Articles | Volume 18, issue 2
https://doi.org/10.5194/nhess-18-429-2018
https://doi.org/10.5194/nhess-18-429-2018
Research article
 | 
07 Feb 2018
Research article |  | 07 Feb 2018

Characteristics of debris avalanche deposits inferred from source volume estimate and hummock morphology around Mt. Erciyes, central Turkey

Yuichi S. Hayakawa, Hidetsugu Yoshida, Hiroyuki Obanawa, Ryutaro Naruhashi, Koji Okumura, Masumi Zaiki, and Ryoichi Kontani

Related authors

Usability and motivational impact of a fast-paced immersive virtual reality lecture on international middle school students in geoscience education
Azim Zulhilmi, Yuichi S. Hayakawa, and Daniel R. Newman
EGUsphere, https://doi.org/10.5194/egusphere-2025-129,https://doi.org/10.5194/egusphere-2025-129, 2025
This preprint is open for discussion and under review for Geoscience Communication (GC).
Short summary
Preface: The use of remotely piloted aircraft systems (RPAS) in monitoring applications and management of natural hazards
Daniele Giordan, Yuichi S. Hayakawa, Francesco Nex, and Paolo Tarolli
Nat. Hazards Earth Syst. Sci., 18, 3085–3087, https://doi.org/10.5194/nhess-18-3085-2018,https://doi.org/10.5194/nhess-18-3085-2018, 2018
Short summary
Review article: the use of remotely piloted aircraft systems (RPASs) for natural hazards monitoring and management
Daniele Giordan, Yuichi Hayakawa, Francesco Nex, Fabio Remondino, and Paolo Tarolli
Nat. Hazards Earth Syst. Sci., 18, 1079–1096, https://doi.org/10.5194/nhess-18-1079-2018,https://doi.org/10.5194/nhess-18-1079-2018, 2018
Short summary
Relationship between the accumulation of sediment storage and debris-flow characteristics in a debris-flow initiation zone, Ohya landslide body, Japan
Fumitoshi Imaizumi, Yuichi S. Hayakawa, Norifumi Hotta, Haruka Tsunetaka, Okihiro Ohsaka, and Satoshi Tsuchiya
Nat. Hazards Earth Syst. Sci., 17, 1923–1938, https://doi.org/10.5194/nhess-17-1923-2017,https://doi.org/10.5194/nhess-17-1923-2017, 2017
Short summary

Related subject area

Landslides and Debris Flows Hazards
An integrated method for assessing vulnerability of buildings caused by debris flows in mountainous areas
Chenchen Qiu and Xueyu Geng
Nat. Hazards Earth Syst. Sci., 25, 709–726, https://doi.org/10.5194/nhess-25-709-2025,https://doi.org/10.5194/nhess-25-709-2025, 2025
Short summary
Identifying unrecognised risks to life from debris flows
Mark Bloomberg, Tim Davies, Elena Moltchanova, Tom Robinson, and David Palmer
Nat. Hazards Earth Syst. Sci., 25, 647–656, https://doi.org/10.5194/nhess-25-647-2025,https://doi.org/10.5194/nhess-25-647-2025, 2025
Short summary
Predicting the thickness of shallow landslides in Switzerland using machine learning
Christoph Schaller, Luuk Dorren, Massimiliano Schwarz, Christine Moos, Arie C. Seijmonsbergen, and E. Emiel van Loon
Nat. Hazards Earth Syst. Sci., 25, 467–491, https://doi.org/10.5194/nhess-25-467-2025,https://doi.org/10.5194/nhess-25-467-2025, 2025
Short summary
Unraveling landslide failure mechanisms with seismic signal analysis for enhanced pre-survey understanding
Jui-Ming Chang, Che-Ming Yang, Wei-An Chao, Chin-Shang Ku, Ming-Wan Huang, Tung-Chou Hsieh, and Chi-Yao Hung
Nat. Hazards Earth Syst. Sci., 25, 451–466, https://doi.org/10.5194/nhess-25-451-2025,https://doi.org/10.5194/nhess-25-451-2025, 2025
Short summary
Comparison of conditioning factor classification criteria in large-scale statistically based landslide susceptibility models
Marko Sinčić, Sanja Bernat Gazibara, Mauro Rossi, and Snježana Mihalić Arbanas
Nat. Hazards Earth Syst. Sci., 25, 183–206, https://doi.org/10.5194/nhess-25-183-2025,https://doi.org/10.5194/nhess-25-183-2025, 2025
Short summary

Cited articles

Aguila, L. C., Newhall, C. G., Miller, C. D., and Listanco, E. L.: Reconnaissance geology of a large debris avalanche from Iriga volcano, Philippines, Philipp. J. Volcanol., 3, 54–72, 1986. 
Aramaki, S.: Geology of Asama volcano, J. Fac. Sci. Univ. Tokyo, Sect. II, 14, 229–443, 1963. 
Bayer Altin, T., El Ouahabi, M., and Fagel, N.: Environmental and climatic changes during the Pleistocene–Holocene in the Bor Plain, Central Anatolia, Turkey, Palaeogeogr. Palaeoclimatol. Palaeoecol., 440, 564–578, https://doi.org/10.1016/j.palaeo.2015.09.011, 2015. 
Bernard, B., van Wyk de Vries, B., Barba, D., Leyrit, H., Robin, C., Alcaraz, S., and Samaniego, P.: The Chimborazo sector collapse and debris avalanche: Deposit characteristics as evidence of emplacement mechanisms, J. Volcanol. Geotherm. Res., 176, 36–43, https://doi.org/10.1016/j.jvolgeores.2008.03.012, 2008. 
Clavero, J., Sparks, R., Huppert, H., and Dade, W.: Geological constraints on the emplacement mechanism of the Parinacota debris avalanche, Northern Chile, Bull. Volcanol., 64, 40–54, https://doi.org/10.1007/s00445-001-0183-0, 2002. 
Download
Short summary
This study assesses the applicability of the RPAS-based photogrammetric approach for a high-definition geomorphometry of hummocks, i.e., characteristic morphological features in the surface of debris avalanche deposits caused by a gigantic sector collapse of a volcanic mountain body. Satellite-based topographic data were also utilized to estimate the source volume of the sector collapse. We provide new, detailed insights into the characteristics of the debris avalanche and potential hazards.
Share
Altmetrics
Final-revised paper
Preprint