earth embankment used to store the waste from mines, known as tailings. In 2019, the Brumadinho tailings dam in Brazil failed, releasing a mudflow which killed ~ 300 people. This paper details the use of an agent-based model to estimate the risk to people downstream of this dam. The agent-based model represents each individual person. The modelling indicated that if a warning had been issued as the dam failed, the number of fatalities could have been reduced.
Hasrul Hazman Hasan, Siti Fatin Mohd Razali, Nur Shazwani Muhammad, and Firdaus Mohamad Hamzah
Nat. Hazards Earth Syst. Sci., 21, 1–19, https://doi.org/10.5194/nhess-21-1-2021, https://doi.org/10.5194/nhess-21-1-2021, 2021
Short summary
Short summary
This study aims to understand the concept of low-flow drought characteristics and the predictive significance of river storage draft rates in managing sustainable water catchment. This study consists of four types of analyses: streamflow trend analysis, low-flow frequency analysis, determination of the minimum storage draft rates and hydrological-drought characteristics. The results are useful for developing measures to maintain flow variability and can be used to develop water policies.
Anna E. Sikorska-Senoner, Bettina Schaefli, and Jan Seibert
Nat. Hazards Earth Syst. Sci., 20, 3521–3549, https://doi.org/10.5194/nhess-20-3521-2020, https://doi.org/10.5194/nhess-20-3521-2020, 2020
Short summary
Short summary
This work proposes methods for reducing the computational requirements of hydrological simulations for the estimation of very rare floods that occur on average less than once in 1000 years. These methods enable the analysis of long streamflow time series (here for example 10 000 years) at low computational costs and with modelling uncertainty. They are to be used within continuous simulation frameworks with long input time series and are readily transferable to similar simulation tasks.
Matteo Balistrocchi, Rodolfo Metulini, Maurizio Carpita, and Roberto Ranzi
Nat. Hazards Earth Syst. Sci., 20, 3485–3500, https://doi.org/10.5194/nhess-20-3485-2020, https://doi.org/10.5194/nhess-20-3485-2020, 2020
Short summary
Short summary
Flood risk is an increasing threat to urban communities and their strategical assets worldwide. Non-structural practices, such as emergency management plans, can be effective in order to decrease the flood risk in strongly urbanized areas. Mobile phone data provide reliable estimates of the spatiotemporal variability in people exposed to flooding, thus enhancing the preparedness of stakeholders involved in flood risk management. Further, practical advantages emerge with respect to crowdsourcing.
Juan P. Martín-Vide, Arnau Prats-Puntí, and Carles Ferrer-Boix
Nat. Hazards Earth Syst. Sci., 20, 3315–3331, https://doi.org/10.5194/nhess-20-3315-2020, https://doi.org/10.5194/nhess-20-3315-2020, 2020
Short summary
Short summary
An alluvial Mediterranean river changed its riverine and deltaic landscape. The delta has been heavily retreating (up to 800 m) for more than a century. We focus on the river, channelized in the last 50 years, trying to link its sandy sediment yield to the delta evolution. Sediment availability in the last 30 km of the river channel is deemed responsible for the decrease in the sediment yield to the delta. Sediment supply reduction to the coast jeopardizes the future of the delta and beaches.
Guillaume Piton, Toshiyuki Horiguchi, Lise Marchal, and Stéphane Lambert
Nat. Hazards Earth Syst. Sci., 20, 3293–3314, https://doi.org/10.5194/nhess-20-3293-2020, https://doi.org/10.5194/nhess-20-3293-2020, 2020
Short summary
Short summary
Open check dams are flood protection structures trapping sediment and large wood. Large wood obstructs openings of dams, thus increasing flow levels. If flow levels become higher than the dam crest, the trapped large wood may overtop the structure and be suddenly released downstream, which may also eventually obstruct downstream bridges. This paper is based on experiments on small-scale models. It shows how to compute the increase in flow level and conditions leading to sudden overtopping.
María Teresa Contreras, Jorge Gironás, and Cristián Escauriaza
Nat. Hazards Earth Syst. Sci., 20, 3261–3277, https://doi.org/10.5194/nhess-20-3261-2020, https://doi.org/10.5194/nhess-20-3261-2020, 2020
Short summary
Short summary
The prediction of multiple scenarios of flood hazard in mountain regions is typically based on expensive high-resolution models that simulate the flood propagation using significant computational resources. In this investigation we develop a surrogate model that provides a rapid evaluation of the flood hazard using a statistical approach and precomputed scenarios. This surrogate model is an advanced tool that can be used for early warning systems and to help decision makers and city planners.
Jerom P. M. Aerts, Steffi Uhlemann-Elmer, Dirk Eilander, and Philip J. Ward
Nat. Hazards Earth Syst. Sci., 20, 3245–3260, https://doi.org/10.5194/nhess-20-3245-2020, https://doi.org/10.5194/nhess-20-3245-2020, 2020
Short summary
Short summary
We compare and analyse flood hazard maps from eight global flood models that represent the current state of the global flood modelling community. We apply our comparison to China as a case study, and for the first time, we include industry models, pluvial flooding, and flood protection standards. We find substantial variability between the flood hazard maps in the modelled inundated area and exposed gross domestic product (GDP) across multiple return periods and in expected annual exposed GDP.
David J. Peres, Alfonso Senatore, Paola Nanni, Antonino Cancelliere, Giuseppe Mendicino, and Brunella Bonaccorso
Nat. Hazards Earth Syst. Sci., 20, 3057–3082, https://doi.org/10.5194/nhess-20-3057-2020, https://doi.org/10.5194/nhess-20-3057-2020, 2020
Short summary
Short summary
Regional climate models (RCMs) are commonly used for high-resolution assessment of climate change impacts. This research assesses the reliability of several RCMs in a Mediterranean area (southern Italy), comparing historic climate and drought characteristics with
high-density and high-quality ground-based observational datasets. We propose a general methodology and identify the more skilful models able to reproduce precipitation and temperature variability as well as drought characteristics.
Mathilde Erfurt, Georgios Skiadaresis, Erik Tijdeman, Veit Blauhut, Jürgen Bauhus, Rüdiger Glaser, Julia Schwarz, Willy Tegel, and Kerstin Stahl
Nat. Hazards Earth Syst. Sci., 20, 2979–2995, https://doi.org/10.5194/nhess-20-2979-2020, https://doi.org/10.5194/nhess-20-2979-2020, 2020
Short summary
Short summary
Droughts are multifaceted hazards with widespread negative consequences for the environment and society. This study explores different perspectives on drought and determines the added value of multidisciplinary datasets for a comprehensive understanding of past drought events in southwestern Germany. A long-term evaluation of drought frequency since 1801 revealed that events occurred in all decades, but a particular clustering was found in the mid-19th century and the most recent decade.
Corrado Camera, Adriana Bruggeman, George Zittis, Ioannis Sofokleous, and Joël Arnault
Nat. Hazards Earth Syst. Sci., 20, 2791–2810, https://doi.org/10.5194/nhess-20-2791-2020, https://doi.org/10.5194/nhess-20-2791-2020, 2020
Short summary
Short summary
Can numerical models simulate intense rainfall events and consequent streamflow in a mountainous area with small watersheds well? We applied state-of-the-art one-way-coupled atmospheric–hydrologic models and we found that, despite rainfall events simulated with low errors, large discrepancies between the observed and simulated streamflow were observed. Shifts in time and space of the modelled rainfall peak are the main reason. Still, the models can be applied for climate change impact studies.
Farhad Hooshyaripor, Sanaz Faraji-Ashkavar, Farshad Koohyian, Qiuhong Tang, and Roohollah Noori
Nat. Hazards Earth Syst. Sci., 20, 2739–2751, https://doi.org/10.5194/nhess-20-2739-2020, https://doi.org/10.5194/nhess-20-2739-2020, 2020
Short summary
Short summary
The effect of El Niño on flood damage was investigated. The methodology was based on the calculation of increasing rainfall amount during El Niño events compared to normal conditions. With the southern oscillation index equal to −1.0 as the threshold of El Niño, the annual percentage of increased rainfall is 12.2 %. The annual change factor may not necessarily be transferred to extreme values. Nonetheless, the change factor was applied for generating simulated storms of different return periods.
Robert Jane, Luis Cadavid, Jayantha Obeysekera, and Thomas Wahl
Nat. Hazards Earth Syst. Sci., 20, 2681–2699, https://doi.org/10.5194/nhess-20-2681-2020, https://doi.org/10.5194/nhess-20-2681-2020, 2020
Short summary
Short summary
Full dependence is assumed between drivers in flood protection assessments of coastal water control structures in south Florida. A 2-D analysis of rainfall and coastal water level showed that the magnitude of the conservative assumption in the original design is highly sensitive to the regional sea level rise projection considered. The vine copula and HT04 model outperformed five higher-dimensional copulas in capturing the dependence between rainfall, coastal water level, and groundwater level.
Punit K. Bhola, Jorge Leandro, and Markus Disse
Nat. Hazards Earth Syst. Sci., 20, 2647–2663, https://doi.org/10.5194/nhess-20-2647-2020, https://doi.org/10.5194/nhess-20-2647-2020, 2020
Short summary
Short summary
In operational flood risk management, a single best model is used to assess the impact of flooding, which might misrepresent uncertainties in the modelling process. We have used quantified uncertainties in flood forecasting to generate flood hazard maps that were combined based on different exceedance probability scenarios with the purpose to differentiate impacts of flooding and to account for uncertainties in flood hazard maps that can be used by decision makers.
El Mahdi El Khalki, Yves Tramblay, Christian Massari, Luca Brocca, Vincent Simonneaux, Simon Gascoin, and Mohamed El Mehdi Saidi
Nat. Hazards Earth Syst. Sci., 20, 2591–2607, https://doi.org/10.5194/nhess-20-2591-2020, https://doi.org/10.5194/nhess-20-2591-2020, 2020
Short summary
Short summary
In North Africa, the vulnerability to floods is high, and there is a need to improve the flood-forecasting systems. Remote-sensing and reanalysis data can palliate the lack of in situ measurements, in particular for soil moisture, which is a crucial parameter to consider when modeling floods. In this study we provide an evaluation of recent globally available soil moisture products for flood modeling in Morocco.
Barry Hankin, Ian Hewitt, Graham Sander, Federico Danieli, Giuseppe Formetta, Alissa Kamilova, Ann Kretzschmar, Kris Kiradjiev, Clint Wong, Sam Pegler, and Rob Lamb
Nat. Hazards Earth Syst. Sci., 20, 2567–2584, https://doi.org/10.5194/nhess-20-2567-2020, https://doi.org/10.5194/nhess-20-2567-2020, 2020
Short summary
Short summary
With growing support for nature-based solutions to reduce flooding by local communities, government authorities and international organisations, it is still important to improve how we assess risk reduction. We demonstrate an efficient, simplified 1D network model that allows us to explore the
whole-systemresponse of numerous leaky barriers placed in different stream networks, whilst considering utilisation, synchronisation effects and cascade failure, and we provide advice on their siting.
Thomas O'Shea, Paul Bates, and Jeffrey Neal
Nat. Hazards Earth Syst. Sci., 20, 2281–2305, https://doi.org/10.5194/nhess-20-2281-2020, https://doi.org/10.5194/nhess-20-2281-2020, 2020
Short summary
Short summary
Outlined here is a multi-disciplinary framework for analysing and evaluating the nature of vulnerability to, and capacity for, flood hazard within a complex urban society. It provides scope beyond the current, reified, descriptors of
flood riskand models the role of affected individuals within flooded areas. Using agent-based modelling coupled with the LISFLOOD-FP hydrodynamic model, potentially influential behaviours that give rise to the flood hazard system are identified and discussed.
Joan Estrany, Maurici Ruiz-Pérez, Raphael Mutzner, Josep Fortesa, Beatriz Nácher-Rodríguez, Miquel Tomàs-Burguera, Julián García-Comendador, Xavier Peña, Adolfo Calvo-Cases, and Francisco J. Vallés-Morán
Nat. Hazards Earth Syst. Sci., 20, 2195–2220, https://doi.org/10.5194/nhess-20-2195-2020, https://doi.org/10.5194/nhess-20-2195-2020, 2020
Short summary
Short summary
A catastrophic flash-flood event hit the northeastern part of Mallorca in 2018, causing 13 casualties and impacting on the international opinion in one of the most important tourist resorts. The analysis of the rainfall–runoff processes illustrated an unprecedented flashy behaviour in Europe triggering the natural disaster. UAVs and hydrogeomorphological precision techniques were used as a rapid post-catastrophe decision-making tool, playing a key role during the rescue searching tasks.
Aynalem T. Tsegaw, Marie Pontoppidan, Erle Kristvik, Knut Alfredsen, and Tone M. Muthanna
Nat. Hazards Earth Syst. Sci., 20, 2133–2155, https://doi.org/10.5194/nhess-20-2133-2020, https://doi.org/10.5194/nhess-20-2133-2020, 2020
Short summary
Short summary
Hydrological impacts of climate change are generally performed by following steps from global to regional climate modeling through data tailoring and hydrological modeling. Usually, the climate–hydrology chain primary focuses on medium to large catchments. To study impacts of climate change on small catchments, a high-resolution regional climate model and hydrological model are required. The results from high-resolution models help in proposing specific adaptation strategies for impacts.
Cited articles
Aguilar, C. and Polo, M. J.: Generating reference evapotranspiration surfaces from the Hargreaves equation at watershed scale, Hydrol. Earth Syst. Sci., 15, 2495–2508, https://doi.org/10.5194/hess-15-2495-2011, 2011.
Allen, R. G.: Evaluation of procedures for estimating grass reference
evapotranspiration using air temperature data only, Report submitted to Water Resources Development and Management Service, Land and Water Development Division, United Nations Food and Agriculture Service, Rome, Italy, 1995.
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crops evapotranspiration, Guidelines for computing crop requirements, Irrigations
and Drainage Paper 56, FAO, Rome, 300 pp., 1998.
Allen, R. G., Pereira, L. S., Howell, T. A., and Jensen, E.: Evapotranspiration information reporting: I. Factors governing measurement
accuracy, Agr. Water Manage., 98, 899–920, https://doi.org/10.1016/j.agwat.2010.12.015, 2011.
Almorox, J., Quej, V. H., and Martí, P.: Global performance ranking of
temperature-based approaches for evapotranspiration estimation considering
Köppen climate classes, J. Hydrol., 528, 514–522, https://doi.org/10.1016/j.jhydrol.2015.06.057, 2015.
Annandale, J., Jovanovic, N., Benade, N., and Allen, R. G.: Software for
missing data error analysis of Penman-Monteith reference evapotranspiration,
Irrig. Sci., 21, 57–67, https://doi.org/10.1007/s002710100047, 2002.
Bannayan, M. and Hoogenboom, G.: Using pattern recognition for estimating
cultivar coefficients of a crop simulation model, Field Crop Res., 111,
290–302, https://doi.org/10.1016/j.fcr.2009.01.007, 2009.
CHD: Confederación Hidrográfica del Duero, available at: http://www.chduero.es, last access: 28 January 2019.
Djaman, K., Rudnick, D., Mel, V. C., Mutiibwa, D., Diop, L., Sall, M., Kabenge, I., Bodian, A., Tabari, H., and Irmak, S.: Evaluation of Valiantzas' simplified forms of the FAO-56 Penman-Monteith reference evapotranspiration model in a humid climate, J. Irr. Drain. Eng., 143, 06017005,
https://doi.org/10.1061/(ASCE)IR.1943-4774.0001191, 2017.
Droogers, P. and Allen, R. G.: Estimating reference evapotranspiration under
inaccurate data conditions, Irrig. Drain. Syst., 16, 33–45,
https://doi.org/10.1023/A:1015508322413, 2002.
Estevez, J., García-Marín, A. P., Morábito, J. A., and Cavagnaro, M.: Quality assurance procedures for validating meteorological input variables of reference evapotranspiration in mendoza province (Argentina), Agric. Water Manage., 172, 96–109. https://doi.org/10.1016/j.agwat.2016.04.019, 2016.
Gavilán, P., Lorite, J. I., Tornero, S., and Berengera, J.: Regional calibration of Hargreaves equation for estimating reference ET in a semiarid environment, Agr. Water Manage., 81, 257–281, https://doi.org/10.1016/j.agwat.2005.05.001, 2006.
Hargreaves, G. H.: Simplified coefficients for estimating monthly solar
radiation in North America and Europe. Departamental Paper, Dept. of Bio.
and Irrig. Engrg., Utah State Univ., Logan, Utah, 1994.
Hargreaves, G. H. and Allen, R. G.: History and Evaluation of Hargreaves
Evapotranspiration Equation, J. Irrig. Drain. Eng., 129, 53–63,
https://doi.org/10.1061/(ASCE)0733-9437(2003)129:1(53), 2003.
Hargreaves, G. H. and Samani, Z. A.: Estimating potential evapotranspiration, J. Irrig. Drain. Div., 108, 225–230, 1982.
Hargreaves, G. H. and Samani, Z. A.: Reference crop evapotranspiration from
ambient air temperature, Microfiche Collect. no. fiche no. 85-2517), Am. Soc. Agric. Eng., USA, 1985.
Jabloun, M. D. and Sahli, A.: Evaluation of FAO-56 methodology for estimating reference evapotranspiration using limited climatic data: Application to Tunisia, Agr. Water Manage., 95, 707–715, https://doi.org/10.1016/j.agwat.2008.01.009, 2008.
Jamieson, P. D., Porter, J. R., and Wilson, D. R.: A test of the computer
simulation model ARCWHEAT1 on wheat crops grown in New Zealand, Field Crop
Res., 27, 337–350, https://doi.org/10.1016/0378-4290(91)90040-3, 1991.
Landeras, G., Ortiz-Barredo, A., and López, J. J.: Comparison of artificial neural network models and empirical and semi-empirical equations
for daily reference evapotranspiration estimation in the Basque Country
(Northern Spain), Agr. Water Manage., 95, 553–565,
https://doi.org/10.1016/j.agwat.2007.12.011, 2008.
Lautensach, H.: Geografía de España y Portugal, Vicens Vivens,
Barcelona, 814 pp., 1967.
López-Moreno, J. I., Hess, T. M., and White, A. S. M.: Estimation of
Reference Evapotranspiration in a Mountainous Mediterranean Site Using the
Penman-Monteith Equation With Limited Meteorological Data, Pirineos JACA,
164, 7–31, https://doi.org/10.3989/pirineos.2009.v164.27, 2009.
MAPAMA – Ministerio de Agricultura Pesca y Alimentación: Anuario de
estadística, available at: https://www.mapa.gob.es/es/estadistica/temas/publicaciones/anuario-de-estadistica/,
last access: 28 March 2019.
Martinez, C. J. and Thepadia, M.: Estimating Reference Evapotranspiration
with Minimum Data in Florida, J. Irrig. Drain. Eng., 136, 494–501,
https://doi.org/10.1061/(ASCE)IR.1943-4774.0000214, 2010.
Martínez-Cob, A. and Tejero-Juste, M.: A wind-based qualitative calibration of the Hargreaves ETo estimation equation in semiarid regions, Agr. Water Manage., 64, 251–264, https://doi.org/10.1016/S0378-3774(03)00199-9, 2004.
McVicar, T. R., Roderick, M. L., Donohue, R. J., Li, L. T., VanNiel, T.,
Thomas, A., Grieser, J., Jhajharia, D., Himri, Y., Mahowald, N. M., Mescherskaya, A. V., Kruger, A. C., Rehman, S., and Dinpashoh, Y.: Global
review and synthesis of trends in observed terrestrial near-surface wind
speeds: implications for evaporation, J. Hydrol., 416–417, 182–205,
https://doi.org/10.1016/j.jhydrol.2011.10.024, 2012.
Mendicino, G. and Senatore, A.: Regionalization of the Hargreaves Coefficient for the Assessment of Distributed Reference Evapotranspiration in Southern Italy, J. Irrig. Drain. Eng., 139, 349–362, https://doi.org/10.1061/(ASCE)IR.1943-4774.0000547, 2013.
Moratiel, R., Duran, J. M., and Snyder, R.: Responses of reference evapotranspiration to changes in atmospheric humidity and air temperature in
Spain, Clim. Res., 44, 27–40, https://doi.org/10.3354/cr00919, 2010.
Moratiel, R., Snyder, R. L., Durán, J. M., and Tarquis, A. M.: Trends in
climatic variables and future reference evapotranspiration in Duero valley
(Spain), Nat. Hazards Earth Syst. Sci.m 11, 1795–1805, https://doi.org/10.5194/nhess-11-1795-2011, 2011.
Moratiel, R., Martínez-Cob, A., and Latorre, B.: Variation in the estimations of ETo and crop water use due to the sensor accuracy of the
meteorological variables, Nat. Hazards Earth Syst. Sci., 13, 1401–1410,
https://doi.org/10.5194/nhess-13-1401-2013, 2013a.
Moratiel, R., Spano, D., Nicolosi, P., and Snyder, R. L.: Correcting soil water balance calculations for dew, fog, and light rainfall, Irrig. Sci., 31, 423–429, https://doi.org/10.1007/s00271-011-0320-2, 2013b.
Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., and Veith, T. L.: Model evaluation guidelines for systematic quantification of accuracy in watershed simulations, T. ASABE, 50, 885–900,
https://doi.org/10.13031/2013.23153, 2007.
Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through conceptual
models. Part I – A discussion of principles, J. Hydrol., 10, 282–290,
https://doi.org/10.1016/0022-1694(70)90255-6, 1970.
Nouri, M. and Homaee, M.: On modeling reference crop evapotranspiration under lack of reliable data over Iran, J. Hydrol., 566, 705–718, https://doi.org/10.1016/j.jhydrol.2018.09.037, 2018.
Nouri, M., Homaee, M., and Bannayan, M.: Quantitative trend, sensitivity and
contribution analyses of reference evapotranspiration in some arid environments underclimate change, Water Resour. Manage., 31, 2207–2224,
https://doi.org/10.1007/s11269-017-1638-1, 2017.
Pandey, P. K. and Pandey, V.: Evaluation of temperature-based Penman–Monteith (TPM) model under the humid environment, Model. Earth Syst. Environ., 2, 152, https://doi.org/10.1007/s40808-016-0204-9, 2016.
Pandey, V., Pandey, P. K., and Mahata, P.: Calibration and performance verification of Hargreaves Samani equation in a Humid region, Irrig. Drain.,
63, 659–667, https://doi.org/10.1002/ird.1874, 2014.
Paredes, P., Fontes, J. C., Azevedo, E. B., and Pereira, L. S.: Daily reference crop evapotranspiration with reduced data sets in the humid environments of Azores islands using estimates of actual vapor pressure, solar radiation, and wind speed, Theor. Appl. Climatol., 134, 1115–1133,
https://doi.org/10.1007/s00704-017-2329-9, 2018.
Pereira, L. S.: Water, Agriculture and Food: Challenges and Issues, Water
Resour. Manage., 31, 2985–2999, https://doi.org/10.1007/s11269-017-1664-z, 2017.
Pereira, L. S., Allen, R. G., Smith, M., and Raes, D.: Crop evapotranspiration estimation with FAO56: Past and future, Agr. Water Manage., 147, 4–20, https://doi.org/10.1016/j.agwat.2014.07.031, 2015.
Plan Hidrológico: Plan Hidrológico de la parte española de la
demarcación hidrográfica del Duero, 2015–2021, Anejo 5, Demandas de
Agua, available at:
https://www.chduero.es/web/guest/plan-hidrológico-de-la-parte-española-de-la-demarcación-hidrográfica, last access: 18 February 2019.
Quej, V. H., Almorox, J., Arnaldo, A., and Moratiel, R.: Evaluation of
Temperature-Based Methods for the Estimation of Reference Evapotranspiration
in the Yucatán Peninsula, Mexico, J. Hydrol. Eng., 24, 05018029,
https://doi.org/10.1061/(ASCE)HE.1943-5584.0001747, 2019.
Raziei, T. and Pereira, L. S.: Estimation of ETo with Hargreaves–Samani and FAO-PM temperature methods for a wide range of climates in Iran, Agr.
Water Manage., 121, 1–18, https://doi.org/10.1016/j.agwat.2012.12.019, 2013.
Ren, X., Qu, Z., Martins, D. S., Paredes, P., and Pereira, L.S.: Daily
Reference Evapotranspiration for Hyper-Arid to Moist Sub-Humid Climates in
Inner Mongolia, China: I. Assessing Temperature Methods and Spatial Variability, Water Resour. Manage., 30, 3769–3791, https://doi.org/10.1007/s11269-016-1384-9, 2016.
Rojas, J. P. and Sheffield, R. E.: Evaluation of daily reference evapotranspiration methods as compared with the ASCE-EWRI Penman-Monteith equation using limited weather data in Northeast Louisiana, J. Irrig. Drain. Eng., 139, 285–292, https://doi.org/10.1061/(ASCE)IR.1943-4774.0000523, 2013.
Segovia-Cardozo, D. A., Rodríguez-Sinobas, L., and Zubelzu, S.: Water
use efficiency of corn among the irrigation districts across the Duero river
basin (Spain): Estimation of local crop coefficients by satellite images,
Agr. Water Manage., 212, 241–251, https://doi.org/10.1016/j.agwat.2018.08.042, 2019.
SIAR: Sistema de información Agroclimática para el Regadío, available at:
http://eportal.mapama.gob.es/websiar/Inicio.aspx, last access: 2 June 2018.
Todorovic, M., Karic, B., and Pereira, L. S.: Reference Evapotranspiration
estimate with limited weather data across a range of Mediterranean climates,
J. Hydrol., 481, 166–176, https://doi.org/10.1016/j.jhydrol.2012.12.034, 2013.
Tomas-Burguera, M., Vicente-Serrano, S. M., Grimalt, M., and Beguería, S.: Accuracy of reference evapotranspiration (ETo) estimates under datascarcity scenarios in the Iberian Peninsula, Agr. Water Manage., 182, 103–116, https://doi.org/10.1016/j.agwat.2016.12.013, 2017.
Trajkovic, S.: Temperature-based approaches for estimating reference
evapotranspiration, J. Irrig. Drain. Eng., 131, 316–323,
https://doi.org/10.1061/(ASCE)0733-9437(2005)131:4(316), 2005.
UNEP: World atlas of desertification, in: 2nd Edn., edited by: Middleton, N. and Thomas, D., Arnold, London, 182 pp., 1997.
Vangelis, H., Tigkas, D., and Tsakiris, G.: The effect of PET method on
Reconnaissance Drought Index (RDI) calculation, J. Arid Environ., 88, 130–140, https://doi.org/10.1016/j.jaridenv.2012.07.020, 2013.
Villalobos, F. J., Mateos, L., and Fereres, E.: Irrigation Scheduling Using
the Water Balance, in: Principles of Agronomy for Sustainable Agriculture,
edited by: Villalobos, F. J. and Fereres, E., Springer International Publishing, Switzerland, 269–279, 2016.
Yang, Y., Cui, Y., Bai, K., Luo, T., Dai, J., and Wang, W.: Shrot-term
forecasting of daily refence evapotranspiration using the reduced-set
Penman–Monteith model and public weather forecast, Agr. Water Manage.,
211, 70–80, https://doi.org/10.1016/j.agwat.2018.09.036, 2019.
Short summary
The estimation of ETo using temperature is particularly attractive in places where air humidity, wind speed and solar radiation data are not readily available. In this study we used, for the estimation of ETo, seven models against Penman–Monteith FAO 56 with temporal (annual and seasonal) and spatial perspective over Duero basin (Spain). The results of the tested models can be useful for adopting appropriate measures for efficient water management under the limitation of agrometeorological data.
The estimation of ETo using temperature is particularly attractive in places where air humidity,...
Altmetrics
Final-revised paper
Preprint