Articles | Volume 19, issue 8
https://doi.org/10.5194/nhess-19-1789-2019
https://doi.org/10.5194/nhess-19-1789-2019
Research article
 | 
15 Aug 2019
Research article |  | 15 Aug 2019

How size and trigger matter: analyzing rainfall- and earthquake-triggered landslide inventories and their causal relation in the Koshi River basin, central Himalaya

Jianqiang Zhang, Cees J. van Westen, Hakan Tanyas, Olga Mavrouli, Yonggang Ge, Samjwal Bajrachary, Deo Raj Gurung, Megh Raj Dhital, and Narendral Raj Khanal

Related authors

Space–time landslide hazard modeling via Ensemble Neural Networks
Ashok Dahal, Hakan Tanyas, Cees van Westen, Mark van der Meijde, Paul Martin Mai, Raphaël Huser, and Luigi Lombardo
Nat. Hazards Earth Syst. Sci., 24, 823–845, https://doi.org/10.5194/nhess-24-823-2024,https://doi.org/10.5194/nhess-24-823-2024, 2024
Short summary
AGROECOLOGICAL PRINCIPLES AND ITS GAPS IN ADAPTION IN TERAI FARMING SYSTEM, NEPAL
U. K. Mandal, N. R. Khanal, P. Nepal, and K. Kumari
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W2-2023, 1445–1451, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1445-2023,https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1445-2023, 2023
Multi-hazard susceptibility mapping of cryospheric hazards in a high-Arctic environment: Svalbard Archipelago
Ionut Cristi Nicu, Letizia Elia, Lena Rubensdotter, Hakan Tanyaş, and Luigi Lombardo
Earth Syst. Sci. Data, 15, 447–464, https://doi.org/10.5194/essd-15-447-2023,https://doi.org/10.5194/essd-15-447-2023, 2023
Short summary
Physically based modeling of co-seismic landslide, debris flow, and flood cascade
Bastian van den Bout, Chenxiao Tang, Cees van Westen, and Victor Jetten
Nat. Hazards Earth Syst. Sci., 22, 3183–3209, https://doi.org/10.5194/nhess-22-3183-2022,https://doi.org/10.5194/nhess-22-3183-2022, 2022
Short summary
Snow Avalanche Frequency Estimation (SAFE): 32 years of monitoring remote avalanche depositional zones in high mountains of Afghanistan
Arnaud Caiserman, Roy C. Sidle, and Deo Raj Gurung
The Cryosphere, 16, 3295–3312, https://doi.org/10.5194/tc-16-3295-2022,https://doi.org/10.5194/tc-16-3295-2022, 2022
Short summary

Related subject area

Landslides and Debris Flows Hazards
Temporal clustering of precipitation for detection of potential landslides
Fabiola Banfi, Emanuele Bevacqua, Pauline Rivoire, Sérgio C. Oliveira, Joaquim G. Pinto, Alexandre M. Ramos, and Carlo De Michele
Nat. Hazards Earth Syst. Sci., 24, 2689–2704, https://doi.org/10.5194/nhess-24-2689-2024,https://doi.org/10.5194/nhess-24-2689-2024, 2024
Short summary
Shallow-landslide stability evaluation in loess areas according to the Revised Infinite Slope Model: a case study of the 7.25 Tianshui sliding-flow landslide events of 2013 in the southwest of the Loess Plateau, China
Jianqi Zhuang, Jianbing Peng, Chenhui Du, Yi Zhu, and Jiaxu Kong
Nat. Hazards Earth Syst. Sci., 24, 2615–2631, https://doi.org/10.5194/nhess-24-2615-2024,https://doi.org/10.5194/nhess-24-2615-2024, 2024
Short summary
Probabilistic assessment of postfire debris-flow inundation in response to forecast rainfall
Alexander B. Prescott, Luke A. McGuire, Kwang-Sung Jun, Katherine R. Barnhart, and Nina S. Oakley
Nat. Hazards Earth Syst. Sci., 24, 2359–2374, https://doi.org/10.5194/nhess-24-2359-2024,https://doi.org/10.5194/nhess-24-2359-2024, 2024
Short summary
Evaluating post-wildfire debris-flow rainfall thresholds and volume models at the 2020 Grizzly Creek Fire in Glenwood Canyon, Colorado, USA
Francis K. Rengers, Samuel Bower, Andrew Knapp, Jason W. Kean, Danielle W. vonLembke, Matthew A. Thomas, Jaime Kostelnik, Katherine R. Barnhart, Matthew Bethel, Joseph E. Gartner, Madeline Hille, Dennis M. Staley, Justin K. Anderson, Elizabeth K. Roberts, Stephen B. DeLong, Belize Lane, Paxton Ridgway, and Brendan P. Murphy
Nat. Hazards Earth Syst. Sci., 24, 2093–2114, https://doi.org/10.5194/nhess-24-2093-2024,https://doi.org/10.5194/nhess-24-2093-2024, 2024
Short summary
Addressing class imbalance in soil movement predictions
Praveen Kumar, Priyanka Priyanka, Kala Venkata Uday, and Varun Dutt
Nat. Hazards Earth Syst. Sci., 24, 1913–1928, https://doi.org/10.5194/nhess-24-1913-2024,https://doi.org/10.5194/nhess-24-1913-2024, 2024
Short summary

Cited articles

Ayalew, L. and Yamagishi, H.: The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan, Geomorphology, 65, 15–31, https://doi.org/10.1016/j.geomorph.2004.06.010, 2005. 
Bai, S., Wang, J., Lü, G. N., Zhou, P. G., Hou, S. S., and Xu, S. N.: GIS-based logistic regression for landslide susceptibility mapping of the Zhongxian segment in the Three Gorges area, China, Geomorphology, 115, 23–31, https://doi.org/10.1016/j.geomorph.2009.09.025, 2010. 
Burg, J. P., Guiraud, M., Chen, G. M., and Li, G. C.: Himalayan metamorphism and deformations in the North Himalayan Belt (southern Tibet, China), Earth Planet. Sc. Lett., 69, 391–400, https://doi.org/10.1016/0012-821x(84)90197-3, 1984. 
Chang, K. T., Chiang, S. H., and Hsu, M. L.: Modeling typhoon- and earthquake-induced landslides in a mountainous watershed using logistic regression, Geomorphology, 89, 335–347, https://doi.org/10.1016/j.geomorph.2006.12.011, 2007. 
Clauset, A., Shalizi, C. R., and Newman, M. E.: Power-law distributions in empirical data, SIAM Rev., 51, 661–703, https://doi.org/10.1137/070710111, 2009. 
Download
Short summary
The aim of this study is to investigate the differences in the mappable characteristics of earthquake-triggered and rainfall triggered landslides in terms of their frequency–area relationships, spatial distributions and relation with causal factors, as well as to evaluate whether separate susceptibility maps generated for specific landslide size and triggering mechanism are better than a generic landslide susceptibility assessment including all landslide sizes and triggers.
Altmetrics
Final-revised paper
Preprint