Articles | Volume 20, issue 6
https://doi.org/10.5194/nhess-20-1805-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-20-1805-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Hydrometeorological droughts in the Miño–Limia–Sil hydrographic demarcation (northwestern Iberian Peninsula): the role of atmospheric drivers
Rogert Sorí
CORRESPONDING AUTHOR
Environmental Physics Laboratory (EPhysLab), CIM-UVigo, Universidade de Vigo, 32004 Ourense, Spain
Instituto Dom Luiz, Faculdade de Ciências, Universidade de
Lisboa, 1749-016 Campo Grande, Portugal
Marta Vázquez
Environmental Physics Laboratory (EPhysLab), CIM-UVigo, Universidade de Vigo, 32004 Ourense, Spain
Instituto Dom Luiz, Faculdade de Ciências, Universidade de
Lisboa, 1749-016 Campo Grande, Portugal
Escola de Ciências e Tecnologia, Universidade de
Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal
Milica Stojanovic
Instituto Dom Luiz, Faculdade de Ciências, Universidade de
Lisboa, 1749-016 Campo Grande, Portugal
Raquel Nieto
Environmental Physics Laboratory (EPhysLab), CIM-UVigo, Universidade de Vigo, 32004 Ourense, Spain
Margarida L. R. Liberato
Instituto Dom Luiz, Faculdade de Ciências, Universidade de
Lisboa, 1749-016 Campo Grande, Portugal
Escola de Ciências e Tecnologia, Universidade de
Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal
Luis Gimeno
Environmental Physics Laboratory (EPhysLab), CIM-UVigo, Universidade de Vigo, 32004 Ourense, Spain
Related authors
Mojtaba Heydarizad, Liu Zhongfang, Nathsuda Pumijumnong, Masoud Minaei, Pouya Salari, Rogert Sori, and Hamid Ghalibaf Mohammadabadi
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-299, https://doi.org/10.5194/hess-2023-299, 2024
Manuscript not accepted for further review
Short summary
Short summary
This research showed how various factors affect 18O and 2H isotopes in precipitation in Southeast Asia. Various machine learning (ML) models were used to analyze the data. The reliability of predictions were also tested which confirmed the accurate predictions of this study. In addition, another model called VAR, beside ML model have been used to forecast the stable isotopes.
Rogert Sorí, Raquel Nieto, Anita Drumond, Sergio M. Vicente-Serrano, and Luis Gimeno
Hydrol. Earth Syst. Sci., 21, 6379–6399, https://doi.org/10.5194/hess-21-6379-2017, https://doi.org/10.5194/hess-21-6379-2017, 2017
Rogert Sorí, Raquel Nieto, Sergio M. Vicente-Serrano, Anita Drumond, and Luis Gimeno
Earth Syst. Dynam., 8, 653–675, https://doi.org/10.5194/esd-8-653-2017, https://doi.org/10.5194/esd-8-653-2017, 2017
Mojtaba Heydarizad, Liu Zhongfang, Nathsuda Pumijumnong, Masoud Minaei, Pouya Salari, Rogert Sori, and Hamid Ghalibaf Mohammadabadi
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-299, https://doi.org/10.5194/hess-2023-299, 2024
Manuscript not accepted for further review
Short summary
Short summary
This research showed how various factors affect 18O and 2H isotopes in precipitation in Southeast Asia. Various machine learning (ML) models were used to analyze the data. The reliability of predictions were also tested which confirmed the accurate predictions of this study. In addition, another model called VAR, beside ML model have been used to forecast the stable isotopes.
Margarida L. R. Liberato, Irene Montero, Célia Gouveia, Ana Russo, Alexandre M. Ramos, and Ricardo M. Trigo
Earth Syst. Dynam., 12, 197–210, https://doi.org/10.5194/esd-12-197-2021, https://doi.org/10.5194/esd-12-197-2021, 2021
Short summary
Short summary
Extensive, long-standing dry and wet episodes are frequent climatic extreme events (EEs) in the Iberian Peninsula (IP). A method for ranking regional extremes of persistent, widespread drought and wet events is presented, using different SPEI timescales. Results show that there is no region more prone to EE occurrences in the IP, the most extreme extensive agricultural droughts evolve into hydrological and more persistent extreme droughts, and widespread wet and dry EEs are anti-correlated.
António P. Ferreira, Raquel Nieto, and Luis Gimeno
Earth Syst. Sci. Data, 11, 603–627, https://doi.org/10.5194/essd-11-603-2019, https://doi.org/10.5194/essd-11-603-2019, 2019
Short summary
Short summary
The completeness of global radiosonde humidity observations taken over time is studied based on IGRA data. The study illustrates how the number of long-term time series depends on the required frequency, continuity, and vertical sampling of data, in addition to record length. Furthermore, a dataset with metadata related to IGRA is described. It is hoped that such metadata will help climate and environmental scientists to find the most complete in situ observations meeting their research needs.
Luis Gimeno-Sotelo, Raquel Nieto, Marta Vázquez, and Luis Gimeno
Earth Syst. Dynam., 10, 121–133, https://doi.org/10.5194/esd-10-121-2019, https://doi.org/10.5194/esd-10-121-2019, 2019
Short summary
Short summary
Ice melting at the scale of inter-annual fluctuations against the trend is favoured by an increase in moisture transport in summer, autumn, and winter and a decrease in spring. On a daily basis extreme humidity transport increases the formation of ice in winter and decreases it in spring, summer, and autumn; in these three seasons it thus contributes to Arctic sea ice melting. These patterns differ sharply from that linked to decline, especially in summer when the opposite trend applies.
Iago Algarra, Jorge Eiras-Barca, Gonzalo Miguez-Macho, Raquel Nieto, and Luis Gimeno
Earth Syst. Dynam., 10, 107–119, https://doi.org/10.5194/esd-10-107-2019, https://doi.org/10.5194/esd-10-107-2019, 2019
Short summary
Short summary
We analyse moisture transport triggered by the Great Plains low-level jet (GPLLJ), a maximum in wind speed fields located within the first kilometre of the US Great Plain's troposphere, through the innovative Eulerian Weather Research and Forecasting Model tracer tool. Much moisture associated with this low-level jet has been found in northern regions located in a vast extension of the continent, highlighting the key role played by the GPLLJ in North America's advective transport of moisture.
Paulina Ordoñez, Raquel Nieto, Luis Gimeno, Pedro Ribera, David Gallego, Carlos Abraham Ochoa-Moya, and Arturo Ignacio Quintanar
Earth Syst. Dynam., 10, 59–72, https://doi.org/10.5194/esd-10-59-2019, https://doi.org/10.5194/esd-10-59-2019, 2019
Short summary
Short summary
The identification of moisture sources for a region is of prominent importance regarding the characterization of precipitation. In this work, the moisture sources for the western North American monsoon (WNAM) region are identified; these sources are the Gulf of California, the WNAM itself, eastern Mexico and the Caribbean Sea. We find that rainfall intensity over the WNAM region is related to the amount of moisture transported from the Caribbean Sea and eastern Mexico during the preceding days.
Sergio M. Vicente-Serrano, Raquel Nieto, Luis Gimeno, Cesar Azorin-Molina, Anita Drumond, Ahmed El Kenawy, Fernando Dominguez-Castro, Miquel Tomas-Burguera, and Marina Peña-Gallardo
Earth Syst. Dynam., 9, 915–937, https://doi.org/10.5194/esd-9-915-2018, https://doi.org/10.5194/esd-9-915-2018, 2018
Short summary
Short summary
We analyzed changes in surface relative humidity (RH) at the global scale from 1979 to 2014 and compared the variability and trends in RH with those in land evapotranspiration and ocean evaporation in moisture source areas across a range of selected regions worldwide. Our results stress that the different hypotheses that may explain the decrease in RH under a global warming scenario could act together to explain recent RH trends.
Luis Gimeno-Sotelo, Raquel Nieto, Marta Vázquez, and Luis Gimeno
Earth Syst. Dynam., 9, 611–625, https://doi.org/10.5194/esd-9-611-2018, https://doi.org/10.5194/esd-9-611-2018, 2018
Short summary
Short summary
We have identified changes in the pattern of moisture transport for precipitation over the Arctic region, the Arctic Ocean, and its 13 main subdomains concurrent with the major sea ice decline that occurred in 2003. The pattern consists of a general decrease in moisture transport in summer and enhanced moisture transport in autumn and early winter, with different contributions depending on the moisture source and ocean subregion.
Jorge Eiras-Barca, Alexandre M. Ramos, Joaquim G. Pinto, Ricardo M. Trigo, Margarida L. R. Liberato, and Gonzalo Miguez-Macho
Earth Syst. Dynam., 9, 91–102, https://doi.org/10.5194/esd-9-91-2018, https://doi.org/10.5194/esd-9-91-2018, 2018
Short summary
Short summary
This paper analyses the potential role of atmospheric rivers in the explosive cyclone deepening. Using ERA-Interim reanalysis data for 1979–2011, we analyse the concurrence of atmospheric rivers and explosive cyclogenesis over the North Atlantic and North Pacific basins for the extended winter months (ONDJFM).
Rogert Sorí, Raquel Nieto, Anita Drumond, Sergio M. Vicente-Serrano, and Luis Gimeno
Hydrol. Earth Syst. Sci., 21, 6379–6399, https://doi.org/10.5194/hess-21-6379-2017, https://doi.org/10.5194/hess-21-6379-2017, 2017
Rogert Sorí, Raquel Nieto, Sergio M. Vicente-Serrano, Anita Drumond, and Luis Gimeno
Earth Syst. Dynam., 8, 653–675, https://doi.org/10.5194/esd-8-653-2017, https://doi.org/10.5194/esd-8-653-2017, 2017
Ana María Durán-Quesada, Luis Gimeno, and Jorge Amador
Earth Syst. Dynam., 8, 147–161, https://doi.org/10.5194/esd-8-147-2017, https://doi.org/10.5194/esd-8-147-2017, 2017
Short summary
Short summary
This work aims to leverage the understanding of precipitation distribution with a long-term analysis of moisture transport from oceanic and continental sources and its relevance for regional precipitation features, variability and trends. Combining reanalysis, model output, in situ observations and satellite products we provide a robust survey that is useful for, for example, modelling, water resource management, flood and drought monitoring, rain-linked disease spread and ecosystem studies.
Anita Drumond, Erica Taboada, Raquel Nieto, Luis Gimeno, Sergio M. Vicente-Serrano, and Juan Ignacio López-Moreno
Earth Syst. Dynam., 7, 549–558, https://doi.org/10.5194/esd-7-549-2016, https://doi.org/10.5194/esd-7-549-2016, 2016
Short summary
Short summary
A Lagrangian approach was used to identify the moisture sources for fourteen ice-core sites located worldwide for the present climate. The approach computed budgets of evaporation minus precipitation by calculating changes in the specific humidity along 10-day backward trajectories. The results indicate that the oceanic regions around the subtropical high-pressure centers provide most of moisture, and their contribution varies throughout the year following the annual cycles of the centers.
Alexandre M. Ramos, Raquel Nieto, Ricardo Tomé, Luis Gimeno, Ricardo M. Trigo, Margarida L. R. Liberato, and David A. Lavers
Earth Syst. Dynam., 7, 371–384, https://doi.org/10.5194/esd-7-371-2016, https://doi.org/10.5194/esd-7-371-2016, 2016
Short summary
Short summary
An atmospheric river (AR) detection algorithm is used for the North Atlantic Ocean basin, allowing the identification of the major ARs that affected western European coasts between 1979 and 2014. A Lagrangian analysis was then applied in order to identify the main sources of moisture of the ARs that reach western European coasts. Results confirm not only the advection of moisture linked to ARs from subtropical ocean areas but also the existence of a tropical one.
L. Gimeno, M. Vázquez, R. Nieto, and R. M. Trigo
Earth Syst. Dynam., 6, 583–589, https://doi.org/10.5194/esd-6-583-2015, https://doi.org/10.5194/esd-6-583-2015, 2015
Short summary
Short summary
There appears to be a connection between two climate change indicators: an increase in evaporation over source regions and Arctic ice melting.
A. Drumond, J. Marengo, T. Ambrizzi, R. Nieto, L. Moreira, and L. Gimeno
Hydrol. Earth Syst. Sci., 18, 2577–2598, https://doi.org/10.5194/hess-18-2577-2014, https://doi.org/10.5194/hess-18-2577-2014, 2014
M. L. R. Liberato, J. G. Pinto, R. M. Trigo, P. Ludwig, P. Ordóñez, D. Yuen, and I. F. Trigo
Nat. Hazards Earth Syst. Sci., 13, 2239–2251, https://doi.org/10.5194/nhess-13-2239-2013, https://doi.org/10.5194/nhess-13-2239-2013, 2013
Related subject area
Atmospheric, Meteorological and Climatological Hazards
Global estimates of 100-year return values of daily precipitation from ensemble weather prediction data
Exploring the sensitivity of extreme event attribution of two recent extreme weather events in Sweden using long-running meteorological observations
Probabilistic short-range forecasts of high-precipitation events: optimal decision thresholds and predictability limits
Surprise floods: the role of our imagination in preparing for disasters
Modelling crop hail damage footprints with single-polarization radar: the roles of spatial resolution, hail intensity, and cropland density
Insights into ground strike point properties in Europe through the EUCLID lightning location system
The role of citizen science in assessing the spatiotemporal pattern of rainfall events in urban areas: a case study in the city of Genoa, Italy
Precipitation extremes in Ukraine from 1979 to 2019: climatology, large-scale flow conditions, and moisture sources
Characterizing hail-prone environments using convection-permitting reanalysis and overshooting top detections over south-central Europe
Aircraft engine dust ingestion at global airports
Catchment-scale assessment of drought impact on environmental flow in the Indus Basin, Pakistan
The risk of synoptic-scale Arctic cyclones to shipping
Estimation of future rainfall extreme values by temperature-dependent disaggregation of climate model data
Climatic characteristics of the Jianghuai cyclone and its linkage with precipitation during the Meiyu period from 1961 to 2020
Application of the teaching–learning-based optimization algorithm to an analytical model of thunderstorm outflows to analyze the variability of the downburst kinematic and geometric parameters
Projections and uncertainties of winter windstorm damage in Europe in a changing climate
Improving seasonal predictions of German Bight storm activity
A satellite view of the exceptionally warm summer of 2022 over Europe
Demographic yearbooks as a source of weather-related fatalities: the Czech Republic, 1919–2022
FOREWARNS: development and multifaceted verification of enhanced regional-scale surface water flood forecasts
Assessment of wind–damage relations for Norway using 36 years of daily insurance data
Interannual variations in the seasonal cycle of extreme precipitation in Germany and the response to climate change
Convection-permitting climate model representation of severe convective wind gusts and future changes in southeastern Australia
Climatology of large hail in Europe: characteristics of the European Severe Weather Database
Amplified potential for vegetation stress under climate-change-induced intensifying compound extreme events in the Greater Mediterranean Region
GTDI: a gaming integrated drought index implying hazard causing and bearing impacts changing
Assimilation of surface pressure observations from personal weather stations in AROME-France
An open-source radar-based hail damage model for buildings and cars
Linkages between atmospheric rivers and humid heat across the United States
Insurance loss model vs meteorological loss index – How comparable are their loss estimates for European windstorms?
Evaluating pySTEPS optical flow algorithms for convection nowcasting over the Maritime Continent using satellite data
Climate change impacts on regional fire weather in heterogeneous landscapes of central Europe
High-resolution projections of ambient heat for major European cities using different heat metrics
Heat wave characteristics: evaluation of regional climate model performances for Germany
Rain-on-snow responses to warmer Pyrenees: a sensitivity analysis using a physically based snow hydrological model
Spatial identification of regions at risk to multi-hazards at pan European level: an implemented methodological approach
Intense rains in Israel associated with the 'Train effect'
On the potential of using smartphone sensors for wildfire hazard estimation
Return levels of extreme European windstorms, their dependency on the North Atlantic Oscillation, and potential future risks
Wind as a natural hazard in Poland
Climatological occurrences of hail and tornadoes associated with mesoscale convective systems in the United States
Characteristics of cloud-to-ground lightning (CG) and differences between +CG and −CG strokes in China regarding the China National Lightning Detection Network
The climatology and nature of warm-season convective cells in cold-frontal environments over Germany
Forecasting large hail and lightning using additive logistic regression models and the ECMWF reforecasts
The impact of global navigation satellite system (GNSS) zenith total delay data assimilation on the short-term precipitable water vapor and precipitation forecast over Italy using the Weather Research and Forecasting (WRF) model
Shallow and deep learning of extreme rainfall events from convective atmospheres
Linking reported drought impacts with drought indices, water scarcity and aridity: the case of Kenya
Future heat extremes and impacts in a convection-permitting climate ensemble over Germany
Assessment of subseasonal-to-seasonal (S2S) ensemble extreme precipitation forecast skill over Europe
A long record of European windstorm losses and its comparison to standard climate indices
Florian Ruff and Stephan Pfahl
Nat. Hazards Earth Syst. Sci., 24, 2939–2952, https://doi.org/10.5194/nhess-24-2939-2024, https://doi.org/10.5194/nhess-24-2939-2024, 2024
Short summary
Short summary
High-impact river floods are often caused by extreme precipitation. Flood protection relies on reliable estimates of the return values. Observational time series are too short for a precise calculation. Here, 100-year return values of daily precipitation are estimated on a global grid based on a large set of model-generated precipitation events from ensemble weather prediction. The statistical uncertainties in the return values can be substantially reduced compared to observational estimates.
Erik Holmgren and Erik Kjellström
Nat. Hazards Earth Syst. Sci., 24, 2875–2893, https://doi.org/10.5194/nhess-24-2875-2024, https://doi.org/10.5194/nhess-24-2875-2024, 2024
Short summary
Short summary
Associating extreme weather events with changes in the climate remains difficult. We have explored two ways these relationships can be investigated: one using a more common method and one relying solely on long-running records of meteorological observations.
Our results show that while both methods lead to similar conclusions for two recent weather events in Sweden, the commonly used method risks underestimating the strength of the connection between the event and changes to the climate.
François Bouttier and Hugo Marchal
Nat. Hazards Earth Syst. Sci., 24, 2793–2816, https://doi.org/10.5194/nhess-24-2793-2024, https://doi.org/10.5194/nhess-24-2793-2024, 2024
Short summary
Short summary
Weather prediction uncertainties can be described as sets of possible scenarios – a technique called ensemble prediction. Our machine learning technique translates them into more easily interpretable scenarios for various users, balancing the detection of high precipitation with false alarms. Key parameters are precipitation intensity and space and time scales of interest. We show that the approach can be used to facilitate warnings of extreme precipitation.
Joy Ommer, Jessica Neumann, Milan Kalas, Sophie Blackburn, and Hannah L. Cloke
Nat. Hazards Earth Syst. Sci., 24, 2633–2646, https://doi.org/10.5194/nhess-24-2633-2024, https://doi.org/10.5194/nhess-24-2633-2024, 2024
Short summary
Short summary
What’s the worst that could happen? Recent floods are often claimed to be beyond our imagination. Imagination is the picturing of a situation in our mind and the emotions that we connect with this situation. But why is this important for disasters? This survey found that when we cannot imagine a devastating flood, we are not preparing in advance. Severe-weather forecasts and warnings need to advance in order to trigger our imagination of what might happen and enable us to start preparing.
Raphael Portmann, Timo Schmid, Leonie Villiger, David N. Bresch, and Pierluigi Calanca
Nat. Hazards Earth Syst. Sci., 24, 2541–2558, https://doi.org/10.5194/nhess-24-2541-2024, https://doi.org/10.5194/nhess-24-2541-2024, 2024
Short summary
Short summary
The study presents an open-source model to determine the occurrence of hail damage to field crops and grapevines after hailstorms in Switzerland based on radar, agricultural land use data, and insurance damage reports. The model performs best at 8 km resolution for field crops and 1 km for grapevine and in the main production areas. Highlighting performance trade-offs and the relevance of user needs, the study is a first step towards the assessment of risk and damage for crops in Switzerland.
Dieter Roel Poelman, Hannes Kohlmann, and Wolfgang Schulz
Nat. Hazards Earth Syst. Sci., 24, 2511–2522, https://doi.org/10.5194/nhess-24-2511-2024, https://doi.org/10.5194/nhess-24-2511-2024, 2024
Short summary
Short summary
EUCLID's lightning data unveil distinctive ground strike point (GSP) patterns in Europe. Over seas, GSPs per flash surpass inland, reaching a minimum in the Alps. Mountainous areas like the Alps and Pyrenees have the closest GSP separation, highlighting terrain elevation's impact. The daily peak current correlates with average GSPs per flash. These findings could significantly influence lightning protection measures, urging a focus on GSP density rather than flash density for risk assessment.
Nicola Loglisci, Giorgio Boni, Arianna Cauteruccio, Francesco Faccini, Massimo Milelli, Guido Paliaga, and Antonio Parodi
Nat. Hazards Earth Syst. Sci., 24, 2495–2510, https://doi.org/10.5194/nhess-24-2495-2024, https://doi.org/10.5194/nhess-24-2495-2024, 2024
Short summary
Short summary
We analyse the meteo-hydrological features of the 27 and 28 August 2023 event that occurred in Genoa. Rainfall observations were made using rain gauge networks based on either official networks or citizen science networks. The merged analysis stresses the spatial variability in the precipitation, which cannot be captured by the current spatial density of authoritative stations. Results show that at minimal distances the variations in cumulated rainfall over a sub-hourly duration are significant.
Ellina Agayar, Franziska Aemisegger, Moshe Armon, Alexander Scherrmann, and Heini Wernli
Nat. Hazards Earth Syst. Sci., 24, 2441–2459, https://doi.org/10.5194/nhess-24-2441-2024, https://doi.org/10.5194/nhess-24-2441-2024, 2024
Short summary
Short summary
This study presents the results of a climatological investigation of extreme precipitation events (EPEs) in Ukraine for the period 1979–2019. During all seasons EPEs are associated with pronounced upper-level potential vorticity (PV) anomalies. In addition, we find distinct seasonal and regional differences in moisture sources. Several extreme precipitation cases demonstrate the importance of these processes, complemented by a detailed synoptic analysis.
Antonio Giordani, Michael Kunz, Kristopher M. Bedka, Heinz Jürgen Punge, Tiziana Paccagnella, Valentina Pavan, Ines M. L. Cerenzia, and Silvana Di Sabatino
Nat. Hazards Earth Syst. Sci., 24, 2331–2357, https://doi.org/10.5194/nhess-24-2331-2024, https://doi.org/10.5194/nhess-24-2331-2024, 2024
Short summary
Short summary
To improve the challenging representation of hazardous hailstorms, a proxy for hail frequency based on satellite detections, convective parameters from high-resolution reanalysis, and crowd-sourced reports is tested and presented. Hail likelihood peaks in mid-summer at 15:00 UTC over northern Italy and shows improved agreement with observations compared to previous estimates. By separating ambient signatures based on hail severity, enhanced appropriateness for large-hail occurrence is found.
Claire L. Ryder, Clément Bézier, Helen F. Dacre, Rory Clarkson, Vassilis Amiridis, Eleni Marinou, Emmanouil Proestakis, Zak Kipling, Angela Benedetti, Mark Parrington, Samuel Rémy, and Mark Vaughan
Nat. Hazards Earth Syst. Sci., 24, 2263–2284, https://doi.org/10.5194/nhess-24-2263-2024, https://doi.org/10.5194/nhess-24-2263-2024, 2024
Short summary
Short summary
Desert dust poses a hazard to aircraft via degradation of engine components. This has financial implications for the aviation industry and results in increased fuel burn with climate impacts. Here we quantify dust ingestion by aircraft engines at airports worldwide. We find Dubai and Delhi in summer are among the dustiest airports, where substantial engine degradation would occur after 1000 flights. Dust ingestion can be reduced by changing take-off times and the altitude of holding patterns.
Khalil Ur Rahman, Songhao Shang, Khaled Saeed Balkhair, Hamza Farooq Gabriel, Khan Zaib Jadoon, and Kifayat Zaman
Nat. Hazards Earth Syst. Sci., 24, 2191–2214, https://doi.org/10.5194/nhess-24-2191-2024, https://doi.org/10.5194/nhess-24-2191-2024, 2024
Short summary
Short summary
This paper assesses the impact of drought (meteorological drought) on the hydrological alterations in major rivers of the Indus Basin. Threshold regression and range of variability analysis are used to determine the drought severity and times where drought has caused low flows and extreme low flows (identified using indicators of hydrological alterations). Moreover, this study also examines the degree of alterations in river flows due to drought using the hydrological alteration factor.
Alexander Frank Vessey, Kevin I. Hodges, Len C. Shaffrey, and Jonathan J. Day
Nat. Hazards Earth Syst. Sci., 24, 2115–2132, https://doi.org/10.5194/nhess-24-2115-2024, https://doi.org/10.5194/nhess-24-2115-2024, 2024
Short summary
Short summary
The risk posed to ships by Arctic cyclones has seldom been quantified due to the lack of publicly available historical Arctic ship track data. This study investigates historical Arctic ship tracks, cyclone tracks, and shipping incident reports to determine the number of shipping incidents caused by the passage of Arctic cyclones. Results suggest that Arctic cyclones have not been hazardous to ships and that ships are resilient to the rough sea conditions caused by Arctic cyclones.
Niklas Ebers, Kai Schröter, and Hannes Müller-Thomy
Nat. Hazards Earth Syst. Sci., 24, 2025–2043, https://doi.org/10.5194/nhess-24-2025-2024, https://doi.org/10.5194/nhess-24-2025-2024, 2024
Short summary
Short summary
Future changes in sub-daily rainfall extreme values are essential in various hydrological fields, but climate scenarios typically offer only daily resolution. One solution is rainfall generation. With a temperature-dependent rainfall generator climate scenario data were disaggregated to 5 min rainfall time series for 45 locations across Germany. The analysis of the future 5 min rainfall time series showed an increase in the rainfall extremes values for rainfall durations of 5 min and 1 h.
Ran Zhu and Lei Chen
Nat. Hazards Earth Syst. Sci., 24, 1937–1950, https://doi.org/10.5194/nhess-24-1937-2024, https://doi.org/10.5194/nhess-24-1937-2024, 2024
Short summary
Short summary
There is a positive correlation between the frequency of Jianghuai cyclone activity and precipitation during the Meiyu period. Its occurrence frequency has an obvious decadal variation, which corresponds well with the quasi-periodic and decadal variation in precipitation during the Meiyu period. This study provides a reference for the long-term and short-term forecasting of precipitation during the Meiyu period.
Andi Xhelaj and Massimiliano Burlando
Nat. Hazards Earth Syst. Sci., 24, 1657–1679, https://doi.org/10.5194/nhess-24-1657-2024, https://doi.org/10.5194/nhess-24-1657-2024, 2024
Short summary
Short summary
The study provides an in-depth analysis of a severe downburst event in Sânnicolau Mare, Romania, utilizing an analytical model and optimization algorithm. The goal is to explore a multitude of generating solutions and to identify potential alternatives to the optimal solution. Advanced data analysis techniques help to discern three main distinct storm scenarios. For this particular event, the best overall solution from the optimization algorithm shows promise in reconstructing the downburst.
Luca G. Severino, Chahan M. Kropf, Hilla Afargan-Gerstman, Christopher Fairless, Andries Jan de Vries, Daniela I. V. Domeisen, and David N. Bresch
Nat. Hazards Earth Syst. Sci., 24, 1555–1578, https://doi.org/10.5194/nhess-24-1555-2024, https://doi.org/10.5194/nhess-24-1555-2024, 2024
Short summary
Short summary
We combine climate projections from 30 climate models with a climate risk model to project winter windstorm damages in Europe under climate change. We study the uncertainty and sensitivity factors related to the modelling of hazard, exposure and vulnerability. We emphasize high uncertainties in the damage projections, with climate models primarily driving the uncertainty. We find climate change reshapes future European windstorm risk by altering damage locations and intensity.
Daniel Krieger, Sebastian Brune, Johanna Baehr, and Ralf Weisse
Nat. Hazards Earth Syst. Sci., 24, 1539–1554, https://doi.org/10.5194/nhess-24-1539-2024, https://doi.org/10.5194/nhess-24-1539-2024, 2024
Short summary
Short summary
Previous studies found that climate models can predict storm activity in the German Bight well for averages of 5–10 years but struggle in predicting the next winter season. Here, we improve winter storm activity predictions by linking them to physical phenomena that occur before the winter. We guess the winter storm activity from these phenomena and discard model solutions that stray too far from the guess. The remaining solutions then show much higher prediction skill for storm activity.
João P. A. Martins, Sara Caetano, Carlos Pereira, Emanuel Dutra, and Rita M. Cardoso
Nat. Hazards Earth Syst. Sci., 24, 1501–1520, https://doi.org/10.5194/nhess-24-1501-2024, https://doi.org/10.5194/nhess-24-1501-2024, 2024
Short summary
Short summary
Over Europe, 2022 was truly exceptional in terms of extreme heat conditions, both in terms of temperature anomalies and their temporal and spatial extent. The satellite all-sky land surface temperature (LST) is used to provide a climatological context to extreme heat events. Where drought conditions prevail, LST anomalies are higher than 2 m air temperature anomalies. ERA5-Land does not represent this effect correctly due to a misrepresentation of vegetation anomalies.
Rudolf Brázdil, Kateřina Chromá, and Pavel Zahradníček
Nat. Hazards Earth Syst. Sci., 24, 1437–1457, https://doi.org/10.5194/nhess-24-1437-2024, https://doi.org/10.5194/nhess-24-1437-2024, 2024
Short summary
Short summary
The official mortality data in the Czech Republic in 1919–2022 are used to show long-term fluctuations in the number of fatalities caused by excessive natural cold and heat, lightning, natural disasters, and falls on ice/snow, as well as the sex and age of the deceased, based on certain meteorological, historical, and socioeconomic factors that strongly influence changes in the number and structure of such fatalities. Knowledge obtained is usable in risk management for the preservation of lives.
Ben Maybee, Cathryn E. Birch, Steven J. Böing, Thomas Willis, Linda Speight, Aurore N. Porson, Charlie Pilling, Kay L. Shelton, and Mark A. Trigg
Nat. Hazards Earth Syst. Sci., 24, 1415–1436, https://doi.org/10.5194/nhess-24-1415-2024, https://doi.org/10.5194/nhess-24-1415-2024, 2024
Short summary
Short summary
This paper presents the development and verification of FOREWARNS, a novel method for regional-scale forecasting of surface water flooding. We detail outcomes from a workshop held with UK forecast users, who indicated they valued the forecasts and would use them to complement national guidance. We use results of objective forecast tests against flood observations over northern England to show that this confidence is justified and that FOREWARNS meets the needs of UK flood responders.
Ashbin Jaison, Asgeir Sorteberg, Clio Michel, and Øyvind Breivik
Nat. Hazards Earth Syst. Sci., 24, 1341–1355, https://doi.org/10.5194/nhess-24-1341-2024, https://doi.org/10.5194/nhess-24-1341-2024, 2024
Short summary
Short summary
The present study uses daily insurance losses and wind speeds to fit storm damage functions at the municipality level of Norway. The results show that the damage functions accurately estimate losses associated with extreme damaging events and can reconstruct their spatial patterns. However, there is no single damage function that performs better than another. A newly devised damage–no-damage classifier shows some skill in predicting extreme damaging events.
Madlen Peter, Henning W. Rust, and Uwe Ulbrich
Nat. Hazards Earth Syst. Sci., 24, 1261–1285, https://doi.org/10.5194/nhess-24-1261-2024, https://doi.org/10.5194/nhess-24-1261-2024, 2024
Short summary
Short summary
The paper introduces a statistical modeling approach describing daily extreme precipitation in Germany more accurately by including changes within the year and between the years simultaneously. The changing seasonality over years is regionally divergent and mainly weak. However, some regions stand out with a more pronounced linear rise of summer intensities, indicating a possible climate change signal. Improved modeling of extreme precipitation is beneficial for risk assessment and adaptation.
Andrew Brown, Andrew Dowdy, and Todd P. Lane
EGUsphere, https://doi.org/10.5194/egusphere-2024-322, https://doi.org/10.5194/egusphere-2024-322, 2024
Short summary
Short summary
A computer model that simulates the climate of south-eastern Australia is shown here to represent extreme wind events associated with convective storms. This is useful as it allows us to investigate possible future changes in the occurrences of these events, and we find in the year 2050 that our model simulates a decrease in the number of occurrences. However, the model also simulates too many events in the historical climate compared with observations, so these future changes are uncertain.
Faye Hulton and David M. Schultz
Nat. Hazards Earth Syst. Sci., 24, 1079–1098, https://doi.org/10.5194/nhess-24-1079-2024, https://doi.org/10.5194/nhess-24-1079-2024, 2024
Short summary
Short summary
Large hail devastates crops and property and can injure and kill people and livestock. Hail reports are collected by individual countries, so understanding where and when large hail occurs across Europe is an incomplete undertaking. We use the European Severe Weather Database to evaluate the quality of reports by year and by country since 2000. Despite its short record, the dataset appears to represent aspects of European large-hail climatology reliably.
Patrick Olschewski, Mame Diarra Bousso Dieng, Hassane Moutahir, Brian Böker, Edwin Haas, Harald Kunstmann, and Patrick Laux
Nat. Hazards Earth Syst. Sci., 24, 1099–1134, https://doi.org/10.5194/nhess-24-1099-2024, https://doi.org/10.5194/nhess-24-1099-2024, 2024
Short summary
Short summary
We applied a multivariate and dependency-preserving bias correction method to climate model output for the Greater Mediterranean Region and investigated potential changes in false-spring events (FSEs) and heat–drought compound events (HDCEs). Results project an increase in the frequency of FSEs in middle and late spring as well as increases in frequency, intensity, and duration for HDCEs. This will potentially aggravate the risk of crop loss and failure and negatively impact food security.
Xiaowei Zhao, Tianzeng Yang, Hongbo Zhang, Tian Lan, Chaowei Xue, Tongfang Li, Zhaoxia Ye, Zhifang Yang, and Yurou Zhang
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-45, https://doi.org/10.5194/nhess-2024-45, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
To effectively track and identify droughts, we developed a novel integrated drought index that combines the effects of precipitation, temperature, and soil moisture on drought. After comparison and verification, the integrated drought index shows superior performance to a single meteorological drought index or agricultural drought index in drought identification.
Alan Demortier, Marc Mandement, Vivien Pourret, and Olivier Caumont
Nat. Hazards Earth Syst. Sci., 24, 907–927, https://doi.org/10.5194/nhess-24-907-2024, https://doi.org/10.5194/nhess-24-907-2024, 2024
Short summary
Short summary
Improvements in numerical weather prediction models make it possible to warn of hazardous weather situations. The incorporation of new observations from personal weather stations into the French limited-area model is evaluated. It leads to a significant improvement in the modelling of the surface pressure field up to 9 h ahead. Their incorporation improves the location and intensity of the heavy precipitation event that occurred in the South of France in September 2021.
Timo Schmid, Raphael Portmann, Leonie Villiger, Katharina Schröer, and David N. Bresch
Nat. Hazards Earth Syst. Sci., 24, 847–872, https://doi.org/10.5194/nhess-24-847-2024, https://doi.org/10.5194/nhess-24-847-2024, 2024
Short summary
Short summary
Hailstorms cause severe damage to buildings and cars, which motivates a detailed risk assessment. Here, we present a new open-source hail damage model based on radar data in Switzerland. The model successfully estimates the correct order of magnitude of car and building damages for most large hail events over 20 years. However, large uncertainty remains in the geographical distribution of modelled damages, which can be improved for individual events by using crowdsourced hail reports.
Colin Raymond, Anamika Shreevastava, Emily Slinskey, and Duane Waliser
Nat. Hazards Earth Syst. Sci., 24, 791–801, https://doi.org/10.5194/nhess-24-791-2024, https://doi.org/10.5194/nhess-24-791-2024, 2024
Short summary
Short summary
How can we systematically understand what causes high levels of atmospheric humidity and thus heat stress? Here we argue that atmospheric rivers can be a useful tool, based on our finding that in several US regions, atmospheric rivers and humid heat occur close together in space and time. Most typically, an atmospheric river transports moisture which heightens heat stress, with precipitation following a day later. These effects tend to be larger for stronger and more extensive systems.
Julia Moemken, Inovasita Alifdini, Alexandre M. Ramos, Alexandros Georgiadis, Aidan Brocklehurst, Lukas Braun, and Joaquim G. Pinto
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-16, https://doi.org/10.5194/nhess-2024-16, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
European windstorms regularly cause damage to natural and human-made environments, leading to high socio-economic losses. For the first time, we compare estimates of these losses using a meteorological Loss Index (LI) and the insurance loss (catastrophe) model of Aon Impact Forecasting. We find that LI underestimates high impact windstorms compared to the insurance model. Nonetheless, due to its simplicity, LI is an effective index, suitable for estimating impacts and ranking storm events.
Joseph Smith, Cathryn Birch, John Marsham, Simon Peatman, Massimo Bollasina, and George Pankiewicz
Nat. Hazards Earth Syst. Sci., 24, 567–582, https://doi.org/10.5194/nhess-24-567-2024, https://doi.org/10.5194/nhess-24-567-2024, 2024
Short summary
Short summary
Nowcasting uses observations to make predictions of the atmosphere on short timescales and is particularly applicable to the Maritime Continent, where storms rapidly develop and cause natural disasters. This paper evaluates probabilistic and deterministic satellite nowcasting algorithms over the Maritime Continent. We show that the probabilistic approach is most skilful at small scales (~ 60 km), whereas the deterministic approach is most skilful at larger scales (~ 200 km).
Julia Miller, Andrea Böhnisch, Ralf Ludwig, and Manuela I. Brunner
Nat. Hazards Earth Syst. Sci., 24, 411–428, https://doi.org/10.5194/nhess-24-411-2024, https://doi.org/10.5194/nhess-24-411-2024, 2024
Short summary
Short summary
We assess the impacts of climate change on fire danger for 1980–2099 in different landscapes of central Europe, using the Canadian Forest Fire Weather Index (FWI) as a fire danger indicator. We find that today's 100-year FWI event will occur every 30 years by 2050 and every 10 years by 2099. High fire danger (FWI > 21.3) becomes the mean condition by 2099 under an RCP8.5 scenario. This study highlights the potential for severe fire events in central Europe from a meteorological perspective.
Clemens Schwingshackl, Anne Sophie Daloz, Carley Iles, Kristin Aunan, and Jana Sillmann
Nat. Hazards Earth Syst. Sci., 24, 331–354, https://doi.org/10.5194/nhess-24-331-2024, https://doi.org/10.5194/nhess-24-331-2024, 2024
Short summary
Short summary
Ambient heat in European cities will substantially increase under global warming, as projected by three heat metrics calculated from high-resolution climate model simulations. While the heat metrics consistently project high levels of ambient heat for several cities, in other cities the projected heat levels vary considerably across the three heat metrics. Using complementary heat metrics for projections of ambient heat is thus important for assessments of future risks from heat stress.
Dragan Petrovic, Benjamin Fersch, and Harald Kunstmann
Nat. Hazards Earth Syst. Sci., 24, 265–289, https://doi.org/10.5194/nhess-24-265-2024, https://doi.org/10.5194/nhess-24-265-2024, 2024
Short summary
Short summary
The influence of model resolution and settings on the reproduction of heat waves in Germany between 1980–2009 is analyzed. Outputs from a high-resolution model with settings tailored to the target region are compared to those from coarser-resolution models with more general settings. Neither the increased resolution nor the tailored model settings are found to add significant value to the heat wave simulation. The models exhibit a large spread, indicating that the choice of model can be crucial.
Josep Bonsoms, Juan I. López-Moreno, Esteban Alonso-González, César Deschamps-Berger, and Marc Oliva
Nat. Hazards Earth Syst. Sci., 24, 245–264, https://doi.org/10.5194/nhess-24-245-2024, https://doi.org/10.5194/nhess-24-245-2024, 2024
Short summary
Short summary
Climate warming is changing mountain snowpack patterns, leading in some cases to rain-on-snow (ROS) events. Here we analyzed near-present ROS and its sensitivity to climate warming across the Pyrenees. ROS increases during the coldest months of the year but decreases in the warmest months and areas under severe warming due to snow cover depletion. Faster snow ablation is anticipated in the coldest and northern slopes of the range. Relevant implications in mountain ecosystem are anticipated.
Tiberiu-Eugen Antofie, Stefano Luoni, Alois Tilloy, Andrea Sibilia, Sandro Salari, Gustav Eklund, Davide Rodomonti, Christos Bountzouklis, and Christina Corbane
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-220, https://doi.org/10.5194/nhess-2023-220, 2024
Revised manuscript under review for NHESS
Short summary
Short summary
This is the first study that uses spatial patterns (clusters/hot-spots) and meta-analysis in order to identify the regions at European level at risk to multi-hazards. The findings point out the socio-economic dimension as determinant factor for the risk potential to multi-hazard. The outcome provides valuable input for the Disaster Risk Management policy support and will assist national authorities on the implementation of a multi-hazard approach in the National Risk Assessments preparation.
Baruch Ziv, Uri Dayan, Lidiya Shendrik, and Elyakom Vadislavsky
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-215, https://doi.org/10.5194/nhess-2023-215, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
'Train effect' is related to convective cells that pass over the same place. Trains produce heavy rainfall, sometimes floods, and reported in N. America during spring and summer. In Israel, 17 trains were identified by radar images, associated with Cyprus Lows, sharing the following features: Found at the cold sector south of the low center, at the left flank of a maximum wind belt; they cross the Israeli coast, with a mean length of 45 km, last 1–3 hours and yield 35 mm rainfall, up to 60 mm.
Hofit Shachaf, Colin Price, Dorita Rostkier-Edelstein, and Cliff Mass
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-211, https://doi.org/10.5194/nhess-2023-211, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
We have used the temperature and relative humidity sensors in smartphones to estimate the Vapor Pressure Deficit (VPD), and important atmospheric parameter closely linked to fuel moisture and wildfire risk. Our analysis for two severe wildfire case studies in Israel and Portugal show the potential for using smartphone data to both compliment the regular weather station network, while also providing high spatial resolution of the VPD index.
Matthew D. K. Priestley, David B. Stephenson, Adam A. Scaife, Daniel Bannister, Christopher J. T. Allen, and David Wilkie
Nat. Hazards Earth Syst. Sci., 23, 3845–3861, https://doi.org/10.5194/nhess-23-3845-2023, https://doi.org/10.5194/nhess-23-3845-2023, 2023
Short summary
Short summary
This research presents a model for estimating extreme gusts associated with European windstorms. Using observed storm footprints we are able to calculate the return level of events at the 200-year return period. The largest gusts are found across NW Europe, and these are larger when the North Atlantic Oscillation is positive. Using theoretical future climate states we find that return levels are likely to increase across NW Europe to levels that are unprecedented compared to historical storms.
Tadeusz Chmielewski and Piotr A. Bońkowski
Nat. Hazards Earth Syst. Sci., 23, 3839–3844, https://doi.org/10.5194/nhess-23-3839-2023, https://doi.org/10.5194/nhess-23-3839-2023, 2023
Short summary
Short summary
The paper deals with wind speeds of extreme wind events in Poland and the descriptions of their effects. Two recent estimations developed by the Institute of Meteorology and Water Management in Warsaw and by Halina Lorenc are presented and briefly described. The 37 annual maximum gusts of wind speeds measured between 1971 and 2007 are analysed. Based on the measured and estimated wind speeds, the authors suggest new estimations for extreme winds that may occur in Poland.
Jingyu Wang, Jiwen Fan, and Zhe Feng
Nat. Hazards Earth Syst. Sci., 23, 3823–3838, https://doi.org/10.5194/nhess-23-3823-2023, https://doi.org/10.5194/nhess-23-3823-2023, 2023
Short summary
Short summary
Hail and tornadoes are devastating hazards responsible for significant property damage and economic losses in the United States. Quantifying the connection between hazard events and mesoscale convective systems (MCSs) is of great significance for improving predictability, as well as for better understanding the influence of the climate-scale perturbations. A 14-year statistical dataset of MCS-related hazard production is presented.
Ruijiao Jiang, Guoping Zhang, Shudong Wang, Bing Xue, Zhengshuai Xie, Tingzhao Yu, Kuoyin Wang, Jin Ding, and Xiaoxiang Zhu
Nat. Hazards Earth Syst. Sci., 23, 3747–3759, https://doi.org/10.5194/nhess-23-3747-2023, https://doi.org/10.5194/nhess-23-3747-2023, 2023
Short summary
Short summary
Lightning activity in China is analyzed. Low latitudes, undulating terrain, seaside, and humid surfaces are beneficial for lightning occurrence. Summer of the year or afternoon of the day is the high period. Large cloud-to-ground lightning frequency always corresponds to a small ratio and weak intensity of positive cloud-to-ground lightning on either a temporal or spatial scale. Interestingly, the discharge intensity difference between the two types of lightning shrinks on the Tibetan Plateau.
George Pacey, Stephan Pfahl, Lisa Schielicke, and Kathrin Wapler
Nat. Hazards Earth Syst. Sci., 23, 3703–3721, https://doi.org/10.5194/nhess-23-3703-2023, https://doi.org/10.5194/nhess-23-3703-2023, 2023
Short summary
Short summary
Cold fronts are often associated with areas of intense precipitation (cells) and sometimes with hazards such as flooding, hail and lightning. We find that cold-frontal cell days are associated with higher cell frequency and cells are typically more intense. We also show both spatially and temporally where cells are most frequent depending on their cell-front distance. These results are an important step towards a deeper understanding of cold-frontal storm climatology and improved forecasting.
Francesco Battaglioli, Pieter Groenemeijer, Ivan Tsonevsky, and Tomàš Púčik
Nat. Hazards Earth Syst. Sci., 23, 3651–3669, https://doi.org/10.5194/nhess-23-3651-2023, https://doi.org/10.5194/nhess-23-3651-2023, 2023
Short summary
Short summary
Probabilistic models for lightning and large hail were developed across Europe using lightning observations and hail reports. These models accurately predict the occurrence of lightning and large hail several days in advance. In addition, the hail model was shown to perform significantly better than the state-of-the-art forecasting methods. These results suggest that the models developed in this study may help improve forecasting of convective hazards and eventually limit the associated risks.
Rosa Claudia Torcasio, Alessandra Mascitelli, Eugenio Realini, Stefano Barindelli, Giulio Tagliaferro, Silvia Puca, Stefano Dietrich, and Stefano Federico
Nat. Hazards Earth Syst. Sci., 23, 3319–3336, https://doi.org/10.5194/nhess-23-3319-2023, https://doi.org/10.5194/nhess-23-3319-2023, 2023
Short summary
Short summary
This work shows how local observations can improve precipitation forecasting for severe weather events. The improvement lasts for at least 6 h of forecast.
Gerd Bürger and Maik Heistermann
Nat. Hazards Earth Syst. Sci., 23, 3065–3077, https://doi.org/10.5194/nhess-23-3065-2023, https://doi.org/10.5194/nhess-23-3065-2023, 2023
Short summary
Short summary
Our subject is a new catalogue of radar-based heavy rainfall events (CatRaRE) over Germany and how it relates to the concurrent atmospheric circulation. We classify reanalyzed daily atmospheric fields of convective indices according to CatRaRE, using conventional statistical and more recent machine learning algorithms, and apply them to present and future atmospheres. Increasing trends are projected for CatRaRE-type probabilities, from reanalyzed as well as from simulated atmospheric fields.
Marleen R. Lam, Alessia Matanó, Anne F. Van Loon, Rhoda A. Odongo, Aklilu D. Teklesadik, Charles N. Wamucii, Marc J. C. van den Homberg, Shamton Waruru, and Adriaan J. Teuling
Nat. Hazards Earth Syst. Sci., 23, 2915–2936, https://doi.org/10.5194/nhess-23-2915-2023, https://doi.org/10.5194/nhess-23-2915-2023, 2023
Short summary
Short summary
There is still no full understanding of the relation between drought impacts and drought indices in the Horn of Africa where water scarcity and arid regions are also present. This study assesses their relation in Kenya. A random forest model reveals that each region, aggregated by aridity, has its own set of predictors for every impact category. Water scarcity was not found to be related to aridity. Understanding these relations contributes to the development of drought early warning systems.
Marie Hundhausen, Hendrik Feldmann, Natalie Laube, and Joaquim G. Pinto
Nat. Hazards Earth Syst. Sci., 23, 2873–2893, https://doi.org/10.5194/nhess-23-2873-2023, https://doi.org/10.5194/nhess-23-2873-2023, 2023
Short summary
Short summary
Using a convection-permitting regional climate ensemble, the magnitude of heat waves (HWs) over Germany is projected to increase by 26 % (100 %) in a 2 °C (3 °C) warmer world. The increase is strongest in late summer, relatively homogeneous in space, and accompanied by increasing variance in HW length. Tailored parameters to climate adaptation to heat revealed dependency on major landscapes, and a nonlinear, exponential increase for parameters characterizing strong heat stress is expected.
Pauline Rivoire, Olivia Martius, Philippe Naveau, and Alexandre Tuel
Nat. Hazards Earth Syst. Sci., 23, 2857–2871, https://doi.org/10.5194/nhess-23-2857-2023, https://doi.org/10.5194/nhess-23-2857-2023, 2023
Short summary
Short summary
Heavy precipitation can lead to floods and landslides, resulting in widespread damage and significant casualties. Some of its impacts can be mitigated if reliable forecasts and warnings are available. In this article, we assess the capacity of the precipitation forecast provided by ECMWF to predict heavy precipitation events on a subseasonal-to-seasonal (S2S) timescale over Europe. We find that the forecast skill of such events is generally higher in winter than in summer.
Stephen Cusack
Nat. Hazards Earth Syst. Sci., 23, 2841–2856, https://doi.org/10.5194/nhess-23-2841-2023, https://doi.org/10.5194/nhess-23-2841-2023, 2023
Short summary
Short summary
The link from European windstorm research findings to insurance applications is strengthened by a new storm loss history spanning 1950 to 2022. It is based on ERA5 winds, together with long-term trends from observed gusts for improved validation. Correlations between losses and climate indices are around 0.4 for interannual variations, rising to 0.7 for decadal variations. A significant divergence between standard climate indices and storm losses over the past 20 years needs further research.
Cited articles
Abatzoglou, J., Dobrowski, S., Parks, S. A., and Hegewisch, K. C.: TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015, Sci. Data, 5, 170191, https://doi.org/10.1038/sdata.2017.191, 2018.
Agnew, C. T.: Using the SPI to identify drought, Drought Netw. News, 2000, 12, 6–12, available at: http://digitalcommons.unl.edu/droughtnetnews/1 (last access: 1 September 2019), 2000.
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration: Guidelines for computing crop water requirements, FAO
Irrigation and Drainage Paper 56, 300 pp., available at:
http://www.fao.org/3/X0490E/X0490E00.htm (last access: 1 September 2019), 1998.
Ambaum, M. H. P., Hoskins, B. J., and Stephenson, D. B.: Arctic Oscillation or North Atlantic Oscillation?, J. Climate, 14, 3495–3507,
https://doi.org/10.1175/1520-0442(2001)014<3495:AOONAO>2.0.CO;2, 2001.
Andrade, C. and Belo-Pereira, M.: Assessment of droughts in the Iberian Peninsula using the WASP Index, Atmos. Sci. Lett., 16, 208–218,
https://doi.org/10.1002/asl2.542, 2015.
Añel, J. A., Bakhat, M., and Labandeira, X.: Hydrological management of a
heavily dammed river basin: the Miño-Sil, working paper 03/2014,
available at: http://catedranaturgy.webs4.uvigo.es/investigacion (last access: 1 March 2020), 2014.
Barbeta, A. and Peñuelas, J.: Sequence of plant responses to droughts of different timescales: lessons from holm oak (Quercus ilex) forests, Plant. Ecol. Divers., 9, 321–338, https://doi.org/10.1080/17550874.2016.1212288, 2016.
Barnston, A. G. and Livezey, R. E.: Classification, Seasonality and Persistence of Low-Frequency Atmospheric Circulation Patterns, Mon. Weather Rev., 115, 1083–1126. https://doi.org/10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2, 1987.
Beguería, S., Vicente-Serrano, S. M., Reig, F., and Latorre, B.: Standardized precipitation evapotranspiration index (SPEI) revisited: parameter fitting, evapotranspiration models, tools datasets and drought
monitoring, Int. J. Climatol., 34, 3001–3023, https://doi.org/10.1002/joc.3887, 2014.
Bittelli, M., Ventura, F., Campbell, G. S., Snyder, R. L., Gallegati, F., and
Pisa, P. R.: Coupling of heat, water vapor, and liquid water fluxes to compute evaporation in bare soils, J. Hydrol., 362, 191–205,
https://doi.org/10.1016/j.jhydrol.2008.08.014, 2008.
Bueh, C. and Nakamura, H.: Scandinavian pattern and its climatic impact, Q. J. Roy. Meteorol. Soc., 133, 2117–2131, https://doi.org/10.1002/qj.173, 2007.
CA – Convenção Albufeira: Bacia Hidrográfica do Lima: Dados Gerais, available at: http://www.cadc-albufeira.eu/pt/cuencas-hidrograficas/cuenca-limia/, last access: 22 February 2020.
Casanueva, A., Rodríguez-Puebla, C., Frías, M. D., and González-Reviriego, N.: Variability of extreme precipitation over Europe
and its relationships with teleconnection patterns, Hydrol. Earth Syst.
Sci., 18, 709–725, https://doi.org/10.5194/hess-18-709-2014, 2014.
Coll, J., Aguilar, E., and Ashcroft, L.: Drought variability and change across the Iberian Peninsula, Theor. Appl. Climatol., 130, 901–916,
https://doi.org/10.1007/s00704-016-1926-3, 2017.
Cornes, R., van der Schrier, G., van den Besselaar, E. J. M., and Jones, P. D.: An Ensemble Version of the E-OBS Temperature and Precipitation Datasets, J. Geophys. Res.-Atmos., 123, 1–52, https://doi.org/10.1029/2017JD028200, 2018.
Cortesi, N., Gonzalez-Hidalgo, J. C., Trigo, R. M., and Ramos, A. M.: Weather
Types and spatial variability of precipitation in the Iberian Peninsula, Int. J. Climatol., 34, 2661–2677, https://doi.org/10.1002/joc.3866, 2014.
Dai, A.: Characteristics and trends in various forms of the Palmer Drought
Severity Index during 1900–2008, J. Geophys. Res., 116, D12115,
https://doi.org/10.1029/2010JD015541, 2011.
Dai, P. and Tan, B.: The Nature of the Arctic Oscillation and Diversity of the Extreme Surface Weather Anomalies It Generates, J. Climate, 30, 5563–5584, https://doi.org/10.1175/JCLI-D-16-0467.1, 2017.
Davarzani, H., Smits, K., Tolene, R. M., and Illangasekare, T.: Study of the
effect of wind speed on evaporation from soil through integrated modeling of
the atmospheric boundary layer and shallow subsurface, Water Resour. Res., 50, 661–680, https://doi.org/10.1002/2013WR013952, 2014.
deCastro, M., Lorenzo, N. G., Taboada, J. J., Sarmiento, M. E., Alvarez, I.,
and Gómez-Gesteira, M.: Influence of teleconnection patterns on precipitation variability and on river flow regimes in the Miño River
basin (NW Iberian Peninsula), Clim. Res., 32, 63–73, https://doi.org/10.3354/cr032063, 2006a.
deCastro, M., Alvarez, I., Varela, M., Prego, R., and Gómez-Gesteira, M.:
Miño River dams discharge on neighbor Galician Rias Baixas (NW Iberian
Peninsula): Hydrological, chemical and biological changes in water column,
Estuarine, Coast. Shelf Sci., 70, 52–62, https://doi.org/10.1016/j.ecss.2006.05.035, 2006b.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N. and Vitart, F.: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system, Q. J. Roy. Meteorol. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2001.
Drumond, A., Nieto, R., Gimeno, L., Vicente-Serrano, S. M., and Lopez-Moreno,
J. I.: Characterization of the atmospheric component of the winter hydrological cycle in the Galicia/North Portugal Euro-region: a Lagrangian
approach, Clim. Res., 48, 193–201, https://doi.org/10.3354/cr00987, 2011.
Eiras-Barca, J., Lorenzo, N., Taboada, J., Robles, A., and Miguez-Macho, G.: On the relationship between atmospheric rivers, weather types and floods in Galicia (NW Spain), Nat. Hazards Earth Syst. Sci., 18, 1633–1645, https://doi.org/10.5194/nhess-18-1633-2018, 2018.
García, N. O., Gimeno, L., de la Torre, L., Nieto, R., and Añel, J. A.: North Atlantic Oscillation (NAO) and precipitation in Galicia (Spain),
Atmósfera, 18, 25–32, 2005.
García-Herrera, R., Garrido-Perez, J. M., Barriopedro, D., Ordóñez, C., Vicente-Serrano, S. M., Nieto, R., Gimeno, L., Sorí, R., and Yiou, P: The European 2016/2017 drought, J. Climate, 32, 3169–3187, https://doi.org/10.1175/JCLI-D-18-0331.1, 2019.
García-Herrera, R., Hernández, E., Barriopedro, D., Paredes, D., Trigo, R. M., Trigo, I. F., and Mendes, M. A.: The Outstanding 2004/05 Drought in the Iberian Peninsula: Associated Atmospheric Circulation, J. Hydrometeorol., 8, 483–498, https://doi.org/10.1175/JHM578.1, 2007.
Gómez-Gesteira, M., Gimeno, L., deCastro, M., Lorenzo, M. N., Alverez, I., Nieto, R., Taboada, J. J., Crespo, A. J. C., Ramos, A. M., Iglesias, I.,
Gómez-Gesteira, J. L., Sanro, F. E., Barriopedro, D., and Trigo, I. F.: The state of climate in NW Iberia, Clim. Res., 48, 109–144, https://doi.org/10.3354/cr00967, 2011.
González-Hidalgo, J. C., Vicente-Serrano, S. M., Peña-Angulo, D.,
Salinas, M., Tomas-Burguera, S., and Begueria, S.: High-resolution spatio-temporal analyses of drought episodes in the western Mediterranean
basin (Spanish mainland, Iberian Peninsula), Acta Geophys., 66, 381–392,
https://doi.org/10.1007/s11600-018-0138-x, 2018.
Gouveia, C., Trigo, R. M., and DaCamara, C. C.: Drought and vegetation stress monitoring in Portugal using satellite data, Nat. Hazards Earth Syst. Sci., 9, 185–195, https://doi.org/10.5194/nhess-9-185-2009, 2009.
Grinsted, A., Moore, J. C., and Jevrejeva, S.: Application of the cross
wavelet transform and wavelet coherence to geophysical time series, Nonlin.
Processes Geophys., 11, 561–566, https://doi.org/10.5194/npg-11-561-2004, 2004.
Gu, L., Chen, J., Yin, J., Xu, C.-Y., and Chen, H.: Drought hazard
transferability from meteorological to hydrological propagation, J. Hydrol., 585, 124761, https://doi.org/10.1016/j.jhydrol.2020.124761, 2020.
Guerreiro, S. B., Dawson, R. J., Kilsby, C., Lewis, E., and Ford, A.: Future
heat-waves,droughts and floods in 571 European cities, Environ. Res. Lett.,
13, 1–11, https://doi.org/10.1088/1748-9326/aaaad3, 2018.
Hanna, E., Cropper, T. E., Jones, P. D., Scaife, A. A. and Allan, R.: Recent
seasonal asymmetric changes in the NAO (a marked summer decline and increased winter variability) and associated changes in the AO and Greenland Blocking Index, Int. J. Climatol., 35, 2540–2554, https://doi.org/10.1002/joc.4157, 2015.
Hargreaves, G. H. and Samani, Z.: Reference crop evapotranspiration from
temperature, Appl. Eng. Agric., 1, 96–99, https://doi.org/10.13031/2013.26773, 1985.
Hénin, R., Ramos, A. M., Schemm, S., Gouveia, C. M., and Liberato, M. L. R.: Assigning precipitation to mid-latitudes fronts on sub-daily scales in the North Atlantic and European sector: Climatology and trends, Int. J.
Climatol., 39, 317–330, https://doi.org/10.1002/joc.5808, 2019.
Herrera, S., Cardoso, R. M., Soares, P. M., Espírito-Santo, F., Viterbo, P., and Gutiérrez, J. M.: Iberia01: a new gridded dataset of daily precipitation and temperatures over Iberia, Earth Syst. Sci. Data, 11, 1947–1956, https://doi.org/10.5194/essd-11-1947-2019, 2019.
Hofstra, N., Haylock, M., New, M., and Jones, P. D.: Testing EOBS European
high-resolution gridded data set of daily precipitation and surface
temperature, J. Geophys. Res., 144, D21101, https://doi.org/10.1029/2009JD011799, 2009.
Hofstra, N., New, M., and McSweeney, C.: The influence of in-terpolation and
station network density on the distributions andtrends of climate variables
in gridded daily data, Clim. Dynam., 35, 841–858, https://doi.org/10.1007/s00382-009-0698-1, 2010.
Hurrell, J. W.: Decadal trends in the North Atlantic Oscillation and
relationships to regional temperature and precipitation, Science, 269,
676–679, https://doi.org/10.1126/science.269.5224.676, 1995.
Hurrell, J. W., Kushnir, Y., Ottersen, G., and Visbeck, M.: An overview of the North Atlantic Oscillation, Geophys. Monogr. Ser., 134, 1–35, https://doi.org/10.1029/134GM01, 2003.
IPCC: Summary for Policymakers, in: Global Warming of 1.5 ∘C, in: An IPCC Special Report on the impacts of global warming of 1.5 ∘C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty, edited by: Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J.,
Shukla, P. R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., Connors, S., Matthews, J. B. R., Chen, Y., Zhou, X., Gomis, M. I., Lonnoy, E., Maycock, T., Tignor, M., and Waterfield, T., World Meteorological Organization, Geneva, Switzerland, 32 pp., 2018.
Jenkinson, A. F. and Collison, F. P.: An Initial Climatology of Gales over the North Sea, Synoptic Climatology Branch Memorandum No. 62, Meteorological Office, Bracknell, 1977.
Jones, P. D., Hulme, M., and Briffa, K. R.: A comparison of Lamb circulation types with an objective classification scheme, Internat. J. Climatol., 18, 655–663, https://doi.org/10.1002/joc.3370130606, 1993.
Jones, P. D., Jonsson, T., and Wheeler, D. A.: Monthly values of the North
Atlantic Oscillation Index from 1821 to 2000, PANGAEA, https://doi.org/10.1594/PANGAEA.56559, 1997.
Kendall, M. G.: Rank Correlation Methods, 4th Edn., Charles Griffin, London, 1975.
Knapp, A. K., Carroll, C. J. W., Denton, E. M., La Pierre, K. J., Collins, S. L., and Smith, M. D.: Differential sensitivity to regional-scale drought in six central US grasslands, Oecologia, 177, 949–957, https://doi.org/10.1007/s00442-015-3233-6, 2015.
Lana, X., Martínez, M. D., Burgueño, A., Serra, C., Martín-Vide, J., and Gómez, L.: Distributions of long dry spells in the iberian peninsula, years 1951–1990, Int. J. Climatol., 26, 1999–2021,
https://doi.org/10.1002/joc.1354, 2006.
Lehner, B., Verdin, K., and Jarvis, A.: New global hydrography de-rived from
spaceborne elevation data, Eos Trans. ,89, 93–94, https://doi.org/10.1029/2008EO100001, 2011.
Liberato, M. L. R., Ramos, A. M., Gouveia, C. M., Sousa, P., Russo, A., Trigo, R. M., and Santo, F. E.: Exceptionally extreme drought in Madeira Archipelago in 2012: Vegetation impacts and driving conditions, Agr. Forest
Meteorol., 232, 195–209, https://doi.org/10.1016/j.agrformet.2016.08.010, 2017.
Lloyd-Hughes, B. and Saunders, M. A.: A drought climatology for Europe, Int.
J. Climatol., 22, 1571–1592, https://doi.org/10.1002/joc.846, 2002.
López-Moreno, J. I., Hess, T. M., and White, A. S. M.: Estimation of reference evapotranspiration in a mountainous mediterranean site using the
Penman–Monteith equation with limited meteorological data, Pirineos JACA,
164, 7–31, https://doi.org/10.3989/pirineos.2009.v164.27, 2009.
Lorenzo, M. N., Taboada, J. J., and Gimeno, L.: Links between circulation weather types and teleconnection patterns and their influence on precipitation patterns in Galicia (NW Spain), Int. J. Climatol., 28, 1493–1505, https://doi.org/10.1002/joc.1646, 2008.
Lorenzo, M. N., Taboada, J. J., Iglesias, I., and Gómez-Gesteira, M.:
Predictability of the spring rainfall in Northwestern Iberian Peninsula from
sea surfaces temperature of ENSO areas, Climatic Change, 107, 329–341,
https://doi.org/10.1007/s10584-010-9991-6, 2010.
Lorenzo-Lacruz, J., Morán-Tejeda, E., Vicente-Serrano, S. M., and López-Moreno, J. I.: Streamflow droughts in the Iberian Peninsula
between 1945 and 2005: spatial and temporal patterns, Hydrol. Earth Syst.
Sci., 17, 119–134, https://doi.org/10.5194/hess-17-119-2013, 2013.
Mann, H. B.: Non-parametric tests against trend, Econometrica 13, 163–171, 1945.
Manning, C., Widmann, M., Bevacqua, E., Van Loon, A. F., Maraun, D., and
Vrac, M.: Increased probability of compound long-duration dry and hot events in Europe during summer (1950–2013), Environ. Res. Lett., 14, 094006,
https://doi.org/10.1088/1748-9326/ab23bf, 2019.
Manzano, A. M., Clemente, M. A., Morata, A., Luna, M. Y., Beguería, S.,
Vicente-Serrano, S. M., and Martín, M. L.: Analysis of the atmospheric
circulation pattern effects over SPEI drought index in Spain, Atmos. Res., 230, 104630, https://doi.org/10.1016/j.atmosres.2019.104630, 2019.
Martín-Vide, J. and Lopez-Bustins, J. A.: The Western Mediterranean
Oscillation and rainfall in the Iberian Peninsula, Int. J. Climatol., 26, 1455–1475, https://doi.org/10.1002/joc.1388, 2006.
Martin-Vide, J., Sanchez-Lorenzo, A., Lopez-Bustins, J. A., Cordobilla, M. J., Garcia-Manuel, A., and Raso, J. M.: Torrential rainfall in northeast of the Iberian Peninsula: synoptic patterns and WeMO influence, Adv. Sci. Res., 2, 99–105, https://doi.org/10.5194/asr-2-99-2008, 2008.
McKee, T. B. N., Doesken, J., and Kleist, J.: The relationship of drought
frequency and duration to time scales, in: Eight Conf. On Applied Climatology, Anaheim, California, USA, 179–184, 1993.
McMichael, A. J. and Lindgren, E.: Climate change: present and future risks to health, and necessary responses, J. Intern. Med., 270, 401–413,
https://doi.org/10.1111/j.1365-2796.2011.02415.x, 2011.
Miralles, D. G., Gentine, P., Seneviratne, S. I., and Teuling, A. J.:
Land-atmospheric feedbacks during droughts and heatwaves: state of the
science and current challenges, Ann. NY Acad. Sci., 1436, 19–35,
https://doi.org/10.1111/nyas.13912, 2019.
Monish, N. T. and Rehana, S.: Suitability of distributions for standard
precipitation and evapotranspiration index over meteorologically homogeneous
zones of India, J. Earth Syst. Sci., 129, 25, https://doi.org/10.1007/s12040-019-1271-x, 2020.
Mora Aliseda, J., Garrido Velarde, J., and Díaz González, M.:
Dinámicas socio-espaciales y previsiones demográficas en la cuenca
internacional del Miño-Sil, Anales De Geografía De La Universidad
Complutense, 35, 95–117, https://doi.org/10.5209/rev_AGUC.2015.v35.n1.48965, 2015.
Muñoz-Díaz, D. and Rodrigo, F. S.: Influence of the El Niño-Southern Oscillation on the probability of dry and wet seasons in
Spain, Clim. Res., 30, 1–12, https://doi.org/10.3354/cr030001, 2004.
Ojeda, M. G.-V., Jiménez, E. R., Gámiz-Fortis, S. R., Castro-Díez, Y., and Esteban Parra, M. J.: Understanding the Drought Phenomenon in the Iberian Peninsula, in: book: Drought (Aridity), Intechopen, London, UK, 1–18, https://doi.org/10.5772/intechopen.85472, 2019.
Paredes, D., Trigo, R. M., Garcia-Herrera, R., and Trigo, I. F.: Understanding Precipitation Changes in Iberia in Early Spring: Weather Typing and Storm-Tracking Approaches, J. Hydrometeorol., 7, 101–113, https://doi.org/10.1175/JHM472.1, 2006.
Parracho, A. C., Gonçalves, P. M., and Rocha, A.: Regionalisation of
precipitation for the Iberian Peninsula and climate change, Phys. Chem. Earth, 54, 146–154, https://doi.org/10.1016/j.pce.2015.07.004, 2016.
Páscoa, P., Gouveia, C. M., Russo, A., and Trigo, R. M.: Drought Trends
in the Iberian Peninsula over the Last 112 Years, Adv. Meteorol., 2017, 4653126, https://doi.org/10.1155/2017/4653126, 2017.
Patakamuri, S. K. and O'Brien, N.: Modified Versions of Mann Kendall and
Spearman's Rho Trend Tests version 1.4.0, available at:
https://cran.r-project.org/web/packages/modifiedmk/modifiedmk.pdf, last access: 10 September 2019.
Peña-Gallardo, M., Vicente-Serrano, S. M., Domínguez-Castro, F., and Beguería, S.: The impact of drought on the productivity of two rainfed crops in Spain, Nat. Hazards Earth Syst. Sci., 19, 1215–1234,
https://doi.org/10.5194/nhess-19-1215-2019, 2019.
PES – Plan especial de actuación en situaciones de alerta y eventual
sequía: Documento Ambiental Estratégico, Confederación
Hidrográfica del Miño-Sil, available at: https://www.chminosil.es (last access: 10 February 2020), 2017.
PH – Plan Hidrológico de la parte española de la Demarcación
Hidrográfica del Miño–Sil (2015–2021): Capítulo 3, 127–128 pp., 2014, available at: https://www.chminosil.es. (last access: 10 February 2020), 2014.
Potop, V., Boroneant, C., Možný, M., Štěpánek, P., and
Skalák, P.: Observed spatiotemporal characteristics of drought on various time scales over the Czech Republic, Theor. Appl. Climatol., 115, 563–581, https://doi.org/10.1007/s00704-013-0908-y, 2013.
Preisendorfer, R. W. and Mobley, C. D.: Principal component analysis in
meteorology and oceanography, Elsevier, Amsterdam, 425 pp., 1988.
Ramos, A. M., Cortesi, N., and Trigo, R. M.: Circulation weather types and
spatial variability of daily precipitation in the Iberian Peninsula, Front.
Earth Sci., 2, 1–17, https://doi.org/10.3389/feart.2014.00025, 2014.
Rivière, G. and Drouard, M.: Dynamics of the Northern Annular Mode at Weekly Time Scales, J. Atmos. Sci., 72, 4569–4590, https://doi.org/10.1175/JAS-D-15-0069.1, 2015.
Rodríguez-Puebla, C., Encinas, A. H., Nieto, S., and Garmendia, J.: Spatial and temporal patterns of annual precipitation variability over the Iberian Peninsula, Int. J. Climatol., 18, 299–316, https://doi.org/10.1002/(SICI)1097-0088(19980315)18:3<299::AID-JOC247>3.0.CO;2-L, 1998.
Rodríguez-Puebla, C. and Nieto, S.: Trends of precipitation over the Iberian Peninsula and the North Atlantic Oscillation under climate change
conditions, Int. J. Climatol., 30, 1807–1815, https://doi.org/10.1002/joc.2035, 2010.
Rogers, J. and McHugh, M.: On the separability of the North Atlantic oscillation and Arctic oscillation, Clim. Dynam., 19, 599–608,
https://doi.org/10.1007/s00382-002-0247-7, 2002.
Russo, C., Gouveia, M., Trigo, R. M., Liberato, M. L., and DaCamara, C. C.:
The influence of circulation weather patterns at different spatial scales on
drought variability in the Iberian Peninsula, Front. Environ. Sci., 3, 1–15,
https://doi.org/10.3389/fenvs.2015.00001, 2015.
Sáez de Cámara, E., Gangoiti, G., Alonso, L., and Iza, J.: Daily
precipitation in Northern Iberia: Understanding the recent changes after the
circulation variability in the North Atlantic sector, J. Geophys. Res.-Atmos., 120, 9981–9910, https://doi.org/10.1002/2015JD023306, 2015.
Salah, Z., Nieto, R., Drumond, A., Gimeno, L., and Vicente-Serrano, S. M.: A
Lagrangian analysis of the moisture budget over the Fertile Crescent during
two intense drought episodes, J. Hydrol., 560, 382–395, https://doi.org/10.1016/j.jhydrol.2018.03.021, 2018.
Salvador, C., Nieto, R., Linares, C., Díaz, J., and Gimeno, L.: Effects
on daily mortality of droughts in Galicia (NW Spain) from 1983 to 2013, Sci.
Total Environ., 662, 121–133, https://doi.org/10.1016/j.scitotenv.2019.01.217, 2019.
Schulte, E. M., Grilo, C. M., and Gearhardt, A. N.: Shared and unique mechanisms underlying binge eating disorder and addictive disorders, Clin.
Psychol. Rev., 44, 125–139, https://doi.org/10.1016/j.cpr.2016.02.001, 2016.
Sen, P. K.: Estimates of Regression Coefficient Based on Kendall's tau, J. Am. Stat. Assoc., 63, 1379–1389, 1968.
Seneviratne, S.: Historical drought trends revisited, Nature, 491, 338–339,
https://doi.org/10.1038/491338a, 2012.
Serrano, A., García, J. A., Mateus, V. L., Cancillo, M. L., and Garrido,
J.: Monthly modes of variation of precipitation over the Iberian Peninsula,
J. Climate, 12, 2894–2919, https://doi.org/10.1175/1520-0442(1999)012<2894:MMOVOP>2.0.CO;2, 1999.
Smith, C. A. and Sardeshmukh, P.: The Effect of ENSO on the Intraseasonal
Variance of Surface Temperature in Winter, Int. J. Climatol., 20, 1543–1557,
https://doi.org/10.1002/1097-0088(20001115)20:13<1543::AID-JOC579>3.0.CO;2-A, 2000.
Sordo-Ward, A., Dolores Bejarano, M., Iglesias, A., Asenjo, V., and Garrote, L.: Analysis of Current and Future SPEI Droughts in the La Plata Basin Based
on Results from the Regional Eta Climate Model, Water, 9, 857, https://doi.org/10.3390/w9110857, 2017.
Sousa, P. M., Barriopedro, D., Trigo, R. M., Ramos, A. M., Nieto, R., Gimeno,
L., Turkman, K. F., and Liberato, M. L. R.: Impact of Euro-Atlantic blocking
patterns in Iberia precipitation using a novel high resolution dataset, Clim. Dynam., 46, 2573–2591, https://doi.org/10.1007/s00382-015-2718-7, 2016.
Spinoni, J., Naumann, G., Vogt, J., and Barbosa, P.: Meteorological droughts
in Europe, Events and impacts, past trends and future projections, Publications Office of the European Union, Luxembourg, EUR 27748 EN, 129 pp., https://doi.org/10.2788/450449, 2016.
Spinoni, J., Naumann, G., and Vogt, J. V.: Pan-European seasonal trends and
recent changes of drought frequency and severity, Global Planet. Change, 148, 113–130, https://doi.org/10.1016/j.gloplacha.2016.11.013, 2017.
Spinoni, J., Vogt, J. V., Naumann, G., Barbosa, P., and Dosio, A.: Will drought events become more frequent and severe in Europe?, Int. J. Climatol., 38, 1718–1736, https://doi.org/10.1002/joc.5291, 2018.
Stanke, C., Kerac, M., Prudhomme, C., Medlock, J., and Murray, V.: Health
effects of drought: a systematic review of the evidence, PLoS Curr., 5, 1–22, 2013.
Sunyer, M. A., Sørup, H. J. D., Christensen, O. B., Madsen, H., Rosbjerg,
D., Mikkelsen, P. S., and Arnbjerg-Nielsen, K.: On the importance of observational data properties when assessing regional climate model performance of extreme precipitation, Hydrol. Earth Syst. Sci., 17,
4323–4337, https://doi.org/10.5194/hess-17-4323-2013, 2013.
Svoboda, M., Fuchs, B.: Handbook of Drought Indicators and Indices, World
Meteorological Organization (WMO) and Global Water Partnership (GWP), Geneva, Switzerland, 1–45, 2016.
Tabari, H. and Willems, P.: Lagged influence of Atlantic and Pacific climate
patterns on European extreme precipitation, Sci. Rep.-UK, 8, 5748,
https://doi.org/10.1038/s41598-018-24069-9, 2018.
Thompson, D. W. J. and Wallace, J. M.: The Arctic Oscillation signature in the wintertime geopotential height and temperature fields, Geophys. Res. Lett., 25, 1297–1300, https://doi.org/10.1029/98GL00950, 1998.
Tomas-Burguera, M., Vicente-Serrano, S. M., Grimalt, M., Begueria, S.:
Accuracy of reference evapotranspiration (ET0) estimates under data scarcity scenarios in the Iberian Peninsula, Agr. Water Manage., 182, 103–116, https://doi.org/10.1016/j.agwat.2016.12.013, 2017.
Torrence, C. and Compo, P.: A practical guide to wavelet analysis, B. Am. Meteorol. Soc., 79, 61–78, 1998.
Torrence, C. and Webster, P. J.: Interdecadal Changes in the ENSO–Monsoon System, J. Climate, 12, 2679–2690, https://doi.org/10.1175/1520-0442(1999)012<2679:ICITEM>2.0.CO;2, 1999.
Trenberth, K. E., Dai, A., Schrier, G., Jones, P. D., Barichivich, J., Briffa, K. R. and Sheffield, J.: Global warming and changes in drought, Nat. Clim. Change, 4, 17–22, https://doi.org/10.1038/nclimate2067, 2014.
Trigo, R. M. and DaCamara, C. C.: Circulation weather types and their influence on the precipitation regime in Portugal, Int. J. Climatol., 20,
1559–1581, https://doi.org/10.1002/1097-0088(20001115)20:13<1559::AID-JOC555>3.0.CO;2-5, 2000.
Trigo, R. M., Osborn, T. J., and Corte-Real, J.: The North Atlantic Oscillation influence on Europe: Climate impacts and associated physical
mechanisms, Clim., Res., 20, 9–17, https://doi.org/10.3354/cr020009, 2002.
Trigo, R. M., Pozo-Vázquez, D., Osborn, T. J., Castro-Díez, Y.,
Gámiz-Fortis, S., and Esteban-Parra, M. J.: North Atlantic oscillation
influence on precipitation, river flow and water resources in the Iberian
Peninsula, Int. J. Climatol., 24, 925–944, https://doi.org/10.1002/joc.1048, 2004.
Trigo, R. M., Añel, J. A., Barriopedro, D., Garcia-Herrera, R., Gimeno,
L., Nieto, R., Castillo, R., Allen, M. R., and Massey, N.: The record winter
drought of 2011-2012 in the Iberian Peninsula, B. Am. Meteorol. Soc., 94, 41–45, 2013.
UN: Drainage basins of the North Sea and Eastern Atlantic, Chapter 7, in:
Second Assessment of Transboundary Rivers, Lakes and Groundwaters, UN, New
York, 182–215, https://doi.org/10.18356/57863ad2-en, 2011.
Van Lanen, H. A. J.: Drought propagation through the hydrological cycle.
Climate Variability and Change – Hydrological Impacts, in: Proceedings of
the Fifth FRIEND World Conference, November 2006, Havana, Cuba, 122–127, 2006.
Van Loon, A. F., Stahl, K., Di Baldassarre, G., Clark, J., Rangecroft, S.,
Wanders, N., Gleeson, T., Van Dijk, A. I. J. M., Tallaksen, L. M., Hannaford,
J., Uijlenhoet, R., Teuling, A. J., Hannah, D. M., Sheffield, J., Svoboda, M., Verbeiren, B., Wagener, T., and Van Lanen, H. A. J.: Drought in a human-modified world: reframing drought definitions, understanding, and analysis approaches, Hydrol. Earth Syst. Sci., 20, 3631–3650,
https://doi.org/10.5194/hess-20-3631-2016, 2016.
Vargas, J. and Paneque, P.: Challenges for the Integration of Water Resource and Drought-Risk Management in Spain, Sustainability, 11, 1–16,
https://doi.org/10.3390/su11020308, 2019.
Vicente-Serrano, S. M.: El Niño and La Niña influence on droughts at
different timescales in the Iberian Peninsula, Water Resour. Res., 41, 1–18,
https://doi.org/10.1029/2004WR003908, 2005.
Vicente-Serrano, S. M.: Evaluating the Impact of Drought Using Remote Sensing in a Mediterranean, Semi-arid Region, Nat. Hazards, 40, 173–208, https://doi.org/10.1007/s11069-006-0009-7, 2007.
Vicente-Serrano, S. M. and Beguería S.: Comment on `Candidate distributions for climatological drought indices (SPI and SPEI)' by James H. Stagge et al., Int. J. Climatol., 36, 2120–2131, 2016.
Vicente-Serrano, S. M., Beguería, S., and López-Moreno, J. I.: A
Multiscalar Drought Index Sensitive to Global Warming: The Standardized
Precipitation Evapotranspiration Index, J. Climate, 23, 1696–1718,
https://doi.org/10.1175/2009JCLI2909.1, 2010.
Vicente-Serrano, S. M., López-Moreno, J. I., Drumond, A., Gimeno, L., Nieto, R., Morán-Tejeda, E., Lorenzo-Lacruz, J., Begueria, S., and Zabalza, J.: Effects of warming processes on droughts and water resources in
the NW Iberian–Peninsula (1930–2006), Clim. Res., 48, 203–212,
https://doi.org/10.3354/cr01002, 2011.
Vicente-Serrano, S. M., López-Moreno, J. I., Santiago, B., Lorenzo-Lacruz, J., Azorin-Molina, C., and Morán-Tejeda, E.: Accurate computation of a streamflow drought index, J. Hydrol. Eng., 17, 318–332,
https://doi.org/10.1061/(ASCE)HE.1943-5584.0000433, 2012.
Vicente-Serrano, S. M., López-Moreno, J. I., Bergueria, S., Lorenzo-Lacruz, J., Sanchez-Lorenzo, A., García-Ruiz, J. M., Azorin-Molina, Morán-Tejeda, E., Revuelto, J., and Trigo, R.: Evidence
of increasing drought severity caused by temperature rise in southern
Europe, Environ. Res. Lett., 9, 1–14, https://doi.org/10.1088/1748-9326/9/4/044001, 2014.
Vicente-Serrano, S. M., Aguilar, E., Martínez, R., Martín-Hernández, N., AzorinMolina, C., Sanchez-Lorenzo, A., El Kenawy, A., Tomás-Burguera, M., Moran-Tejeda, E., López-Moreno,
J. I., Revuelto, J., Beguería, S., Nieto, J. J., Drumond, A., Gimeno, L.
and Nieto, R.: The Complex influence of ENSO on droughts in Ecuador, Clim.
Dynam., 48, 405–427, https://doi.org/10.1007/s00382-016-3082-y, 2016.
Vidal-Macua, J. J., Ninyerola, M., Zabala, A., Domingo-Marimon, C., and Pons,
X.: Factors affecting forest dynamics in the Iberian Peninsula from 1987 to 2012. The role of topography and drought, Forest Ecol. Manage., 406, 290–306, https://doi.org/10.1016/j.foreco.2017.10.011, 2017.
Visbeck, M. H., Hurrell, J. W., Polvani, L., and Cullen, H. M.: The North Atlantic Oscillation: Past, present, and future, P. Natl. Acad. Sci. USA, 98,
12876–12877, https://doi.org/10.1073/pnas.231391598, 2001.
von Storch, V. H.: Misuses of statistical analysis in climate research, in: Analysis of Climate Variability: Applications of Statistical Techniques, edited by: von Storch, H. V. and Navarra, A., Springer Verlag, Berlin, 11–26, 1995.
Wang, H., Pan, Y., and Chen, Y.: Comparison of three drought indices and their evolutionary characteristics in the arid region of northwestern China,
Atmos. Sci. Lett, 18, 132–139, https://doi.org/10.1002/asl.735, 2017.
Wang, R., Peng, W., Liu, X., Wu, W., Chen, X., and Zhang, S.: Responses of
Water Level in China's Largest Freshwater Lake to the Meteorological Drought
Index (SPEI) in the Past Five Decades, Water, 10, 137, https://doi.org/10.3390/w10020137, 2018.
Wang, W., Ertsen, M. W., Svoboda, M. D., and Hafeez, M.: Propagation of
Drought: From Meteorological Drought to Agricultural and Hydrological
Drought, Adv. Meteorol., 2016, 6547209, https://doi.org/10.1155/2016/6547209, 2016.
Wang, Y., Quan, Q., and Shen B.: Spatio-temporal variability of drought and
effect of large scale climate in the source region of Yellow River, Geomat. Nat. Hazards Risk, 10, 678–698, https://doi.org/10.1080/19475705.2018.1541827, 2019.
Wanner, H., Brönnimann, S., Casty, C., Gyalistras, D., Luterbacher, J.,
Schmutz, C., Stephenson, D. B., and Xoplaki, E.: North Atlantic Oscillation
– Concepts and Studies, Surv. Geophys., 22, 321–381, https://doi.org/10.1023/A:1014217317898, 2001.
Wehrli, K., Guillod, B. P., Hauser, M., Leclair, M., and Seneviratne, S. I.:
Assessing the dynamic versus thermodynamic origin of climate model biases,
Geophys. Res. Lett., 45, 8471–8479, https://doi.org/10.1029/2018GL079220, 2018.
Wilhite, D. A.: Drought as a Natural Hazard: Concepts and Definitions, in:
Drought: A Global Assessment, Natural Hazards and Disasters Series, edited by: Wilhite, D. A., Routledge, London, UK, 3–18, 2000.
WMO – World Meteorological Organization: Standardized Precipitation Index User Guide, available at:
http://www.wamis.org/agm/pubs/SPI/WMO_1090_EN.pdf (last access: 8 September 2019), 2012.
WMO and GWP – World Meteorological Organization and Global Water Partnership: Handbook of Drought Indicators and Indices, in: Integrated Drought Management Programme (IDMP), Integrated Drought Management Tools and Guidelines Series 2, edited by: Svoboda, M. and Fuchs, B. A., Geneva, 2016.
WMO and GWP – World Meteorological Organization and Global Water Partnership: Benefits of action and costs of inaction: Drought mitigation and preparedness – a literature review, in: Integrated Drought Management Programme (IDMP), Working Paper 1, edited by: Gerber, N. and Mirzabaev, A.,
WMO, Geneva, Switzerland and GWP, Stockholm, Sweden, 2017.
Download
The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.
- Article
(17597 KB) - Full-text XML
- Corrigendum
-
Supplement
(364 KB) - BibTeX
- EndNote
Altmetrics
Final-revised paper
Preprint