Articles | Volume 20, issue 12
Nat. Hazards Earth Syst. Sci., 20, 3413–3424, 2020
https://doi.org/10.5194/nhess-20-3413-2020

Special issue: Global- and continental-scale risk assessment for natural...

Nat. Hazards Earth Syst. Sci., 20, 3413–3424, 2020
https://doi.org/10.5194/nhess-20-3413-2020

Research article 14 Dec 2020

Research article | 14 Dec 2020

New global characterisation of landslide exposure

Robert Emberson et al.

Related authors

Review article: Natural hazard risk assessments at the global scale
Philip J. Ward, Veit Blauhut, Nadia Bloemendaal, James E. Daniell, Marleen C. de Ruiter, Melanie J. Duncan, Robert Emberson, Susanna F. Jenkins, Dalia Kirschbaum, Michael Kunz, Susanna Mohr, Sanne Muis, Graeme A. Riddell, Andreas Schäfer, Thomas Stanley, Ted I. E. Veldkamp, and Hessel C. Winsemius
Nat. Hazards Earth Syst. Sci., 20, 1069–1096, https://doi.org/10.5194/nhess-20-1069-2020,https://doi.org/10.5194/nhess-20-1069-2020, 2020
Short summary

Related subject area

Landslides and Debris Flows Hazards
Nepalese landslide information system (NELIS): a conceptual framework for a web-based geographical information system for enhanced landslide risk management in Nepal
Sansar Raj Meena, Florian Albrecht, Daniel Hölbling, Omid Ghorbanzadeh, and Thomas Blaschke
Nat. Hazards Earth Syst. Sci., 21, 301–316, https://doi.org/10.5194/nhess-21-301-2021,https://doi.org/10.5194/nhess-21-301-2021, 2021
Short summary
Modelling landslide hazards under global changes: the case of a Pyrenean valley
Séverine Bernardie, Rosalie Vandromme, Yannick Thiery, Thomas Houet, Marine Grémont, Florian Masson, Gilles Grandjean, and Isabelle Bouroullec
Nat. Hazards Earth Syst. Sci., 21, 147–169, https://doi.org/10.5194/nhess-21-147-2021,https://doi.org/10.5194/nhess-21-147-2021, 2021
Short summary
Debris flows recorded in the Moscardo catchment (Italian Alps) between 1990 and 2019
Lorenzo Marchi, Federico Cazorzi, Massimo Arattano, Sara Cucchiaro, Marco Cavalli, and Stefano Crema
Nat. Hazards Earth Syst. Sci., 21, 87–97, https://doi.org/10.5194/nhess-21-87-2021,https://doi.org/10.5194/nhess-21-87-2021, 2021
Short summary
The potential of Smartstone probes in landslide experiments: how to read motion data
J. Bastian Dost, Oliver Gronz, Markus C. Casper, and Andreas Krein
Nat. Hazards Earth Syst. Sci., 20, 3501–3519, https://doi.org/10.5194/nhess-20-3501-2020,https://doi.org/10.5194/nhess-20-3501-2020, 2020
Short summary
INSPIRE standards as a framework for artificial intelligence applications: a landslide example
Gioachino Roberti, Jacob McGregor, Sharon Lam, David Bigelow, Blake Boyko, Chris Ahern, Victoria Wang, Bryan Barnhart, Clinton Smyth, David Poole, and Stephen Richard
Nat. Hazards Earth Syst. Sci., 20, 3455–3483, https://doi.org/10.5194/nhess-20-3455-2020,https://doi.org/10.5194/nhess-20-3455-2020, 2020
Short summary

Cited articles

Barrington-Leigh, C. and Millard-Ball, A.: The world' s user-generated road map is more than 80 % complete, PLoS One, 12, e0180698, https://doi.org/10.1371/journal.pone.0180698, 2017. 
Carrao, H., Naumann, G., and Barbosa, P.: Mapping global patterns of drought risk: An empirical framework based on sub-national estimates of hazard, exposure and vulnerability, Global Environ. Chang., 39, 108–124, https://doi.org/10.1016/j.gloenvcha.2016.04.012, 2016. 
Coe, B. J. A., Godt, J. W., and Tachker, P.: Map showing recent (1997–98 El Niño) and historical landslides, Crow Creek and vicinity, Alameda and Contra Costa Counties, California, US Department of the Interior, US Geological Survey, Denver, CO, https://doi.org/10.3133/sim2859, 2004. 
De Bono, A. and Chatenoux, B.: A Global Exposure Model for GAR 2015, Background Paper prepared for the 2015 Global Assessment Report on Disaster Risk Reduction, UNEP/Grid, Geneva, 1–20, 2014. 
Dilley, M., Chen, R. S., Deichmann, U., Lerner-Lam, A. L., Arnold, M., Agwe, J., Buys, P., Kjekstad, O., Lyon, B., and Gregory, Y.: Natural Disaster Hotspots A Global Risk Analysis, Disaster Risk Management Series, https://doi.org/10.1596/0-8213-5930-4, 2005. 
Download
Short summary
Landslides cause thousands of fatalities and cost billions of dollars of damage worldwide every year, but different inventories of landslide events can have widely diverging completeness. This can lead to spatial biases in our understanding of the impacts. Here we use a globally homogeneous model of landslide hazard and exposure to provide consistent estimates of where landslides are most likely to cause damage to people, roads and other critical infrastructure at 1 km resolution.
Altmetrics
Final-revised paper
Preprint