Articles | Volume 20, issue 8
https://doi.org/10.5194/nhess-20-2157-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-20-2157-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Timing, drivers and impacts of the historic Masiere di Vedana rock avalanche (Belluno Dolomites, NE Italy)
Department of Geosciences, University of Padua, Via Gradenigo, 6, 35131 Padua, Italy
Susan Ivy-Ochs
Laboratory of Ion Beam Physics, Otto-Stern-Weg 5, ETH-Honggerberg, 8093 Zurich, Switzerland
Silvana Martin
Department of Geosciences, University of Padua, Via Gradenigo, 6, 35131 Padua, Italy
Alfio Viganò
Servizio Geologico, Provincia autonoma di Trento, Via Zambra 42, 38122 Trento, Italy
Christof Vockenhuber
Laboratory of Ion Beam Physics, Otto-Stern-Weg 5, ETH-Honggerberg, 8093 Zurich, Switzerland
Manuel Rigo
Department of Geosciences, University of Padua, Via Gradenigo, 6, 35131 Padua, Italy
Giovanni Monegato
National Research Council, Institute of Geosciences and Earth Resources, Padua, Italy
Marco De Zorzi
Laboratory of Ion Beam Physics, Otto-Stern-Weg 5, ETH-Honggerberg, 8093 Zurich, Switzerland
Nicola Surian
Department of Geosciences, University of Padua, Via Gradenigo, 6, 35131 Padua, Italy
Paolo Campedel
Servizio Geologico, Provincia autonoma di Trento, Via Zambra 42, 38122 Trento, Italy
Paolo Mozzi
Department of Geosciences, University of Padua, Via Gradenigo, 6, 35131 Padua, Italy
Related authors
Lukas Rettig, Sandro Rossato, Sarah Kamleitner, Paolo Mozzi, Susan Ivy-Ochs, Enrico Marcato, Marcus Christl, Silvana Martin, and Giovanni Monegato
E&G Quaternary Sci. J., 74, 151–168, https://doi.org/10.5194/egqsj-74-151-2025, https://doi.org/10.5194/egqsj-74-151-2025, 2025
Short summary
Short summary
The work shows detailed reconstructions of the glaciers in the Valsugana area (south-eastern Alps) during the Last Glacial Maximum (LGM) and is supported by robust evidence and new exposure datings. These are the first ages for the internal sector of the south-eastern Alps. Local glaciers not connected with the major ice network were used for the calculation of their equilibrium line altitude. This let us estimate LGM palaeoprecipitation and compare it to Alpine palaeoclimatological models.
Lukas Rettig, Sandro Rossato, Sarah Kamleitner, Paolo Mozzi, Susan Ivy-Ochs, Enrico Marcato, Marcus Christl, Silvana Martin, and Giovanni Monegato
E&G Quaternary Sci. J., 74, 151–168, https://doi.org/10.5194/egqsj-74-151-2025, https://doi.org/10.5194/egqsj-74-151-2025, 2025
Short summary
Short summary
The work shows detailed reconstructions of the glaciers in the Valsugana area (south-eastern Alps) during the Last Glacial Maximum (LGM) and is supported by robust evidence and new exposure datings. These are the first ages for the internal sector of the south-eastern Alps. Local glaciers not connected with the major ice network were used for the calculation of their equilibrium line altitude. This let us estimate LGM palaeoprecipitation and compare it to Alpine palaeoclimatological models.
Niklas Kappelt, Eric Wolff, Marcus Christl, Christof Vockenhuber, Philip Gautschi, and Raimund Muscheler
Clim. Past, 21, 1585–1594, https://doi.org/10.5194/cp-21-1585-2025, https://doi.org/10.5194/cp-21-1585-2025, 2025
Short summary
Short summary
By measuring the radioactive decay of atmospherically produced 36Cl and 10Be in an ice core drilled in West Antarctica, we were able to determine the age of the deepest sample close to bedrock to be about 550 thousand years old. This means that the ice in this location, known as Skytrain Ice Rise, has survived several warm periods in the past, at least since marine isotope stage 11.
Lisa G. T. Leist, Maxi Castrillejo, Kumiko Azetsu-Scott, Craig Lee, Jed Lenetsky, Marc Ringuette, Christof Vockenhuber, Habacuc Pérez-Tribouilier, and Núria Casacuberta
EGUsphere, https://doi.org/10.5194/egusphere-2025-4178, https://doi.org/10.5194/egusphere-2025-4178, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Short summary
The Arctic and Atlantic Oceans are connected by narrow passages, and the exchange of waters affect global climate. Using artificial radionuclides from nuclear reprocessing discharges, we traced the origin of water masses from the Arctic to the Labrador Sea. Results show that waters from Canadian Arctic origin entering via Lancaster Sound are a key freshwater source to the Labrador Sea. These flows strongly influence the formation of deep waters in the Atlantic, vital for the global circulation.
Chantal Schmidt, David Mair, Naki Akçar, Marcus Christl, Negar Haghipour, Christof Vockenhuber, Philip Gautschi, Brian McArdell, and Fritz Schlunegger
EGUsphere, https://doi.org/10.5194/egusphere-2025-3055, https://doi.org/10.5194/egusphere-2025-3055, 2025
Short summary
Short summary
Our study examines erosion in a small, pre-Alpine basin by using cosmogenic nuclides in river sediments. Based on a dense measuring network we were able to distinguish two main zones: an upper zone with slow erosion of surface material, and a steeper, lower zone where faster erosion is driven by landslides. The data suggests that sediment has been constantly produced over thousands of years, indicating a stable, long-term balance between contrasting erosion processes.
Anne-Marie Wefing, Annabel Payne, Marcel Scheiwiller, Christof Vockenhuber, Marcus Christl, Toste Tanhua, and Núria Casacuberta
EGUsphere, https://doi.org/10.5194/egusphere-2025-1322, https://doi.org/10.5194/egusphere-2025-1322, 2025
Short summary
Short summary
Here we used the anthropogenic radionuclides I-129 and U-236 as tracers for Atlantic Water circulation in the Arctic Ocean. New data collected in 2021 allowed to assess the distribution of Atlantic Water and mixing with Pacific-origin water in the surface layer in that year. By using historical tracer data from 2011 to 2021, we looked into temporal changes of the circulation and found slightly older waters in the central Arctic Ocean in 2021 compared to 2015.
Davide Scafidi, Alfio Viganò, Jacopo Boaga, Valeria Cascone, Simone Barani, Daniele Spallarossa, Gabriele Ferretti, Mauro Carli, and Giancarlo De Marchi
Nat. Hazards Earth Syst. Sci., 24, 1249–1260, https://doi.org/10.5194/nhess-24-1249-2024, https://doi.org/10.5194/nhess-24-1249-2024, 2024
Short summary
Short summary
Our paper concerns the use of a dense network of low-cost seismic accelerometers in populated areas to achieve rapid and reliable estimation of exposure maps in Trentino (northeast Italy). These additional data, in conjunction with the automatic monitoring procedure, allow us to obtain dense measurements which only rely on actual recorded data, avoiding the use of ground motion prediction equations. This leads to a more reliable picture of the actual ground shaking.
Matteo Maron, Tetsuji Onoue, Sara Satolli, Katsuhito Soda, Honami Sato, Giovanni Muttoni, and Manuel Rigo
Clim. Past, 20, 637–658, https://doi.org/10.5194/cp-20-637-2024, https://doi.org/10.5194/cp-20-637-2024, 2024
Short summary
Short summary
For better knowledge of the climate perturbation that occurred in the lattermost part of the Triassic (Norian–Rhaetian), we investigated the geochemical and rock magnetic properties of the limestones of the Pignola–Abriola section (Lagonegro Basin, Italy). Our investigation revealed at least a major episode of enhanced weathering occurring in the late Norian (~217–211 Ma), possibly related to the Cimmerian orogen and/or the northward motion of Pangea across the equatorial humid belt.
Lindsay Marie Capito, Enrico Pandrin, Walter Bertoldi, Nicola Surian, and Simone Bizzi
Earth Surf. Dynam., 12, 321–345, https://doi.org/10.5194/esurf-12-321-2024, https://doi.org/10.5194/esurf-12-321-2024, 2024
Short summary
Short summary
We propose that the pattern of erosion and deposition from repeat topographic surveys can be a proxy for path length in gravel-bed rivers. With laboratory and field data, we applied tools from signal processing to quantify this periodicity and used these path length estimates to calculate sediment transport using the morphological method. Our results highlight the potential to expand the use of the morphological method using only remotely sensed data as well as its limitations.
Costanza Del Gobbo, Renato R. Colucci, Giovanni Monegato, Manja Žebre, and Filippo Giorgi
Clim. Past, 19, 1805–1823, https://doi.org/10.5194/cp-19-1805-2023, https://doi.org/10.5194/cp-19-1805-2023, 2023
Short summary
Short summary
We studied atmosphere–cryosphere interaction during the last phase of the Last Glacial Maximum in the Alpine region, using a high-resolution regional climate model. We analysed the climate south and north of the Alps, using a detailed map of the Alpine equilibrium line altitude (ELA) to study the mechanism that sustained the Alpine glaciers at 21 ka. The Genoa low and a mild Mediterranean Sea led to frequent snowfall in the southern Alps, thus preserving the glaciers and lowering the ELA.
Catharina Dieleman, Philip Deline, Susan Ivy Ochs, Patricia Hug, Jordan Aaron, Marcus Christl, and Naki Akçar
EGUsphere, https://doi.org/10.5194/egusphere-2023-1873, https://doi.org/10.5194/egusphere-2023-1873, 2023
Preprint withdrawn
Short summary
Short summary
Valleys in the Alps are shaped by glaciers, rivers, mass movements, and slope processes. An understanding of such processes is of great importance in hazard mitigation. We focused on the evolution of the Frébouge cone, which is composed of glacial, debris flow, rock avalanche, and snow avalanche deposits. Debris flows started to form the cone prior to ca. 2 ka ago. In addition, the cone was overrun by a 10 Mm3 large rock avalanche at 1.3 ± 0.1 ka and by the Frébouge glacier at 300 ± 40 a.
Jamey Stutz, Andrew Mackintosh, Kevin Norton, Ross Whitmore, Carlo Baroni, Stewart S. R. Jamieson, Richard S. Jones, Greg Balco, Maria Cristina Salvatore, Stefano Casale, Jae Il Lee, Yeong Bae Seong, Robert McKay, Lauren J. Vargo, Daniel Lowry, Perry Spector, Marcus Christl, Susan Ivy Ochs, Luigia Di Nicola, Maria Iarossi, Finlay Stuart, and Tom Woodruff
The Cryosphere, 15, 5447–5471, https://doi.org/10.5194/tc-15-5447-2021, https://doi.org/10.5194/tc-15-5447-2021, 2021
Short summary
Short summary
Understanding the long-term behaviour of ice sheets is essential to projecting future changes due to climate change. In this study, we use rocks deposited along the margin of the David Glacier, one of the largest glacier systems in the world, to reveal a rapid thinning event initiated over 7000 years ago and endured for ~ 2000 years. Using physical models, we show that subglacial topography and ocean heat are important drivers for change along this sector of the Antarctic Ice Sheet.
Dominik Amschwand, Susan Ivy-Ochs, Marcel Frehner, Olivia Steinemann, Marcus Christl, and Christof Vockenhuber
The Cryosphere, 15, 2057–2081, https://doi.org/10.5194/tc-15-2057-2021, https://doi.org/10.5194/tc-15-2057-2021, 2021
Short summary
Short summary
We reconstruct the Holocene history of the Bleis Marscha rock glacier (eastern Swiss Alps) by determining the surface residence time of boulders via their exposure to cosmic rays. We find that this stack of lobes formed in three phases over the last ~9000 years, controlled by the regional climate. This work adds to our understanding of how these permafrost landforms reacted in the past to climate oscillations and helps to put the current behavior of rock glaciers in a long-term perspective.
Cited articles
Aaron, J. and McDougall, S.: Rock avalanche mobility: The role of path material, Eng. Geol., 257, 105126, https://doi.org/10.1016/j.enggeo.2019.05.003, 2019. a
Aaron, J., McDougall, S., Moore, J. R., Coe, J. A., and Hungr, O.: The role of initial coherence and path materials in the dynamics of three rock avalanche case histories, Geoenviron. Disast., 4, 5, https://doi.org/10.1186/s40677-017-0070-4, 2017. a
Aldighieri, B., Testa, B., and Bertini, A.: 3D exploration of the San Lucano Valley: virtual geo-routes for everyone who would like to understand the landscape of the Dolomites, Geoheritage, 8, 77–90, https://doi.org/10.1007/s12371-015-0164-x, 2016. a
Alfimov, V. and Ivy-Ochs, S.: How well do we understand production of 36Cl in limestone and dolomite?, Quat. Geochronol., 4, 462–474, https://doi.org/10.1016/j.quageo.2009.08.005, 2009. a, b
Alpago-Novello, L.: Resti di Centuriazione Romana nella Val Belluna, Atti Accad. Naz. Lin., 12, 5–6, 1957. a
Alpago-Novello, L.: Aggiornamenti sulla centuriazione romana della Val Belluna, Bellunates, Catubrini, Feltrini, 267, 117–142, 1988. a
ARPAV: Technical report on the 27/10/2018–01/11/2018 meteorological event, available at: https://www.regione.veneto.it/c/document_library/get_file?uuid=094022ae-43e7-46b1-86d2-ff3ebf669b89&groupId=90748
(last access: September 2019), 2018. a
Baggio, P. and Marcolongo, B.: Contributo del telerilevamento alla conoscenza della sinclinale di Belluno. Il modello neotettonico derivato, in: Atti A.I.T.A.: Esperienze e Prospettive del telerilevamento, 9–11 May 1984, Bari, Italy, 707–736, 1984. a
Benito, G., Macklin, M. G., Panin, A., Rossato, S., Fontana, A., Jones, A. F., Machado, M. J., Matlakhova, E., Mozzi, P., and Zielhofer, C.: Recurring flood distribution patterns related to short-term Holocene climatic variability, Sci. Rep.-UK, 5, 16398, https://doi.org/10.1038/srep16398, 2015. a
Blais-Stevens, A., Hermanns, R. L., and Jermyn, C.: A 36Cl age determination for Mystery Creek rock avalanche and its implications in the context of hazard assessment, British Columbia, Canada, Landslides, 8, 407–416, https://doi.org/10.1007/s10346-011-0261-0, 2011. a
Borgatti, L. and Soldati, M.: Landslides as a geomorphological proxy for climate change: A record from the Dolomites (northern Italy), Geomorphology, 120, 56–64, https://doi.org/10.1016/j.geomorph.2009.09.015, 2010. a
Borgatti, L., Soldati, M., Carton, A., Corsini, A., Galuppo, A., Ghinoi, A., Marchetti, M., Oddone, E., Panizza, M., Pasuto, A., Pellegrini, G. B., Schiavon, E., Siorpaes, C., Surian, N., and Tagliavini, F.: Geomorphology and slope instability in the Dolomites (Northern Italy): from Lateglacial to recent geomorphological evidence and engineering geological applications, Mem. Descr. Carta Geol. d'It., 63, 1–52, 2004. a, b
Bosellini, A., Masetti, D., and Sarti, M.: A Jurassic “Tongue of the ocean” infilled with oolitic sands: the Belluno Trough, Venetian Alps, Italy, Mar. Geol., 44, 59–95, https://doi.org/10.1016/0025-3227(81)90113-4, 1981. a, b
Bowman, E. T., Take, W. A., Rait, K. L., and Hann C.: Physical models of rock avalanche spreading behaviour with dynamic fragmentation, Can. Geotech. J., 49, 460–476, https://doi.org/10.1139/t2012-007, 2012. a
Brideau, M. A., Yan, M., and Stead, D.: The role of tectonic damage and brittle rock fracture in the development of large rock slope failures, Geomorphology, 103, 30–49, https://doi.org/10.1016/j.geomorph.2008.04.010, 2009. a, b
Charrière, M., Humair, F., Froese, C., Jaboyedoff, M., Pedrazzini, A., and Longchamp, C.: From the source area to the deposit: Collapse, fragmentation, and propagation of the Frank Slide, Geol. Soc. Am. Bull., 128, 332–351, https://doi.org/10.1130/B31243.1, 2016. a, b
Christl, M., Vockenhuber, C., Kubik, P. W., Wacker, L., Lachner, J., Alfimov, V., and Synal, H. A.: The ETH Zurich AMS facilities: Performance parameters and reference materials, Nucl. Instrum. Meth. B, 294, 29–38, https://doi.org/10.1016/j.nimb.2012.03.004, 2013. a
Cremonini, S., Labate, D., and Curina, R.: The late-antiquity environmental crisis in Emilia region (Po river plain, Northern Italy): Geoarchaeological evidence and paleoclimatic considerations, Quatern. Int., 316, 162–178, https://doi.org/10.1016/j.quaint.2013.09.014, 2013. a
Crosta, G. B., Chen, H., and Lee, C. F.: Replay of the 1987 Val Pola landslide, Italian Alps, Geomorphology, 60, 127–146, https://doi.org/10.1016/j.geomorph.2003.07.015, 2004. a
Crosta, G. B., Frattini, P., and Fusi, N.: Fragmentation in the Val Pola rock avalanche, Italian Alps, J. Geophys. Res., 112, F01006, https://doi.org/10.1029/2005JF000455, 2007. a
Cui, P., Chen, X. Q., Zhu, Y. Y., Su, F. H., Wei, F. Q., Han, Y. S., Liu, H. J., and Zhuang, J. Q.: The Wenchuan earthquake (May 12, 2008), Sichuan province, China, and resulting geohazards, Nat. Hazards, 56, 19–36, https://doi.org/10.1007/s11069-009-9392-1, 2011. a, b, c
D'Agostino, N., Avallone, A., Cheloni, D., D'Anastasio, E., Mantenuto, S., and Selvaggi, G.: Active tectonics of the Adriatic region from GPS and earthquake slip vectors, J. Geophys. Res., 113, B12413, https://doi.org/10.1029/2008JB005860, 2008. a
De Zorzi, M.: The Peron Mount rock avalanche: 36Cl exposure age dating, MS thesis, University of Padova, Padova, Italy, 2013. a
Dufresne, A.: Granular flow experiments on the interaction with stationary runout path materials and comparison to rock avalanche events, Earth Surf. Proc. Land., 37, 1527–1541, https://doi.org/10.1002/esp.3296, 2012. a
Dufresne, A., Prager, C., and Bösmeier, A.: Insights into rock avalanche emplacement processes from detailed morpho‐lithological studies of the Tschirgant deposit (Tyrol, Austria), Earth Surf. Proc. Land., 41, 587–602, https://doi.org/10.1002/esp.3847, 2016. a, b, c, d
Dunning, S. A., Petley, D. N., Rosser, N. J., and Strom, A. L.: The morphology and sedimentology of valley confined rock-avalanche deposits and their effect on potential dam hazard, in: Proceedings of the International Conference on Landslide Risk Management, edited by: Hungr, O., Fell, R., Couture, R., and Eberhardt, E., Taylor and Francis, Balkema, London, UK, 691–701, https://doi.org/10.1201/9781439833711, 2005. a
Dunning, S. A., Rosser, N. J., Petley, D. N., and Massey, C. R.: Formation and failure of the Tsatichhu landslide dam, Bhutan, Landslides, 3, 107–113, https://doi.org/10.1007/s10346-005-0032-x, 2006. a
Dunning, S. A., Mitchell, W. A., Rosser, N. J., and Petley, D. N.: The Hattian Bala rock avalanche and associated landslides triggered by the Kashmir Earthquake of 8 October 2005, Eng. Geol., 93, 130–144, https://doi.org/10.1016/j.enggeo.2007.07.003, 2007. a
Ermini, L. and Casagli, N.: Prediction of the behaviour of landslide dams using a geomorphological dimensionless index, Earth Surf. Proc. Land., 28, 31–47, https://doi.org/10.1002/esp.424, 2003. a
Evans, S. G., Guthrie, R. H., Roberts, N. J., and Bishop, N. F.: The disastrous 17 February 2006 rockslide-debris avalanche on Leyte Island, Philippines: a catastrophic landslide in tropical mountain terrain, Nat. Hazards Earth Syst. Sci., 7, 89–101, https://doi.org/10.5194/nhess-7-89-2007, 2007. a, b
Filipponi, M., Jeannin, P. Y., and Tacher, L.: Evidence of inception horizons in karst conduit networks, Geomorphology, 106, 86–99, https://doi.org/10.1016/j.geomorph.2008.09.010, 2009. a
Frassine, M., Naponiello, G., De Francesco, S., and Asta, A.: RAPTOR 1.5. Aggiornamenti e sperimentazione, in: ArcheoFOSS. Free, Libre and Open Source Software e Open Format nei processi di ricerca archeologica, Atti del IX Workshop (Verona, 19-20 giugno 2014), edited by: Basso, P., Caravale, A., and Grossi, P., Archeol. Calc. Suppl., 8, 61–71, 2016. a
Friedmann, S. J., Kwon, G., and Losert, W.: Granular memory and its effect on the triggering and distribution of rock avalanche events, J. Geophys. Res.-Solid., 108, 2380, https://doi.org/10.1029/2002JB002174, 2003. a, b, c
Friedmann, S. J., Taberlet, N., and Losert, W.: Rock-avalanche dynamics: insights from granular physics experiments, Int. J. Earth Sci., 95, 911–919, https://doi.org/10.1007/s00531-006-0067-9, 2006. a
Galadini, F., Poli, M. E., and Zanferrari, A.: Seismogenic sources potentially responsible for earthquakes with M≥6 in the eastern Southern Alps (Thiene-Udine sector, NE Italy), Geophys. J. Int., 161, 739–762, https://doi.org/10.1111/j.1365-246X.2005.02571.x, 2005. a, b
Geertsema, M., Clague, J. J., Schwab, J. W., and Evans, S. G.: An overview of recent large catastrophic landslides in northern British Columbia, Canada, Eng. Geol., 83, 120–143, https://doi.org/10.1016/j.enggeo.2005.06.028, 2006. a, b
Genevois, R., Armento, C., and Tecca, P. R.: Failure mechanisms and runout behaviour of three rock avalanches in the north-eastern Italian Alps, in: Landslides from Massive Rock Slope Failure, edited by: Evans, S. G., Mugnozza, G. S., Strom, A., and Hermanns, R. L., NATO Sci. S., 49, 407–427, https://doi.org/10.1007/978-1-4020-4037-5_22, 2006. a, b, c, d, e
Gischig, V., Preisig, G., and Eberhardt, E.: Numerical investigation of seismically induced rock mass fatigue as a mechanism contributing to the progressive failure of deep-seated landslides, Rock Mech. Rock Eng., 49, 2457–2478, https://doi.org/10.1007/s00603-015-0821-z, 2016. a
Grämiger, L. M., Moore, J., Vockenhuber, C., Aaron, J., Hajdas, I., and Ivy-Ochs, S.: Two early Holocene rock avalanches in the Bernese Alps (Rinderhorn, Switzerland), Geomorphology, 268, 207–221, https://doi.org/10.1016/j.geomorph.2016.06.008, 2016. a
Guidoboni, E., Comastri, A., and Boschi, E.: The “exceptional” earthquake of 3 January 1117 in the Verona area (northern Italy): a critical time review and detection of two lost earthquakes (lower Germany and Tuscany), J. Geophys. Res.-Solid, 110, B12309, https://doi.org/10.1029/2005JB003683, 2005. a, b, c
Guidoboni, E., Ferrari, G., Mariotti, D., Comastri, A., Tarabusi, G., Sgattoni, G., and Valensise, G.: CFTI5Med, Catalogo dei Forti Terremoti in Italia (461 a.C.–1997) e nell'area Mediterranea (760 a.C.–1500), Istituto Nazionale di Geofisica e Vulcanologia (INGV), available at: http://storing.ingv.it/cfti/cfti5 (last access: April 2020), 2018. a, b
Gutierrez, F., Parise, M., DeWaele, J., and Jourde, H.: A review on natural and human-induced geohazards and impacts in karst, Earth-Sci. Rev., 138, 61–88, https://doi.org/10.1016/j.earscirev.2014.08.002, 2014. a
Guzzetti, F.: Landslide fatalities and the evaluation of landslide risk in Italy, Eng. Geol., 58, 89–107, https://doi.org/10.1016/S0013-7952(00)00047-8, 2000. a, b
Guzzetti, F., Peruccacci, S., Rossi, M., and Stark, C. P.: The rainfall intensity-duration control of shallow landslides and debris flows: an update, Landslides, 5, 3–17, https://doi.org/10.1007/s10346-007-0112-1, 2008. a
Heim, A.: Bergsturz und Menschenleben, Vierteljahrschr. Naturf. Ges. Zürich, 20, Beer and Co., Zurich, Switzerland, 1932. a
Hermanns, R. L. and Longva, O.: Rapid rock-slope failures, in: Landslides (types, mechanisms and modeling), edited by: Clague, J. J. and Stead, D., Cambridge University Press, Cambridge, UK, 59–70, https://doi.org/10.1017/CBO9780511740367.007, 2012. a, b, c
Hermanns, R. L., Niedermann, S., Ivy-Ochs, S., and Kubik, P. W.: Rock avalanching into a landslide-dammed lake causing multiple dam failure in Las Conchas valley (NW Argentina) – evidence from surface exposure dating and stratigraphic analyses, Landslides, 1, 113–122, https://doi.org/10.1007/s10346-004-0013-5, 2004. a
Hewitt, K.: Styles of rock avalanche depositional complexes conditioned by very rugged terrain, Karakoram Himalaya, Pakistan, in: Catastrophic landslides: effects, occurrence and mechanisms, edited by: Evans, S. G. and Degraff, J., Geol. Soc. Am. Rev. Eng. Geol., XV, 345–377, https://doi.org/10.1130/REG15-p345, 2002. a
Hewitt, K.: Rock avalanches with complex runout and emplacement, Karakoram Himalaya, Inner Asia, in: Landslides from Massive Rock Slope Failure, edited by: Evans, S. G., Scarascia-Mugnozza, G., Strom, A. L., and Hermanns, R. L., NATO Sci. S., 49, 521–550, https://doi.org/10.1007/978-1-4020-4037-5_28, 2006. a
Hewitt, K., Clague, J. J., and Orwin, J. F.: Legacies of catastrophic rock slope failures in mountain landscapes, Earth-Sci. Rev., 87, 1–38, https://doi.org/10.1016/j.earscirev.2007.10.002, 2008. a
Hungr, O.: Rock avalanche occurrence, process and modelling, in: Landslides from Massive Rock Slope Failure, edited by: Evans, S. G., Scarascia-Mugnozza, G., Strom, A. L., and Hermanns, R. L., NATO Sci. S., 49, 243–266, https://doi.org/10.1007/978-1-4020-4037-5_14, 2006. a, b, c
Hungr, O., Evans, S. G., and Hutchinson, I. N.: A Review of the Classification of Landslides of the Flow Type, Environ. Eng. Geosci., 7, 221–238, https://doi.org/10.2113/gseegeosci.7.3.221, 2001. a
Ivy-Ochs, S., Synal, H. A., Roth, C., and Schaller, M.: Initial results from isotope dilution for Cl and 36Cl measurements at the PSI/ETH Zurich AMS facility, Nucl. Instrum. Meth. B, 223–224, 623–627, https://doi.org/10.1016/j.nimb.2004.04.115, 2004. a
Ivy-Ochs, S., Martin, S., Campedel, P., Hippe, K., Alfimov, V., Vockenhuber, C., Andreotti, E., Carugati, G., Pasqual, D., Rigo, M., and Viganò, A.: Geomorphology and age of the Marocche di Dro rock avalanches (Trentino, Italy), Quaternary Sci. Rev., 169, 188–205, https://doi.org/10.1016/j.quascirev.2017.05.014, 2017. a
Keefer, D. K.: The susceptibility of rock slopes to earthquake-induced failure, Bull. Assoc. Eng. Geol., 30, 353–361, 1993. a
Köpfli, P., Grämiger, L. M., Moore, J. R., Vockenhuber, C., and Ivy-Ochs, S.: The Oeschinensee rock avalanche, Bernese Alps, Switzerland: a co-seismic failure 2300 years ago?, Swiss J. Geosci., 111, 205–219, https://doi.org/10.1007/s00015-017-0293-0, 2018. a
Loew, S., Gischig, V., Willenberg, H., Alpiger, A., and Moore, J.: Randa: kinematics and driving mechanisms of a large complex rockslide, in: Landslides: Types, Mechanisms and Modeling, edited by: Clague, J. and Stead, D., Cambridge University Press, Cambridge, UK, 297–309, https://doi.org/10.1017/CBO9780511740367.025, 2012. a
Loew, S., Gschwind, S., Gischig, V., Keller-Signer, A., and Valenti, G.: Monitoring and early warning of the 2012 Preonzo catastrophic rockslope failure, Landslides, 14, 141–154, https://doi.org/10.1007/s10346-016-0701-y, 2017. a
Macklin, M. G., Benito, G., Gregory, K. J., Johnstone, E., Lewin, J., Michczyńska, D. J., Soja, R., Starkel, L., and Thorndycraft, V. R.: Past hydrological events reflected in the Holocene fluvial record of Europe, Catena, 66, 145–154, https://doi.org/10.1016/j.catena.2005.07.015, 2006. a
Magoga, L. S. and Marin, F. (Eds.): La certosa di Vedana. Storia, cultura e arte in un ambiente delle Prealpi Bellunesi, Leo S. Olschki, Florence, Italy, 1998. a
Mangeney, A., Roche, O., Hungr, O., Mangold, N., Faccanoni, G., and Lucas, A.: Erosion and mobility in granular collapse over sloping beds, J. Geophys. Res.-Earth, 115, F03040, https://doi.org/10.1029/2009JF001462, 2010. a
Marrero, S. M., Phillips, F. M., Caffee, M. W., and Gosse, J. C.: CRONUS-Earth cosmogenic 36Cl calibration, Quat. Geochronol., 31, 199–219, https://doi.org/10.1016/j.quageo.2015.10.002, 2016. a
Martin, S., Campedel, P., Ivy-Ochs, S., Viganò, A., Alfimov, V., Vockenhuber, C., Andreotti, E., Carugati, G., Pasqual, D., and Rigo, M.: Lavini di Marco (Trentino, Italy): 36Cl exposure dating of a polyphase rock avalanche, Quat. Geochronol., 19, 106–116, https://doi.org/10.1016/j.quageo.2013.08.003, 2014. a
Márton, E., Drobne, K., Ćosović, V., and Moro, A.: Palaeomagnetic evidence for Tertiary counterclockwise rotation of Adria, Tectonophysics, 377, 143–156, https://doi.org/10.1016/j.tecto.2003.08.022, 2003. a
Merchel, S., Braucher, R., Alfimov, V., Bichler, M., Bourlès, D. L., and Reitner, J. M.: The potential of historic rock avalanches and man-made structures as chlorine-36 production rate calibration sites, Quat. Geochronol., 18, 54–62, https://doi.org/10.1016/j.quageo.2013.07.004, 2013. a
Mitchell, W. A., McSaveney, M. J., Zondervan, A., Kim, K., Dunning, S. A., and Taylor, P. J.: The Keylong Serai rock avalanche, NW Indian Himalaya: geomorphology and palaeoseismic implications, Landslides, 4, 245–254, https://doi.org/10.1007/s10346-007-0085-0, 2007. a
Mitchell, W. A., McDougall, S., Nolde, N., Brideau, M. A., Whittall, J., and Aaron, J. B.: Rock avalanche runout prediction using stochastic analysis of a regional dataset, Landslides, 17, 777–792, https://doi.org/10.1007/s10346-019-01331-3, 2020. a
More, K. S. and Wolkersdorfer, C.: An analogue Toma Hill formation model for the Tyrolian Fernpass rockslide, Landslides, 16, 1855–1870, https://doi.org/10.1007/s10346-019-01211-w, 2019. a, b, c
Nicoletti, P. G. and Sorriso-Valvo, M.: Geomorphic controls of the shape and mobility of rock avalanches, Geol. Soc. Am. Bull., 103, 1365–1373, https://doi.org/10.1130/0016-7606(1991)103<1365:GCOTSA>2.3.CO;2, 1991. a, b
Ostermann, M., Ivy‐Ochs, S., Sanders, D., and Prager, C.: Multi‐method (14C, 36Cl, 234U∕230Th) age bracketing of the Tschirgant rock avalanche (Eastern Alps): implications for absolute dating of catastrophic mass‐wasting, Earth Surf. Proc. Land., 42, 1110–1118, https://doi.org/10.1002/esp.4077, 2017. a
Pánek, T., Hradecký, J., Šilhán, K., Smolková, V., and Altová, V.: Time constraints for the evolution of a large slope collapse in karstified mountainous terrain of the southwestern Crimean Mountains, Ukraine, Geomorphology, 108, 171–181, https://doi.org/10.1016/j.geomorph.2009.01.003, 2009. a
Parker, R., Petley, D., Densmore, A., Rosser, N., Damby, D., and Brain, M.: Progressive failure cycles and distributions of earthquake-triggered landslides, in: Earthquake-Induced Landslides, edited by: Ugai, K., Yagi, H., and Wakai, A., Springer, Berlin, Heidelberg, Germany, 755–762, https://doi.org/10.1007/978-3-642-32238-9_82, 2013. a, b
Patzelt, G.: The rock avalanches of Tschirgant and Haiming (Upper Inn Valley, Tyrol, Austria), comment on the map supply, Jb. Geol. B-A, 152, 13–24, 2012. a
Pellegrini, G. B. and Caneve, L.: Carta geomorfologica delle Masiere di Vedana nel Vallone Bellunese (Belluno) – scale , S.EL.CA., Florence, Italy, 2005. a
Pellegrini, G. B. and Surian, N.: Geomorphological study of the Fadalto landslide, Venetian Prealps, Italy, Geomorphology, 15, 337–350, https://doi.org/10.1016/0169-555X(95)00079-K, 1996. a
Prager, C., Ivy-Ochs, S., Ostermann, M., Synal, H. A., and Patzelt, G.: Geology and radiometric 14C-, 36Cl- and Th-/U-dating of the Fernpass rockslide (Tyrol, Austria), Geomorphology, 103, 93–103, https://doi.org/10.1016/j.geomorph.2007.10.018, 2009. a, b, c, d
Preisig, G., Gischig, V., Eberhardt, E., and Hungr, O.: Hydromechanical versus seismic fatigue in progressive failure of deep-seated landslides, in: 13th ISRM International Congress of Rock Mechanics. International Society for Rock Mechanics and Rock Engineering, 10–13 May 2015, Montreal, Canada, https://doi.org/10.13140/RG.2.1.2565.0081, 2015. a, b, c
Rossato, S., Fontana, A., and Mozzi, P.: Meta-analysis of a Holocene 14C database for the detection of paleohydrological crisis in the Venetian-Friulian Plain (NE Italy), Catena, 130, 34–45, https://doi.org/10.1016/j.catena.2014.10.033, 2015. a, b
Rossato, S., Martin, S., Ivy-Ochs, S., Viganò, A., Vockenhuber, C., Rigo, M., Surian, N., and Mozzi, P.: Post-LGM catastrophic landslides in the Dolomites: when, where and why, Alp. Mediterr. Quat., 31, 239–242, https://doi.org/10.26382/AIQUA.2018.AIQUAconference, 2018. a
Rovida, A. N., Locati, M., Camassi, R. D., Lolli, B., and Gasperini, P. (Eds.): CPTI15, the 2015 version of the Parametric Catalogue of Italian Earthquakes, Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy, https://doi.org/10.6092/INGV.IT-CPTI15, 2016. a, b, c
Samia, J., Temme, A., Bregt, A., Wallinga, J., Guzzetti, F., Ardizzone, F., and Rossi, M.: Do landslides follow landslides? Insights in path dependency from a multi-temporal landslide inventory, Landslides, 14, 547–558, https://doi.org/10.1007/s10346-016-0739-x, 2017. a
Sandron, D., Renner, G., Rebez, A., and Slejko, D.: Early instrumental seismicity recorded in the eastern Alps, B. Geofis. Teor. Appl., 55, 755–788, https://doi.org/10.4430/bgta0118, 2014. a
Sauro, F., Zampieri, D., and Filipponi, M.: Development of a deep karst system within a transpressional structure of the Dolomites in north-east Italy, Geomorphology, 184, 51–63, https://doi.org/10.1016/j.geomorph.2012.11.014, 2013. a
Schuster, R. L. and Wieczorek, G. F.: Landslide triggers and types, in: Landslides: proceedings of the first European conference on landslides, edited by: Rybár, J., Stemberk, J., and Wagner, P., Taylor and Francis, Prague, Czech Republic, 59–78, 2002. a
Sewell, R. J., Barrows, T. T., Campbell, S. D. G., and Fifield, L. K.: Exposure dating (10Be, 26Al) of natural terrain landslides in Hong Kong, China, Geol. S. Am. S., 415, 131–146, https://doi.org/10.1130/2006.2415(08), 2006. a
Sosio, R., Crosta, G. B., and Hungr, O.: Complete dynamic modeling calibration for the Thurwieser rock avalanche (Italian Central Alps), Eng. Geol., 100, 11–26, https://doi.org/10.1016/j.enggeo.2008.02.012, 2008. a, b
Spreafico, M. C., Wolter, A., Picotti, V., Borgatti, L., Mangeney, A., and Ghirotti, M.: Forensic investigations of the Cima Salti Landslide, northern Italy, using runout simulations, Geomorphology, 318, 172–186, https://doi.org/10.1016/j.geomorph.2018.04.013, 2018. a
Stead, D. and Eberhardt, E.: Understanding the mechanics of large landslides, Ital. J. Eng. Geol. Environ. Book Ser., 6, 85–112, https://doi.org/10.4408/IJEGE.2013-06.B-07, 2013. a, b, c, d
Stead, D. and Wolter, A.: A critical review of rock slope failure mechanisms: the importance of structural geology, J. Struct. Geol., 74, 1–23, https://doi.org/10.1016/j.jsg.2015.02.002, 2015. a
Stone, J. O.: Air pressure and cosmogenic isotope production, J. Geophys. Res.-Solid, 105, 23753–23759, https://doi.org/10.1029/2000JB900181, 2000. a
Strom, A.: Morphology and internal structure of rockslides and rock avalanches: grounds and constraints for their modelling, in: Landslides from Massive Rock Slope Failure, edited by: Evans, S. G., Mugnozza, G. S., Strom, A., and Hermanns, R. L., NATO Sci. S., 49, 305–326, https://doi.org/10.1007/978-1-4020-4037-5_17, 2006. a, b, c, d
Styllas, M. N., Schimmelpfennig, I., Benedetti, L., Ghilardi, M., and ASTER Team: Late-glacial and Holocene history of the northeast Mediterranean mountains-New insights from in situ-produced 36Cl-based cosmic ray exposure dating of paleo-glacier deposits on Mount Olympus, Greece, Quaternary Sci. Rev., 193, 244–265, https://doi.org/10.1016/j.quascirev.2018.06.020, 2018. a
Takahashi, T.: Process of occurrence, flow and deposition of viscous debris flow, in: River, Coastal and Estuarine Morphodynamics, edited by: Seminara, G. and Blondeaux, P., Springer, Berlin, Germany, 93–118, https://doi.org/10.1007/978-3-662-04571-8_5, 2001.
a
Trigila, A., Iadanza, C., and Guerrieri, L.: The IFFI project (Italian landslide inventory): Methodology and results, in: Guidelines for Mapping Areas at Risk of Landslides in Europe, edited by: Hervás, J., ISPRA, Rome, Italy, 15–18, https://doi.org/10.2788/63147, 2007. a
Trigila, A., Iadanza, C., Bussettini, M., and Lastoria, B.: Dissesto idrogeologico in Italia: pericolosità e indicatori di rischio, Edizione 2018, Rapporti 287/2018, ISPRA, Rome, Italy, 2018.
Tsai, T. L. and Wang, J. K.: Examination of influences of rainfall patterns on shallow landslides due to dissipation of matric suction, Environ. Earth Sci., 63, 65–75, https://doi.org/10.1007/s12665-010-0669-1, 2011. a
Turnau, V.: Beiträge zur Geologie der Berner‐Alpen, 1. Der prähistorische Bergsturz von Kandersteg, 2, Buchdruckerei KJ Wyss, Bern, Switzerland, 1906. a
Viganò, A., Scafidi, D., Martin, S., and Spallarossa, D.: Structure and properties of the Adriatic crust in the central-eastern Southern Alps (Italy) from local earthquake tomography, Terra Nova, 25, 504–512, https://doi.org/10.1111/ter.12067, 2013. a
Viganòò, A., Scafidi, D., Ranalli, G., Martin, S., Della Vedova, B., and Spallarossa, D.: Earthquake relocations, crustal rheology, and active deformation in the central-eastern Alps (N Italy), Tectonophysics, 661, 81–98, https://doi.org/10.1016/j.tecto.2015.08.017, 2015. a
Vockenhuber, C., Miltenberger, K. U., and Synal, H. A.: 36Cl measurements with a gas-filled magnet at 6 MV, Nucl. Instrum. Meth. B, 455, 190–194, https://doi.org/10.1016/j.nimb.2018.12.046, 2019. a
Welkner, D., Eberhardt, E., and Hermanns, R. L.: Hazard investigation of the Portillo Rock Avalanche site, central Andes, Chile, using an integrated field mapping and numerical modelling approach, Eng. Geol., 114, 278–297, https://doi.org/10.1016/j.enggeo.2010.05.007, 2010. a
Wieczorek, G. F.: Landslide triggering mechanisms, in: Landslides: Investigation and Mitigation, edited by: Turner, A. K. and Schuster, R. L., Transportation Research Board, Special Report, National Research Council, Washington, D.C., USA, 76–90, 1996. a
Wirth, S. B., Glur, L., Gilli, A., and Anselmetti, F. S.: Holocene flood frequency across the Central Alps – solar forcing and evidence for variations in North Atlantic atmospheric circulation, Quaternary Sci. Rev., 80, 112–128, https://doi.org/10.1016/j.quascirev.2013.09.002, 2013. a
Short summary
Rock avalanches are extremely dangerous, causing much damage worldwide. The
Masiere di Vedanais a rock avalanche deposit (9 km2, 170 Mm3) in NE Italy. We dated it back to late Roman to early Middle Ages. Identified drivers are the overall structural setting, exceptional rainfall events and seismic shakings. No exceptional event is required as a trigger. When dealing with heavily deformed bedrocks, especially in inhabited areas, the occurrence of a huge event like this must be considered.
Rock avalanches are extremely dangerous, causing much damage worldwide. The
Masiere di Vedanais...
Altmetrics
Final-revised paper
Preprint