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Abstract. Parametric wind profiles are commonly applied
in a number of engineering applications for the generation
of tropical cyclone (TC) wind and pressure fields. Nev-
ertheless, existing formulations for computing wind fields
often lack the required accuracy when the TC geometry
is not known. This may affect the accuracy of the com-
puted impacts generated by these winds. In this paper, em-
pirical stochastic relationships are derived to describe two
important parameters affecting the TC geometry: radius
of maximum winds (RMW) and the radius of gale-force
winds (1AR35). These relationships are formulated using
best-track data (BTD) for all seven ocean basins (Atlantic; S,
NW, and NE Pacific; and N, SW, and SE Indian oceans). This
makes it possible to (a) estimate RMW and 1AR35 when
these properties are not known and (b) generate improved
parametric wind fields for all oceanic basins. Validation re-
sults show how the proposed relationships allow the TC ge-
ometry to be represented with higher accuracy than when us-
ing relationships available from literature. Outer wind speeds
can be reproduced well by the commonly used Holland wind
profile when calibrated using information either from best-
track data or from the proposed relationships. The scripts to
compute the TC geometry and the outer wind speed are freely
available via the following URL: https://bit.ly/2k9py1J (last
access: October 2019).

1 Introduction

Tropical cyclones (TCs) are among the most destructive nat-
ural hazards worldwide. TCs can cause hazardous weather
conditions including extreme rainfall and wind speeds, lead-

ing to coastal hazards, such as extreme storm surge levels
and wave conditions. The impacts of TCs are different in de-
veloped and developing countries. Generally, the worst ef-
fects in the developed world are direct economic losses. In
the United States (US) alone, the mean annual damage due
to TCs was estimated by Willoughby (2012) as USD 11.0 bil-
lion (year 2015). In the developing world, TCs result in im-
mense social costs in terms of destruction and mortality. For
example, between 1960 and 2004 more than half a million
inhabitants of Bangladesh died as a consequence of TCs, pri-
marily due to storm surges (Shultz et al., 2005). Peduzzi et
al. (2012) showed that over the next 20 years the number of
people exposed to TC risk will increase despite governmen-
tal efforts and implementation of adaptation measures. Addi-
tionally, TCs can also have devastating effects on nature, ge-
omorphology, agriculture and freshwater supply. Thus, due
to the extensive costs in lives, property and other damage,
the ability to effectively model these storms is essential.

Numerical models can be applied to quantify the effects
of TCs (e.g., Bloemendaal et al., 2018; Giardino et al., 2018;
Vousdoukas et al., 2018). In hindcasting studies, this is gen-
erally done by using surface winds derived through data as-
similation techniques (e.g., HRD Real-time Hurricane Wind
Analysis System or H∗WIND; e.g., Powell et al. 1998). How-
ever, in multi-hazard risk assessments, the spatial distribution
of surface winds is generally not known. Therefore, wind
fields based on best-track data (BTD) or synthetic tracks are
generated using parametric wind profiles. Several (horizon-
tal) parametric wind profiles (e.g., Fujita, 1952; Willoughby
et al., 2006; Chavas et al., 2015) exist in literature, with the
original Holland wind profile (Holland, 1980; hereafter H80)
being the most widely used due to its relative simplicity.
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However, without calibration, parametric wind profiles are
often unable to accurately reproduce the spatial distribution
of winds in TCs (e.g., Willoughby and Rahn, 2004). This po-
tentially leads to an under- or overestimation of wind speeds
and associated coastal hazards. Calibration of TC formula-
tions is possible by applying additional relationships, sup-
ported by the use of suitable data. In particular, information
on the wind radii of cyclones can constrain the decay of wind
speeds away from the eye wall and can be included in the
most recent version of the Holland wind profile formulation
(Holland et al., 2010; hereafter H10).

The radius of maximum winds (RMW), which describes
the distance from the center to the strongest axially sym-
metric wind in the core of the cyclone, is one of the most
important parameters to define a parametric wind profile.
Moreover, the RMW plays an important role in the assess-
ment of hazards induced by TCs since the storm surge level
increases as a function of the RMW (Loder et al., 2009).
Several relationships exist in literature to estimate the RMW
(e.g., Willoughby et al., 2006; Vickery and Wadhera, 2008;
Knaff et al., 2015). However, these relationships are derived
for either the Atlantic or eastern Pacific Ocean (i.e., US coast)
and are therefore not necessarily valid for other ocean basins.
Each ocean basin has its own climatological properties and,
for example, there seems to be an observational relationship
between (mean) storm size, in terms of precipitation area
(Lin et al., 2015) or wind speeds (Chavas et al., 2016), and
the relative sea surface temperature (SST). The reason that
most relationships are derived for the US coast is because of
the high-quality data available (i.e., aircraft reconnaissance
data). Relationships that estimate wind radii at different wind
speeds are scarcer. Knaff et al. (2007) explicitly describe the
TC surface winds using a modified Rankine vortex, which
also makes it possible to compute different wind radii corre-
sponding to different wind speeds (i.e., 34, 50, 64, 100 kn).
However, these results are derived from BTD of the Atlantic,
northeast Pacific and northwest Pacific oceans.

In the last decades, a large amount of higher-quality data
have become available, which can be used to improve and
validate the relationships and parametric wind profiles found
in literature. In addition to the RMW, the wind radii of 35
(or 34), 50, 65 (or 64) and 100 kn (hereafter referred to
as R35, R50, R65, R100) for the four geographical quadrants
around the cyclone are currently recorded (see also Fig. 1a).
There are numerous sources that can provide information on
the spatial distribution of surface winds ranging from in situ
observations (e.g., surface reports and buoy observations) to
scatterometry (e.g., QuikSCAT; see Chavas and Vigh, 2014).
Some methods are more reliable than others, but a posteriori
it is not clear which sources were used for individual wind
radii estimates in the best-track data (BTD). However, the
currently operationally available satellite-based wind radii
estimates are characterized by higher accuracy than in the
past (Sampson et al., 2017).

In this paper, new relationships are proposed to estimate
the median RMW and radius of gale-force winds (1AR35)
for each ocean basin. In addition, the standard deviation of
the TC geometry is described explicitly, making it possible
to treat the TC geometry stochastically with a certain proba-
bility distribution. This means that TC geometry is a random
variable whose possible values are an ensemble of different
outcomes. This is useful when TC size is not known and the
probability of a relatively large and/or small TC and conse-
quent risks need to be assessed (e.g., in a Monte Carlo analy-
sis with synthetic tracks). Moreover, the paper demonstrates
how the proposed relationships lead to improved error statis-
tics compared to those found in literature. In addition, vali-
dation with QSCAT-R shows that outer wind speeds can be
reproduced well by a parametric wind profile while using the
newly developed relationships or observed values for RMW
and wind radii.

This paper is outlined as follows: Sect. 2 describes the
data used for the study. The new relationships describing
the radius of maximum winds and radius of gale-force winds
are derived in Sect. 3 and then validated in Sect. 4. Finally,
Sects. 5 and 6 discuss and summarize the main conclusions
of the study.

2 Data

2.1 Best-track data (BTD)

Two data sources were used to describe the RMW and R35:
data from the North Atlantic and Northeast and North
Central Pacific database from the National Hurricane Cen-
ter (NHC) and the dataset from the Joint Typhoon Warn-
ing Center (JTWC). The second dataset includes data from
different ocean basins (northwest Pacific Ocean, the South
Pacific Ocean and Indian Ocean). Note that the estimation
of wind radii is rather subjective and strongly dependent on
data availability as well as different climatology and anal-
ysis methods (e.g., aircraft observations versus the Dvorak
method). In this paper, all the available data were used and
potential shortcomings in the data are disregarded in order
to fit new empirical stochastic relationships with the largest
possible dataset and for every ocean basin separately. This
approach, with its advantages and disadvantages, is discussed
in Sect. 5.1. Some of the historical records do not contain val-
ues for either the RMW or R35, and therefore these records
are discarded. Although these BTD are used as the ground
truth, the errors in the best-track wind radii are estimated to
be as high as 10 %–40 % (e.g., Knaff and Sampson, 2015).
The accuracy of a single record depends on the quality and
quantity of the available observational data. For example, if
in situ observations were available in proximity to the TC or
if a complete scatterometer passed over the TC, the accuracy
may increase. However, information on the accuracy is not
available per single data entry.
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Figure 1. Sketch of the terminology used in this paper. (a) The difference in wind radii for several wind values observed from different
quadrants (NW, NE, SE, SW) and the average (AR) are shown. (b) RMW, AR35 and 1AR35 are shown.

The archives from the NHC and JTWC contain 6-hourly
storm positions and maximum intensity estimates of tropi-
cal and subtropical systems. For this analysis, all data points
with a wind speed of 20 m s−1 or higher were included in the
study since the focus is on tropical storms. Moreover, it is
expected that parametric wind profiles cannot capture sub-
tropical systems. Also, data points with an RMW larger than
100 km were excluded from the analysis because, generally,
those points refer to tropical depressions, with large spatial
coverage, which are outside the scope of this study. More-
over, the averaged value of R35 (R35) over the four quad-
rants, similarly to Carrasco et al. (2014), was used. Only data
entries with an estimate of R35 for all four quadrants were
used. Therefore, all data entries additionally have an estimate
for both RMW and R35, and using all the 6-hourly storm
positions and maximum intensity estimates in the calibration
and validation assumes statistical independence.

In this paper, TC geometry variables RMW and R35 were
treated as stochastic variables. This means that, although
physically not realistic, RMW could assume larger values
than R35. In order to overcome this, a new variable was de-
fined: the average difference in radius of 35 kn (1AR35; sim-
ilar to Xu and Wang, 2015), or radius of gale-force winds,
describing the difference between the RMW and the aver-
age radius of 35 kn (AR35); see Eq. (1). In practical applica-
tions, one would first retrieve the RMW based on data or esti-
mate the RMW based on an empirical relationship. Secondly,
the R35 would be calculated by adding up the RMW with
the1AR35 (see also Fig. 1b). An additional advantage of in-
troducing this new variable is that1AR35 contains consider-
ably less scatter. This might imply a correlation between R35
and RMW, but is not further explored in this paper.

1AR35= AR35−RMW (1)

The BTD are divided into a calibration period (2000–
2014) and a validation period (2015–2017). The com-
bined BTD from the NHC and JTWC contain a total
of 18 903 unique historical TC data entries, of which
14 800 were used for the calibration of the new empirical

(stochastic) relationships, and 4103 were used for the vali-
dation of the estimated wind radii.

2.2 QSCAT-R

The QuikSCAT-based QSCAT-R database (Chavas and Vigh,
2014), with data for the period 1999–2008, was used to val-
idate the computed outer (azimuthal) winds using H10 wind
profile and the new proposed empirical relationship. The
dataset, developed by researchers at the NASA Jet Propul-
sion Laboratory (JPL), is derived from the latest version
of the QuikSCAT near-surface ocean wind vector database.
It includes 690 unique TC profiles and it is optimized
specifically for tropical cyclones with higher wind speeds.
QuikSCAT measurements are accurate in all weather con-
ditions for winds up to 40 m s−1 (Stiles et al., 2014), while
their precision decreases for the inner wind speeds in the
TC core (Hoffman and Leidner, 2005). Therefore, QSCAT-
R data were only used to validate the outer wind speeds, and
not the inner wind speeds or TC core. The tropical cyclone
dataset carries a 1–2 m s−1 positive bias and a 3 m s−1 mean
absolute error, which are not further discussed or taken into
account in the analysis.

2.3 Ocean basins

According to the WMO (World Meteorological Organiza-
tion), areas of TC formation were divided into seven basins
(Fig. 2a). These include the North Atlantic Ocean (NAO),
the northwest Pacific Ocean (NWPO), the northeast Pa-
cific Ocean (NEPO), the South Pacific Ocean (SPO), the
southwest Indian Ocean (SWIO), the southeast Indian
Ocean (SWEI) and the north Indian Ocean (NIO). Other
ocean basins (e.g., the South Atlantic Ocean) were not in-
cluded in this study since weather systems in these areas
rarely form a TC.
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Figure 2. Observed maximum sustained wind speeds and defini-
tion of the different ocean basins (a). The observed radius of max-
imum winds (b) and observed radius of gale-force winds (c) for all
the BTD.

2.4 Data conversion

Data were converted to the International System of Units (SI)
units (wind speeds in meters per second from knots
with a conversion of 1 kn= 0.514 m s−1 and wind radii
in kilometers from nautical mile with a conversion of
1 nm= 1.852 km). Throughout this study, a maximum sus-
tained cyclone wind vmax has been determined at a 10 m el-
evation over open sea and 1 min average. The reason for this
averaging is to be consistent with the JTWC and NHC, which
also report the maximum sustained surface winds in terms
of 1 min mean wind speed. Other nations, however, report
maximum sustained surface winds averaged over a different
time interval, which in some cases is 10 min. Also, numerical
models often require 10 min averaged winds. For the con-
version of 1 to 10 min averaged wind speed, a conversion
factor equal to 0.93 can be used, based on WMO guidelines

(Harper et al., 2010). However, in this study, conversions be-
tween 1 and 10 min wind speeds were not needed.

3 New empirical relationships

In this section, empirical relationships to estimate the ra-
dius of maximum winds (RMW; Sect. 3.1; see Fig. 2b)
and the radius of gale-force winds (1AR35; Sect. 3.2; see
Fig. 2c) were derived based on BTD from the calibration pe-
riod (2000–2014).

3.1 Radius of maximum winds (RMW)

The Vickery and Wadhera (2008) relationship, derived for
all major hurricanes (1pc > 30 hPa or vmax > 35 m s−1) in
the Gulf of Mexico and Atlantic Ocean (hereafter VW08),
is one of the several relationships in literature providing an
estimate of the RMW. VW08, derived based on H∗WIND
data, relates RMW to pressure drop in the eye and latitude.
While we acknowledge the existence of several other rela-
tionships to estimate the RMW, VW08 was used due to its
relative simplicity. Figure 3 compares RMW data from the
BTD during the calibration period with results from VW08
in the form of a scatter plot with the maximum sustained
wind speed (vmax) indicated by color intensity. The data show
a large amount of scatter, for both lower and higher RMW
values. However, there is a clear pattern visible that larger
maximum sustained wind speeds result in a smaller RMW.
This is in line with other observations (e.g., Willoughby and
Rahn, 2004) or based upon idealized Sawyer–Eliassen mod-
els (e.g., Schubert and Hack, 1982; Willoughby et al., 1982)
that TC eye walls generally contract during intensification.
There is also a tendency in the dataset for TCs at higher lat-
itudes to have larger eye diameters (e.g., Knaff et al., 2015;
not shown here). The large negative bias of 17 km, computed
as a difference between observed and computed RMW, is
noteworthy, indicating that VW08 often underestimates the
RMW, especially for lower maximum sustained wind speeds.
Furthermore, the root-mean-square deviation (RMSD) of al-
most 29 km is also large compared to the observed mean.
In particular, the scatter index (RMSD divided by the mean)
and relative bias (bias divided by the mean) result in a scatter
index of 53 % and a relative bias of −32 %.

Given the large spread in the data, as also shown in Fig. 3,
it was decided to treat RMW as a stochastic variable. In-
stead of directly deriving an empirical equation which re-
lates RMW to vmax using a least-square fitting procedure
as typically done in similar studies, the following approach
was used. At first, parameters of a probability density func-
tion (PDF) that fits the variation in RMW for a range of vmax
and latitude values were fitted. Then empirical equations
were derived that relate these parameters to vmax and lati-
tude. The benefit of this approach is that it can produce an
estimate of the most probable value for RMW (i.e., mode) or
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Figure 3. Scatter plot describing BTD RMW (x axis) versus com-
puted RMW based on VW08 (y axis). Data points are colored-
coded based on the maximum sustained wind speeds in the BTD.
The dashed line represents a perfect fit between BTD and computed
data based on VW08.

median and mean as well as its variance (e.g., 90 % predic-
tion interval, PI).

First, the RMWs for each TC category were fitted to var-
ious parent distributions. In particular, the following fitting
parent distributions were tested by visual comparison and
by applying the Kolmogorov–Smirnov test: normal, lognor-
mal, Gumbel, Rayleigh and gamma. The lognormal distri-
bution was found to provide the best fit with the measured
data, and therefore further used to describe the distribution
of RMW. This is also consistent with the distribution used
for describing 1AR35 and findings in literature (e.g., Dean
et al., 2009). Secondly, the chosen parent distribution was
used to fit the BTD in order to derive shape (σ ) and loca-
tion parameter (µ) of the lognormal distribution, dependent
on latitude and wind speed. In particular, the BTD from the
calibration period were divided based on a moving window
with a bin of 10 m s−1 for wind speed and 10◦ for latitude
(0–10, 1–11, 2–12, etc.). For each ocean basin fitting coeffi-
cients were determined for a constant shape parameter and a
location parameter with exponential decay. This resulted in
Eq. (2) for the µ parameter, which, for a lognormal distribu-
tion, corresponds to the median value:

µRMW = A2 · e
−
vmax
B2 · (1+C2 |θ |)+D2, (2)

where µRMW represents the location parameter of the log-
normal distribution for RMW, vmax is the maximum (1 min
averaged) wind speed, θ is the latitude in degrees, and A2,
B2, C2 and D2 are fitting coefficients.

As observed in literature (e.g., Knaff et al., 2015), the me-
dian RMW (µRMW) in Eq. (2) depends on vmax (i.e., higher
wind speeds result in lower RMW) and latitude (i.e., higher
latitude results in higher RMW). The addition of storm du-
ration or the use of the axisymmetric component of the wind

Table 1. Fitting coefficients for the lognormal RMW as described
in Eq. (2).

Shape Location (µ)

Basin (σ ) A2 B2 C2 D2 Count

NIO 0.307 132.4 14.6 −0.003 20.4 480
SWIO 0.338 229.2 9.5 0.004 28.4 1889
SEIO 0.343 85.3 30.7 0.002 5.8 832
SPO 0.364 127.8 11.8 0.016 25.5 1118
NWPO 0.359 153.7 11.5 0.007 28.9 4836
NEPO 0.311 261.5 7.0 0.026 29.2 2570
AO 0.395 19.1 24.1 0.106 23.2 3075

All 0.370 44.8 23.4 0.030 22.4 14 800

speed only as input parameters resulted in very limited skill
improvement in the estimation of RMW; therefore these vari-
ables were discarded. This procedure was applied to the com-
bined JTWC and NHC BTD from the calibration period at all
basins, and then for each individual ocean basin. Table 1 con-
tains the shape and location values for the fitting parameters
to be used in Eq. (2).

A scatter plot describing the RMW derived from BTD as a
function of the maximum wind speed and for (an arbitrarily
chosen) latitude of 10◦ and computed according to Eq. (2)
is shown in Fig. 4. The green line shows the median RMW
based on the BTD, whereas the solid blue line represents
the mean RMW obtained from Eq. (2). The black lines in-
dicate the 5 % and 95 % exceedance values computed based
on BTD. Finally, the 90 % prediction interval is shown us-
ing red shading. The figure shows how the variance in RMW
decreases (both in the data and in the empirical relationship)
as a function of vmax, indicating that faster-rotating cyclones
are characterized by less noise. The new empirical equation
for RMW is evaluated in Sect. 4.

3.2 Radius of gale-force winds (1AR35)

By applying a parametric wind profile, it is possible to de-
rive the 1AR35. Here, the H10 wind profile was applied, in
which the B parameter was computed based on H80 (Eq. 3a),
and in which information on the wind radii of cyclones was
used to constrain the decay of wind speeds away from the eye
wall (Eq. 3b). When no additional information on the wind
radii is provided, H10 reduces to the original H80 wind pro-
file, which is often unable to accurately reproduce the spa-
tial distribution of winds in TCs (e.g., Willoughby and Rahn,
2004).

B =
v2

maxρae

100(1pc)
(3a)

x = 0.5+ (r −RMW)
xn− 0.5
rn−RMW

(3b)
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Figure 4. Scatter plot describing RMW (BTD and computed;
y axis) as function of the maximum sustained wind speeds (x axis;
and the latitude; not shown). The blue line is the median of the pro-
posed relationship derived for all basins at an arbitrarily chosen lat-
itude of 10◦. The green line is the median of the BTD. The red area
shows the 90 % prediction interval (PI) based on the proposed rela-
tionship for all basins. The 5 % and 95 % exceedance values from
the BTD are presented as black dashed lines. The gray dots are ob-
servation points in which more frequent observations are shown as
darker points and less frequent observations as lighter points.

Here B represents the Holland pressure profile parameter,
ρa is the air density (assumed constant at 1.15 kg m−3), e is
the base of natural logarithms, 1pc is the pressure drop in
the core of the TC in hectopascals, x is the exponent used
to compute the wind profile in H80–H10 and xn represents
the adjusted exponent to fit the peripheral observations at ra-
dius rn.

Knaff et al. (2007) relationships (hereafter CLIPER, cli-
matology and persistence models), derived for the NAO,
NWPO and NEPO, are among the few in literature providing
an estimate of the TC surface winds. Knaff et al. (2007) fitted
a modified Rankine vortex on the BTD of NHC and JTWC,
which also makes it possible to retrieve the1AR35. Figure 5
compares 1AR35 from the BTD, derived from the calibra-
tion period, with results from CLIPER, in which vmax is in-
dicated by color intensity in the scatter plot. The data show a
large amount of scatter and bias with a computed scatter in-
dex of 67 % and a relative bias of −18 %. However, there is
a clear pattern showing that larger maximum sustained wind
speeds result in a larger 1AR35. There is also a tendency in
the dataset for TCs at higher latitudes to have a larger1AR35
(not shown here).

In order to improve the estimate of the1AR35, generic re-
lations were derived as part of this study based on BTD from
the calibration period from all ocean basins, as well as data
from each individual basin separately. The method followed
is similar to the one applied to estimate RMW. First, a repre-
sentative parent distribution of the data was sought, secondly

Figure 5. Scatter plot describing BTD1AR35 (x axis) versus com-
puted 1AR35 based on CLIPER (y axis). Data points are colored-
coded based on the maximum sustained wind speeds in the BTD.
The dashed line represents a perfect fit between the BTD and the
computed data based on CLIPER.

the parameters of the PDF were determined, and thirdly the
parameters of the PDF were fitted for a range of vmax and lat-
itude values. The same parent distributions were tested and
the lognormal distribution was again chosen as most repre-
sentative, which is in line with Chavas et al. (2016).

Similarly to RMW, the BTD from the calibration period
were divided based on a moving window with a bin width of
10 m s−1 for wind speed (0–10, 1–11, 2–12, etc.) and 10◦ for
latitude. This led to Eq. (4) in which exponential functions,
dependent on the wind speed per oceanic basin, were used to
describe the location parameter and the shape parameter. Ad-
ditionally, the analysis of the data showed that1AR35 is de-
pendent on the latitude, with TCs generally increasing in size
at higher latitudes. Adding additional parameters (e.g., storm
duration or intensity change of the wind speed) resulted in
very limited skill improvement for the estimate of 1AR35.
This procedure was applied to both the combined JTWC and
NHC BTD from the calibration period of all basins, and for
each individual ocean basin. Table 2 contains the values for
the fitting parameters for the 1AR35 of Eq. (4).

σ1AR35 = A3+ e
vmax·B3 · (1+C3 |θ |)

µ1AR35 = A4 · (vmax− 18)B4 · (1+C4 |θ |) (4)

Here µ1AR35 and σ1AR35 represent, respectively, the loca-
tion and shape parameter of the lognormal distribution for
1AR35, and A3, A4, B3, B4, C3 and C4 are fitting coeffi-
cients.

A scatter plot describing the1AR35 derived from BTD as
a function of the vmax and latitude and computed according
to Eq. (4) is shown in Fig. 6. The green line shows the median
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Table 2. Fitting coefficients for the lognormal 1AR35 as described in Eq. (4).

Shape (σ ) Location (µ)

Basin A3 B3 C3 A4 B4 C4 Count

NIO 0.1215 −0.0522 0.0329 30.93 0.531 −0.012 480
SWIO 0.1312 −0.0444 0.0023 30.21 0.415 0.022 1889
SEIO 0.1223 −0.0454 0.0133 26.59 0.426 0.029 832
SPO 0.1205 −0.0350 −0.0052 23.88 0.431 0.038 1118
NWPO 0.1561 −0.0417 0.0050 33.27 0.429 0.017 4836
NEPO −0.2513 −0.0091 −0.0051 18.11 0.486 0.030 2570
AO 0.1319 −0.0421 0.0124 17.00 0.454 0.055 3075

All 0.1900 −0.0446 0.0061 29.61 0.413 0.024 14 800

Figure 6. Scatter plot describing 1AR35 (BTD and computed,
y axis) as a function of the maximum sustained wind speeds (x axis;
and the latitude; not shown). The blue line is the median of the pro-
posed relationship derived for all basins at an arbitrarily chosen lat-
itude of 10◦. The green line is the median of the BTD. The red
area shows the 90 % prediction interval based on the proposed rela-
tionship for the standard deviation. The 5 % and 95 % exceedance
values from the BTD are presented as black solid lines. The gray
dots are observation points in which more frequent observations
are shown as darker points and less frequent observations as lighter
points.

1AR35 based on the BTD, whereas the solid blue line rep-
resents the mean 1AR35 obtained from Eq. (4). The black
lines indicate the 5 % and 95 % exceedance values computed
based on BTD. Finally, the 90 % prediction interval is shown
using a filled red color. The figure shows how the median
1AR35 increases as a function of vmax while the variance
stays fairly constant. The new empirical equation for1AR35
is evaluated in the next section.

4 Validation

In this section, empirical relationships to estimate the RMW
and 1AR35 were validated based on BTD from the vali-
dation period (2015–2017) (Sect. 4.1). Moreover, the outer
wind profile based on the Holland wind profile, in combina-
tion with observed wind radii, were further validated using
the QSCAT-R database (Sect. 4.2).

4.1 Wind radii

A subset of the BTD (from 2015 to 2017) was used to val-
idate the wind radii. Error statistics are summarized in Ta-
ble 3. The values indicate that, for all basins combined, the
RMSD between the BTD and the proposed relations for the
RMW is 17 % lower than compared to VW08 (RMSD of
18 km compared to 21 km). In the NEPO basin, VW08 per-
forms relatively better than at other basins. When compar-
ing the performance of the proposed relations and VW08,
it is important to note that the relation of VW08 was de-
rived for storms with central pressures lower than 980 hPa,
thereby explicitly focusing on the most severe TCs. When
the data were filtered to include only data points with a pres-
sure drop (1pc) larger than 30 hPa, the RMSD decreases
and differences become much smaller (0 %–10 % decrease
in RMSD). Moreover, the bias also decreases.

Table 4 shows the error statistics related to the estimation
of 1AR35. In particular, the RMSD between the proposed
relations and the BTD for all basins combined is 25 % lower
compared to CLIPER (RMSD of 74 km compared to 94 km)
and there is a negative bias ranging between 9 and 37 km.
Remarkably, the deviations of the 1AR35 based on BTD in
the NIO and SEIO from CLIPER are significantly smaller
compared to the differences for the AO for which CLIPER
was derived. When the H10 wind profile is applied without
additional information to compute the decay of wind speeds
away from the eye wall (H80), the 1AR35 is strongly over-
estimated (overall bias of 177 km).
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Table 3. Root-mean-square difference (RMSD; first number) and bias (second number) for RMW in kilometers for the validation period for
both the proposed relationships as for VW08. Statistics are presented for all data points, as well for data points with a pressure drop (1pc)
larger than 30 hPa.

Basin Proposed VW08 Proposed, VW08, Count Count
all all 1pc > 30 1pc > 30 all 1pc > 30

NIO 20.9/− 14.2 25.3/− 17.7 14.0/− 4.5 14.1/− 2.5 146 46
SWIO 16.8/− 7.0 20.0/− 8.6 10.4/− 0.2 9.8/0.3 365 166
SEIO 17.9/− 10.7 24.0/− 14.0 9.6/− 1.6 10.9/4.9 107 34
SPO 18.1/− 9.1 22.1/− 10.1 12.9/− 3.0 12.7/1.5 424 184
NWPO 17.2/− 6.4 22.4/− 5.5 12.1/− 0.3 14.7/4.6 1389 742
NEPO 16.9/− 8.4 17.5/− 6.7 13.1/− 4.8 11.6/− 1.2 1031 311
AO 21.0/− 8.7 21.5/− 0.8 17.2/− 4.1 18.2/8.1 641 291

All 18.0/− 7.1 21.0/− 6.5 13.1/− 1.6 14.2/3.3 4103 1774

Table 4. Root-mean-square difference (RMSD; first number) and
bias (second number) for 1AR35 in kilometers for the validation
period for the proposed relationships, CLIPER (Knaff et al., 2015)
and the H80 wind profile.

Basin Proposed CLIPER H80 Count

NIO 48.0/− 17.5 51.0/3.3 275.2/221.9 146
SWIO 68.9/− 31.4 123.1/− 95.3 248.4/190.9 365
SEIO 37.2/− 9.0 69.0/− 58.3 238.8/187.7 107
SPO 59.6/− 16.3 104/− 74.7 267.2/214.1 424
NWPO 83.8/− 37.3 95.0/− 25.6 294.2/198.8 1389
NEPO 47.4/− 10.3 86.4/68.7 125.4/59.3 1031
AO 90.0/− 26.0 116.8/7.1 552.7/252.4 641

All 74.1/− 23.3 94.2/− 13.9 316.8/177.0 4103

4.2 Outer wind speeds

The QSCAT-R database was used to validate the computed
(outer) azimuthal wind speeds while using the H10 wind pro-
file in combination with several sources to constrain the de-
cay of wind speeds. QuikSCAT includes 690 unique tropical
cyclones and is known to provide reliable results for outer
wind speeds of lower intensity. Figure 7 displays the error
profile, representing the difference between modeled wind
speed and measured data based on QuikSCAT, as a func-
tion of the normalized radius. This means that for all vali-
dated TCs the radius on the x axis is divided by the RMW. A
horizontal line equal to zero indicates no difference between
modeled and measured wind speed data, while the solid col-
ored lines represent the median difference. The filled area
indicates the interquartile range (IQR).

The figure shows that in combination with the H10 wind
profile the proposed relationships result in the smallest differ-
ence with respect to the measured wind speeds (green line).
However, applying the H10 wind profile with observed val-
ues for the wind radii (i.e., based on BTD values) results in
an underestimation of the modeled outer winds (blue line).
On the other hand, applying the H10 wind profile, without

Figure 7. Wind speed error (observed QSCAT-R minus mod-
eled) profiles for different models as a function of relative TC ra-
dius (r/RMW). A value equal to zero on the y axis indicates a per-
fect match between model and observations. Interquartile ranges are
shown with shaded colors and the solid line represents the median.
Note: for the proposed relationships the most probable value for
RMW and AR35 was used (i.e., mode).

additional information on the gale-force winds (H80), re-
sults in a strong overestimation of the outer winds (red line).
Similarly, a combination of other existing relationships for
RMW (VW08) and1AR35 (CLIPER) results in an overesti-
mation of the outer winds but to a lesser degree (orange line).

The same information is also shown in Table 5, where
the root-mean-square differences and bias between modeled
wind speeds and measurements are summarized. Using the
proposed relationship with the H10 wind profile results in
the lowest RMSD and smallest bias.
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Table 5. Root-mean-square difference (RMSD) and bias (m s−1) between modeled and measured azimuthally averaged wind speeds based on
QSCAT-R data. The data analyzed in the table refer to all TCs with wind speeds between 40 and 5 m s−1 and a normalized radius between 3
and 16. Statistics are shown for median values (50 %) and the IQR range (25 %–75 %). With “H10: observed” the authors refer to the Holland
et al. (2010) wind profile in combination with the RMW and AR35 from the BTD.

Wind profiles RMSD: RMSD: RMSD: Bias: Bias: Bias:
median low high median low high
(50 %) (25 %) (75 %) (50 %) (25 %) (75 %)

H80 11.24 8.32 14.57 10.98 7.89 14.34
H10: observed (BTD) 5.46 3.85 7.04 −4.67 −6.32 −2.6
H10: VW08+CLIPER 3.60 2.06 5.76 1.64 −1.27 4.16
H10: proposed 2.86 1.71 4.51 −1.04 −3.3 1.39

5 Discussion

For clarity, discussion points have been grouped under three
main topics, which are as follows.

5.1 Data

In this study, all available BTD from NHC and JTWC were
used and combined into one dataset. This approach was fol-
lowed to create the largest sample size possible, in order
to derive empirical (stochastic) relationships valid for each
ocean basin, various latitudes, different TC geometries and
strengths. This approach is limited by the debatable assump-
tion that each 6-hourly data point is statistically independent.
Moreover, errors in the BTD can be quite significant, so pre-
vious studies (e.g., Holland, 2008) selected a specific subset
of the BTD in order to ensure the quality of the data and
remove potential inconsistencies. However, the advantage of
including all data entries is that the derived relationships are
more widely applicable (i.e., larger parameter space). More-
over, as they are based on larger datasets, it is possible to
treat TC geometry variables using a stochastic rather than a
deterministic approach.

5.2 Methodology

In order to derive the new empirical relationship for RMW
and 1AR35, the maximum sustained wind speed and lati-
tude were used. Although other authors used additional pa-
rameters to describe the TC geometry (e.g., pressure drop,
storm duration, rapid intensification), limited predictive skill
improvement was found by incorporating those additional
parameters. This makes the derived relationships relatively
simple for practical applications. Moreover, lognormal sta-
tistical distributions in combination with exponential func-
tions were used to fit all available data and derive those re-
lationships. For our application, exponentially shaped func-
tions resulted in the best fit compared to the available data.
The choice of lognormal statistical distributions was based
on comparison of the different cumulative distribution func-
tions (CDFs) derived using different distributions and the

Kolmogorov–Smirnov test and supported by findings from
literature (e.g., Dean et al., 2009; Chavas et al., 2016). How-
ever, different statistical distributions and functions are avail-
able in literature to fit and describe TC geometry data. The
strength of using statistical distributions to derive these rela-
tionships is that TC geometry is treated stochastically, there-
fore providing not only mean and median values but also pre-
diction intervals. This is especially of importance when the
TC geometry is not known (e.g., for older BTD and/or Monte
Carlo analysis with synthetic tracks) with numerical models.
Another possibility would be the derivation of wind speed
probability estimates. A possibility to further improve these
relationships would be to use machine learning techniques
such as Bayesian neural networks to estimate TC geometry
parameters when enough data are available (via either addi-
tional observations or surrogate data derived by numerical
models).

5.3 Differences in measured and modeled outer wind
profiles

QuikSCAT data were used to validate the (outer) azimuthal
wind speeds derived using the new empirical relationships
in combination with the H10 wind profile. The analysis has
shown how the proposed relationships in combination with
the H10 wind profile result in the lowest RMSD and smallest
bias for the outer winds, compared to other existing relation-
ships (see Fig. 7). This gives confidence that parametric wind
models can be used to compute the outer wind speeds. This is
of particular importance for the estimation of coastal hazards
(i.e., storm surge and wave heights).

However, differences were also found for individual TCs,
where the Holland wind profile in combination with the em-
pirical relationships derived in this paper did not result in a
good reproduction of the outer wind speeds. As an exam-
ple, Fig. 8a shows computed and measured wind speeds for
TC Vaianu (2006), which was characterized by an extremely
large radius of gale-force wind (R35 equal to 292 km≈ 10 %
probability of exceedance). Measured values are shown in
Fig. 8 by the black circles. When applying the proposed re-
lationships to compute the most probable values of the wind
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Figure 8. Radial wind profiles for measured wind speeds (black cir-
cles), computed wind speeds based on relationships for wind radii
(red lines) and computed based on observed wind radii for tropi-
cal cyclones Vaianu (14 February 2006) (a) and Karl (23 Septem-
ber 2004) (b). Measured data are based on QSCAT-R data, while
computed values are based on the H10 wind profile calibrated with
the relationships proposed in this paper (red line) or observed data
(blue line). Panels (a) and (b) are examples indicating when a dif-
ference between measured wind speeds and TC size can be encoun-
tered.

radii (red line), a R35 value equal to 162 km is obtained, re-
sulting in an overall underestimation of the measured outer
wind speeds. Also, when using the observed wind radii infor-
mation (blue line), TC outer winds are not well reproduced,
which shows that even with the correct wind radii value,
parametric wind models can have the wrong shape. This ap-
proach is also limited when measured wind speeds cannot
be represented by an exponential decay, as is assumed by the
Holland wind profile. For example, TCs characterized by two
wind maxima cannot be reproduced by an exponential decay
of wind speed (Fig. 8b). However, the Holland wind profile
is widely used due to its relative simplicity and does, most of
the time (80 % of the TCs are reproduced with a RMSE of
less than 5 m s−1), reproduce the decay of wind speed fairly
well as shown in the evaluation of 690 unique TCs in Fig. 7.

6 Conclusions

In this paper, new empirical relationships are derived which
estimate tropical cyclone (TC) geometry with simple and
generic equations and with higher accuracy with respect to

other well-known empirical relationships available from lit-
erature. Those new relationships are valid for any ocean basin
(Atlantic; S, NW, and NE Pacific; N, SE, and SW Indian
oceans). Moreover, the new relationships include a stochastic
description for both the radius of maximum winds (RMW)
and the radius of gale-force winds (1AR35). This allows the
quantification of the prediction interval around the median
estimates, making the estimation more useful.

According to the derived relationships, the RMW is de-
scribed as a function of the maximum sustained wind speeds
and latitude. The radius of gale-force winds is estimated us-
ing a newly introduced 1AR35 parameter (average differ-
ence between radius of 35 kn and radius of maximum wind),
and is also dependent on the maximum sustained winds and
latitude. Both parameters are fit through simple exponen-
tial functions. Compared to best-track data, the proposed
relationships improve the estimation of RMW and 1AR35
by reducing the root-mean-square difference (RMSD) up to
25 %. Larger improvements were found in particular for non-
US TCs since most of the existing relationships are based
on data from the Atlantic Ocean, northeastern Pacific Ocean
and/or northwestern Pacific Ocean.

The new relationships, in combination with the Holland
wind profile, were validated using a subset of the BTD and
(outer) azimuthal wind speeds from the QSCAT-R database.
The results showed that (outer) azimuthal wind speeds of the
TC can be reproduced with the H10 wind profile when using
either the BTD (“observed”) for RMW and 1AR35 or the
relationships derived in this paper. When no additional in-
formation on wind radii was used to calibrate the H10 wind
profile, which is generally done when the radius of gale-force
wind is not known, surface wind speeds were overestimated.

The derived empirical relationships can be used in a
variety of applications. For example, a better estimate of
TC pressure and surface wind speeds for Monte Carlo analy-
sis with synthetic tracks for risk assessments with numerical
models can result in a more accurate description of wave and
surge conditions resulting from the TC. As a result, this can
lead to a better quantification of coastal hazards, and conse-
quent risks and damages. Similarly, an improved assessment
of those hazards can help the design of appropriate adap-
tation measures. Other fields of application may vary from
improved design parameters for offshore structures to nav-
igation. The application of the new empirical relationships
will be presented as part of a separate paper currently under
preparation.

Code and data availability. The best-track data (BTD) are freely
available and collected from the National Hurricane Center (NHC)
and the Joint Typhoon Warning Center (JTWC). Upon request this
combined dataset can be shared with other researchers. Moreover,
the QSCAT-R (open) database (https://doi.org/10.5065/D6J67DZ4)
(Chavas and Vigh, 2014), with data for the period 1999–2008, was
used to validate the computed outer winds. The MATLAB script to
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compute the tropical cyclone geometry is freely available via the
following URL: https://bit.ly/2k9py1J (last access: October 2019).
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