Articles | Volume 18, issue 11
Nat. Hazards Earth Syst. Sci., 18, 2991–3006, 2018
Nat. Hazards Earth Syst. Sci., 18, 2991–3006, 2018
Research article
12 Nov 2018
Research article | 12 Nov 2018

The role of serial European windstorm clustering for extreme seasonal losses as determined from multi-centennial simulations of high-resolution global climate model data

Matthew D. K. Priestley et al.

Related authors

Performance based sub-selection of CMIP6 models for impact assessments in Europe
Tamzin Emily Palmer, Carol F. McSweeney, Ben B. B. Booth, Matthew D. K. Priestley, Paolo Davini, Lukas Brunner, Leonard Borchert, and Matthew B. Menary
Earth Syst. Dynam. Discuss.,,, 2022
Preprint under review for ESD
Short summary
Future changes in the extratropical storm tracks and cyclone intensity, wind speed, and structure
Matthew D. K. Priestley and Jennifer L. Catto
Weather Clim. Dynam., 3, 337–360,,, 2022
Short summary

Related subject area

Atmospheric, Meteorological and Climatological Hazards
Analysis of the relationship between yield in cereals and remotely sensed fAPAR in the framework of monitoring drought impacts in Europe
Carmelo Cammalleri, Niall McCormick, and Andrea Toreti
Nat. Hazards Earth Syst. Sci., 22, 3737–3750,,, 2022
Short summary
Meteorological, impact and climate perspectives of the 29 June 2017 heavy precipitation event in the Berlin metropolitan area
Alberto Caldas-Alvarez, Markus Augenstein, Georgy Ayzel, Klemens Barfus, Ribu Cherian, Lisa Dillenardt, Felix Fauer, Hendrik Feldmann, Maik Heistermann, Alexia Karwat, Frank Kaspar, Heidi Kreibich, Etor Emanuel Lucio-Eceiza, Edmund P. Meredith, Susanna Mohr, Deborah Niermann, Stephan Pfahl, Florian Ruff, Henning W. Rust, Lukas Schoppa, Thomas Schwitalla, Stella Steidl, Annegret H. Thieken, Jordis S. Tradowsky, Volker Wulfmeyer, and Johannes Quaas
Nat. Hazards Earth Syst. Sci., 22, 3701–3724,,, 2022
Short summary
Using high-resolution global climate models from the PRIMAVERA project to create a European winter windstorm event set
Julia F. Lockwood, Galina S. Guentchev, Alexander Alabaster, Simon J. Brown, Erika J. Palin, Malcolm J. Roberts, and Hazel E. Thornton
Nat. Hazards Earth Syst. Sci., 22, 3585–3606,,, 2022
Short summary
Real-time urban rainstorm and waterlogging disaster detection by Weibo users
Haoran Zhu, Priscilla Obeng Oforiwaa, and Guofeng Su
Nat. Hazards Earth Syst. Sci., 22, 3349–3359,,, 2022
Short summary
Sensitivity of simulating Typhoon Haiyan (2013) using WRF: the role of cumulus convection, surface flux parameterizations, spectral nudging, and initial and boundary conditions
Rafaela Jane Delfino, Gerry Bagtasa, Kevin Hodges, and Pier Luigi Vidale
Nat. Hazards Earth Syst. Sci., 22, 3285–3307,,, 2022
Short summary

Cited articles

Bengtsson, L., Hodges, K. I., and Keenlyside, N.: Will Extratropical Storms Intensify in a Warmer Climate?, J. Climate, 22, 2276–2301,, 2009. a
Bjerknes, J. and Solberg, H.: Life cycle of cyclones and the polar front theory of atmospheric circulation., Geophysisks Publikationer, 3, 3–18, 1922. a
Catto, J. L., Shaffrey, L. C., and Hodges, K. I.: Can Climate Models Capture the Structure of Extratropical Cyclones?, J. Climate, 23, 1621–1635,, 2010. a, b
Catto, J. L., Shaffrey, L. C., and Hodges, K. I.: Northern hemisphere extratropical cyclones in a warming climate in the HiGEM high-resolution climate model, J. Climate, 24, 5336–5352,, 2011. a, b, c
Center for International Earth Science Information Network – CIESIN – Columbia University: Gridded Population of the World, Version 4 (GPWv4): Population Density, Revision 10,, 2017. a, b
Short summary
This study investigates the role of the clustering of extratropical cyclones in driving wintertime wind losses across a large European region. To do this over 900 years of climate model data have been used and analysed. The main conclusion of this work is that cyclone clustering acts to increase wind-driven losses in the winter by 10 %–20 % when compared to the losses from a random series of cyclones, with this specifically being for the higher loss years.
Final-revised paper