Articles | Volume 19, issue 11
https://doi.org/10.5194/nhess-19-2359-2019
https://doi.org/10.5194/nhess-19-2359-2019
Research article
 | 
30 Oct 2019
Research article |  | 30 Oct 2019

Estimates of tropical cyclone geometry parameters based on best-track data

Kees Nederhoff, Alessio Giardino, Maarten van Ormondt, and Deepak Vatvani

Related authors

A subgrid method for the linear inertial equations of a compound flood model
Maarten van Ormondt, Tim Leijnse, Roel de Goede, Kees Nederhoff, and Ap van Dongeren
EGUsphere, https://doi.org/10.5194/egusphere-2024-1839,https://doi.org/10.5194/egusphere-2024-1839, 2024
Short summary
Accounting for uncertainties in forecasting tropical-cyclone-induced compound flooding
Kees Nederhoff, Maarten van Ormondt, Jay Veeramony, Ap van Dongeren, José Antonio Álvarez Antolínez, Tim Leijnse, and Dano Roelvink
Geosci. Model Dev., 17, 1789–1811, https://doi.org/10.5194/gmd-17-1789-2024,https://doi.org/10.5194/gmd-17-1789-2024, 2024
Short summary
Generating reliable estimates of tropical-cyclone-induced coastal hazards along the Bay of Bengal for current and future climates using synthetic tracks
Tim Willem Bart Leijnse, Alessio Giardino, Kees Nederhoff, and Sofia Caires
Nat. Hazards Earth Syst. Sci., 22, 1863–1891, https://doi.org/10.5194/nhess-22-1863-2022,https://doi.org/10.5194/nhess-22-1863-2022, 2022
Short summary
The effect of changing sea ice on wave climate trends along Alaska's central Beaufort Sea coast
Kees Nederhoff, Li Erikson, Anita Engelstad, Peter Bieniek, and Jeremy Kasper
The Cryosphere, 16, 1609–1629, https://doi.org/10.5194/tc-16-1609-2022,https://doi.org/10.5194/tc-16-1609-2022, 2022
Short summary
Simulating synthetic tropical cyclone tracks for statistically reliable wind and pressure estimations
Kees Nederhoff, Jasper Hoek, Tim Leijnse, Maarten van Ormondt, Sofia Caires, and Alessio Giardino
Nat. Hazards Earth Syst. Sci., 21, 861–878, https://doi.org/10.5194/nhess-21-861-2021,https://doi.org/10.5194/nhess-21-861-2021, 2021
Short summary

Related subject area

Atmospheric, Meteorological and Climatological Hazards
Reconstructing hail days in Switzerland with statistical models (1959–2022)
Lena Wilhelm, Cornelia Schwierz, Katharina Schröer, Mateusz Taszarek, and Olivia Martius
Nat. Hazards Earth Syst. Sci., 24, 3869–3894, https://doi.org/10.5194/nhess-24-3869-2024,https://doi.org/10.5194/nhess-24-3869-2024, 2024
Short summary
GTDI: a game-theory-based integrated drought index implying hazard-causing and hazard-bearing impact change
Xiaowei Zhao, Tianzeng Yang, Hongbo Zhang, Tian Lan, Chaowei Xue, Tongfang Li, Zhaoxia Ye, Zhifang Yang, and Yurou Zhang
Nat. Hazards Earth Syst. Sci., 24, 3479–3495, https://doi.org/10.5194/nhess-24-3479-2024,https://doi.org/10.5194/nhess-24-3479-2024, 2024
Short summary
Insurance loss model vs. meteorological loss index – how comparable are their loss estimates for European windstorms?
Julia Moemken, Inovasita Alifdini, Alexandre M. Ramos, Alexandros Georgiadis, Aidan Brocklehurst, Lukas Braun, and Joaquim G. Pinto
Nat. Hazards Earth Syst. Sci., 24, 3445–3460, https://doi.org/10.5194/nhess-24-3445-2024,https://doi.org/10.5194/nhess-24-3445-2024, 2024
Short summary
Intense rains in Israel associated with the train effect
Baruch Ziv, Uri Dayan, Lidiya Shendrik, and Elyakom Vadislavsky
Nat. Hazards Earth Syst. Sci., 24, 3267–3277, https://doi.org/10.5194/nhess-24-3267-2024,https://doi.org/10.5194/nhess-24-3267-2024, 2024
Short summary
Convection-permitting climate model representation of severe convective wind gusts and future changes in southeastern Australia
Andrew Brown, Andrew Dowdy, and Todd P. Lane
Nat. Hazards Earth Syst. Sci., 24, 3225–3243, https://doi.org/10.5194/nhess-24-3225-2024,https://doi.org/10.5194/nhess-24-3225-2024, 2024
Short summary

Cited articles

Bloemendaal, N., Muis, S., Haarsma, R. J., Verlaan, M., Irazoqui Apecechea, M., de Moel, H., Ward, P., and Aerts, J.: Global modeling of tropical cyclone storm surges using high-resolution forecasts, Clim. Dynam., 52, 5031–5044, https://doi.org/10.1007/s00382-018-4430-x, 2018. 
Carrasco, C. A., Landsea, C. W., and Lin, Y.-L.: The Influence of Tropical Cyclone Size on Its Intensification, Weather Forecast., 29, 582–590, https://doi.org/10.1175/WAF-D-13-00092.1, 2014. 
Chavas, D. and Emanuel, K. A.: A QuikSCAT climatology of tropical cyclone size, Geophys. Res. Lett., 37, 10–13, https://doi.org/10.1029/2010GL044558, 2010. 
Chavas, D. and Vigh, J.: QSCAT-R: The QuikSCAT Tropical Cyclone Radial Structure Dataset, https://doi.org/10.5065/D6J67DZ4, 2014. 
Chavas, D., Lin, N., and Emanuel, K.: A Model for the Complete Radial Structure of the Tropical Cyclone Wind Field. Part I: Comparison with Observed Structure, J. Atmos. Sci., 72, 3647–3662, https://doi.org/10.1175/JAS-D-15-0014.1, 2015. 
Download
Short summary
Tropical cyclone wind models are often used in engineering applications. However, these models lack the required accuracy when the size of the tropical cyclone is not known. In this paper, new relationships are derived to describe parameters affecting the size. These relationships are formulated using observed data and make it possible to estimate tropical cyclone size and to use this information in tropical cyclone wind models to obtain more reliable estimates of the tropical cyclone winds.
Altmetrics
Final-revised paper
Preprint