Research article
28 Feb 2017
Research article
| 28 Feb 2017
Quantifying the effect of forests on frequency and intensity of rockfalls
Christine Moos et al.
Related authors
Luuk Dorren, Frédéric Berger, Franck Bourrier, Nicolas Eckert, Charalampos Saroglou, Massimiliano Schwarz, Markus Stoffel, Daniel Trappmann, Hans-Heini Utelli, and Christine Moos
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-32, https://doi.org/10.5194/nhess-2022-32, 2022
Preprint under review for NHESS
Short summary
Short summary
In the daily practice of rockfall hazard analysis, trajectory simulations are used to delimit runout zones. To do so, the expert needs to separate "realistic" from "unrealistic" simulated groups of trajectories. This is often done on the basis of reach probability values. This paper provides a basis for choosing a reach probability threshold value for delimiting the rockfall runout zone, based on recordings and simulations of recent rockfall events at 18 active rockfall sites in Europe.
Helen Mackay, Gill Plunkett, Britta J. L. Jensen, Thomas J. Aubry, Christophe Corona, Woon Mi Kim, Matthew Toohey, Michael Sigl, Markus Stoffel, Kevin J. Anchukaitis, Christoph Raible, Matthew S. M. Bolton, Joseph G. Manning, Timothy P. Newfield, Nicola Di Cosmo, Francis Ludlow, Conor Kostick, Zhen Yang, Lisa Coyle McClung, Matthew Amesbury, Alistair Monteath, Paul D. M. Hughes, Pete G. Langdon, Dan Charman, Robert Booth, Kimberley L. Davies, Antony Blundell, and Graeme T. Swindles
Clim. Past, 18, 1475–1508, https://doi.org/10.5194/cp-18-1475-2022, https://doi.org/10.5194/cp-18-1475-2022, 2022
Short summary
Short summary
We assess the climatic and societal impact of the 852/3 CE Alaska Mount Churchill eruption using environmental reconstructions, historical records and climate simulations. The eruption is associated with significant Northern Hemisphere summer cooling, despite having only a moderate sulfate-based climate forcing potential; however, evidence of a widespread societal response is lacking. We discuss the difficulties of confirming volcanic impacts of a single eruption even when it is precisely dated.
Markus Stoffel, Christophe Corona, Francis Ludlow, Michael Sigl, Heli Huhtamaa, Emmanuel Garnier, Samuli Helama, Sébastien Guillet, Arlene Crampsie, Katrin Kleemann, Chantal Camenisch, Joseph McConnell, and Chaochao Gao
Clim. Past, 18, 1083–1108, https://doi.org/10.5194/cp-18-1083-2022, https://doi.org/10.5194/cp-18-1083-2022, 2022
Short summary
Short summary
The mid-17th century saw several volcanic eruptions, deteriorating climate, political instability, and famine in Europe, China, and Japan. We analyze impacts of the eruptions on climate but also study their socio-political context. We show that an unambiguous distinction of volcanic cooling or wetting from natural climate variability is not straightforward. It also shows that political instability, poor harvest, and famine cannot only be attributed to volcanic climatic impacts.
Sam White, Eduardo Moreno-Chamarro, Davide Zanchettin, Heli Huhtamaa, Dagomar Degroot, Markus Stoffel, and Christophe Corona
Clim. Past, 18, 739–757, https://doi.org/10.5194/cp-18-739-2022, https://doi.org/10.5194/cp-18-739-2022, 2022
Short summary
Short summary
This study examines whether the 1600 Huaynaputina volcano eruption triggered persistent cooling in the North Atlantic. It compares previous paleoclimate simulations with new climate reconstructions from natural proxies and historical documents and finds that the reconstructions are consistent with, but do not support, an eruption trigger for persistent cooling. The study also analyzes societal impacts of climatic change in ca. 1600 and the use of historical observations in model–data comparison.
Luuk Dorren, Frédéric Berger, Franck Bourrier, Nicolas Eckert, Charalampos Saroglou, Massimiliano Schwarz, Markus Stoffel, Daniel Trappmann, Hans-Heini Utelli, and Christine Moos
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-32, https://doi.org/10.5194/nhess-2022-32, 2022
Preprint under review for NHESS
Short summary
Short summary
In the daily practice of rockfall hazard analysis, trajectory simulations are used to delimit runout zones. To do so, the expert needs to separate "realistic" from "unrealistic" simulated groups of trajectories. This is often done on the basis of reach probability values. This paper provides a basis for choosing a reach probability threshold value for delimiting the rockfall runout zone, based on recordings and simulations of recent rockfall events at 18 active rockfall sites in Europe.
Heli Huhtamaa, Markus Stoffel, and Christophe Corona
Clim. Past Discuss., https://doi.org/10.5194/cp-2021-147, https://doi.org/10.5194/cp-2021-147, 2021
Preprint under review for CP
Short summary
Short summary
Natural proxy data and written sources reveal that large 17th century eruptions had considerable climatic, agricultural and socioeconomic impacts far away from the eruption locations. Yet, micro-regional investigation shows that the eruption-climate-society causalities were commonly indirect, as various factors, like agro-ecosystem, resource availability, institutions and social networks, dictated how the volcanic cold pulses and related crop failures materialized on the grassroots level.
Guoxiong Zheng, Martin Mergili, Adam Emmer, Simon Allen, Anming Bao, Hao Guo, and Markus Stoffel
The Cryosphere, 15, 3159–3180, https://doi.org/10.5194/tc-15-3159-2021, https://doi.org/10.5194/tc-15-3159-2021, 2021
Short summary
Short summary
This paper reports on a recent glacial lake outburst flood (GLOF) event that occurred on 26 June 2020 in Tibet, China. We find that this event was triggered by a debris landslide from a steep lateral moraine. As the relationship between the long-term evolution of the lake and its likely landslide trigger revealed by a time series of satellite images, this case provides strong evidence that it can be plausibly linked to anthropogenic climate change.
Feiko Bernard van Zadelhoff, Adel Albaba, Denis Cohen, Chris Phillips, Bettina Schaefli, Lucas Karel Agnes Dorren, and Massimiliano Schwarz
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2021-140, https://doi.org/10.5194/nhess-2021-140, 2021
Revised manuscript accepted for NHESS
Short summary
Short summary
Shallow landslides pose a risk to people, property and infrastructure. Assesment of this hazard and the impact of protective measures can reduce losses. We developed a model (SlideforMap) that can assess the shallow landslide risk on a regional scale for specific rainfall events. Trees are an effective and cheap protective measure on a regional scale. Our model can assess their hazard reduction down to the individual tree level.
Peter M. Abbott, Gill Plunkett, Christophe Corona, Nathan J. Chellman, Joseph R. McConnell, John R. Pilcher, Markus Stoffel, and Michael Sigl
Clim. Past, 17, 565–585, https://doi.org/10.5194/cp-17-565-2021, https://doi.org/10.5194/cp-17-565-2021, 2021
Short summary
Short summary
Volcanic eruptions are a key source of climatic variability, and greater understanding of their past influence will increase the accuracy of future projections. We use volcanic ash from a 1477 CE Icelandic eruption in a Greenlandic ice core as a temporal fix point to constrain the timing of two eruptions in the 1450s CE and their climatic impact. Despite being the most explosive Icelandic eruption in the last 1200 years, the 1477 CE event had a limited impact on Northern Hemisphere climate.
Andreas Kääb, Tazio Strozzi, Tobias Bolch, Rafael Caduff, Håkon Trefall, Markus Stoffel, and Alexander Kokarev
The Cryosphere, 15, 927–949, https://doi.org/10.5194/tc-15-927-2021, https://doi.org/10.5194/tc-15-927-2021, 2021
Short summary
Short summary
We present a map of rock glacier motion over parts of the northern Tien Shan and time series of surface speed for six of them over almost 70 years.
This is by far the most detailed investigation of this kind available for central Asia.
We detect a 2- to 4-fold increase in rock glacier motion between the 1950s and present, which we attribute to atmospheric warming.
Relative to the shrinking glaciers in the region, this implies increased importance of periglacial sediment transport.
Michael Fehlmann, Mario Rohrer, Annakaisa von Lerber, and Markus Stoffel
Atmos. Meas. Tech., 13, 4683–4698, https://doi.org/10.5194/amt-13-4683-2020, https://doi.org/10.5194/amt-13-4683-2020, 2020
Short summary
Short summary
The Thies disdrometer is used to monitor precipitation intensity and its phase and thus may provide valuable information for the management of meteorological and hydrological risks. In this study, we characterize biases of this instrument using common reference instruments at a pre-alpine study site in Switzerland. We find a systematic underestimation of liquid precipitation amounts and suggest possible reasons for and corrections to this bias and relate these findings to other study sites.
Adel Albaba, Massimiliano Schwarz, Corinna Wendeler, Bernard Loup, and Luuk Dorren
Nat. Hazards Earth Syst. Sci., 19, 2339–2358, https://doi.org/10.5194/nhess-19-2339-2019, https://doi.org/10.5194/nhess-19-2339-2019, 2019
Short summary
Short summary
We present a discrete-element-based model which is adapted and used to produce hillslope debris flows. The model parameters were calibrated using field experiments, and a very good agreement was found in terms of pressure and flow velocity. Calibration results suggested that a link might exist between the model parameters and the initial conditions of the granular material. However, to better understand this link, further investigations are required by conducting detailed lab-scale experiments.
Olga V. Churakova (Sidorova), Marina V. Fonti, Matthias Saurer, Sébastien Guillet, Christophe Corona, Patrick Fonti, Vladimir S. Myglan, Alexander V. Kirdyanov, Oksana V. Naumova, Dmitriy V. Ovchinnikov, Alexander V. Shashkin, Irina P. Panyushkina, Ulf Büntgen, Malcolm K. Hughes, Eugene A. Vaganov, Rolf T. W. Siegwolf, and Markus Stoffel
Clim. Past, 15, 685–700, https://doi.org/10.5194/cp-15-685-2019, https://doi.org/10.5194/cp-15-685-2019, 2019
Short summary
Short summary
We present a unique dataset of multiple tree-ring and stable isotope parameters, representing temperature-sensitive Siberian ecotones, to assess climatic impacts after six large stratospheric volcanic eruptions at 535, 540, 1257, 1640, 1815, and 1991 CE. Besides the well-documented effects of temperature derived from tree-ring width and latewood density, stable carbon and oxygen isotopes in tree-ring cellulose provide information about moisture and sunshine duration changes after the events.
Virginia Ruiz-Villanueva, Alexandre Badoux, Dieter Rickenmann, Martin Böckli, Salome Schläfli, Nicolas Steeb, Markus Stoffel, and Christian Rickli
Earth Surf. Dynam., 6, 1115–1137, https://doi.org/10.5194/esurf-6-1115-2018, https://doi.org/10.5194/esurf-6-1115-2018, 2018
Martin Beniston, Daniel Farinotti, Markus Stoffel, Liss M. Andreassen, Erika Coppola, Nicolas Eckert, Adriano Fantini, Florie Giacona, Christian Hauck, Matthias Huss, Hendrik Huwald, Michael Lehning, Juan-Ignacio López-Moreno, Jan Magnusson, Christoph Marty, Enrique Morán-Tejéda, Samuel Morin, Mohamed Naaim, Antonello Provenzale, Antoine Rabatel, Delphine Six, Johann Stötter, Ulrich Strasser, Silvia Terzago, and Christian Vincent
The Cryosphere, 12, 759–794, https://doi.org/10.5194/tc-12-759-2018, https://doi.org/10.5194/tc-12-759-2018, 2018
Short summary
Short summary
This paper makes a rather exhaustive overview of current knowledge of past, current, and future aspects of cryospheric issues in continental Europe and makes a number of reflections of areas of uncertainty requiring more attention in both scientific and policy terms. The review paper is completed by a bibliography containing 350 recent references that will certainly be of value to scholars engaged in the fields of glacier, snow, and permafrost research.
M. Jochner, J. M. Turowski, A. Badoux, M. Stoffel, and C. Rickli
Earth Surf. Dynam., 3, 311–320, https://doi.org/10.5194/esurf-3-311-2015, https://doi.org/10.5194/esurf-3-311-2015, 2015
Short summary
Short summary
The export of coarse particulate organic matter (CPOM) from mountain catchments seems to be strongly linked to rising discharge, but the mechanism leading to this is unclear. We show that log jams in a steep headwater stream are an effective barrier for CPOM export. Exceptional discharge events play a dual role: First, they destroy existing jams, releasing stored material. Second, they intensify channel--hillslope coupling, thereby recruiting logs to the channel, around which new jams can form.
H. Frey, H. Machguth, M. Huss, C. Huggel, S. Bajracharya, T. Bolch, A. Kulkarni, A. Linsbauer, N. Salzmann, and M. Stoffel
The Cryosphere, 8, 2313–2333, https://doi.org/10.5194/tc-8-2313-2014, https://doi.org/10.5194/tc-8-2313-2014, 2014
Short summary
Short summary
Existing methods (area–volume relations, a slope-dependent volume estimation method, and two ice-thickness distribution models) are used to estimate the ice reserves stored in Himalayan–Karakoram glaciers. Resulting volumes range from 2955–4737km³. Results from the ice-thickness distribution models agree well with local measurements; volume estimates from area-related relations exceed the estimates from the other approaches. Evidence on the effect of the selected method on results is provided.
Related subject area
Landslides and Debris Flows Hazards
Augmentation of WRF-Hydro to simulate overland-flow- and streamflow-generated debris flow susceptibility in burn scars
What drives landslide risk? Disaggregating risk analyses, an example from the Franz Josef Glacier and Fox Glacier valleys, New Zealand
Geographic information system models with fuzzy logic for susceptibility maps of debris flow using multiple types of parameters: a case study in Pinggu District of Beijing, China
Spatial assessment of probable recharge areas – investigating the hydrogeological controls of an active deep-seated gravitational slope deformation
Rainfall-induced landslide early warning system based on corrected mesoscale numerical models: an application for the southern Andes
Quantification of meteorological conditions for rockfall triggers in Germany
Debris flow velocity and volume estimations based on seismic data
Integration of observed and model-derived groundwater levels in landslide threshold models in Rwanda
Landslides caught on seismic networks and satellite radars
Variable hydrograph inputs for a numerical debris-flow runout model
Assessing the importance of conditioning factor selection in landslide susceptibility for the province of Belluno (region of Veneto, northeastern Italy)
Brief communication: Introducing rainfall thresholds for landslide triggering based on artificial neural networks
Insights from the topographic characteristics of a large global catalog of rainfall-induced landslide event inventories
Generating landslide density heatmaps for rapid detection using open-access satellite radar data in Google Earth Engine
Multiscale effects caused by the fracturing and fragmentation of rock blocks during rock mass movement: implications for rock avalanche propagation
Rapid assessment of abrupt urban mega-gully and landslide events with structure-from-motion photogrammetric techniques validates link to water resources infrastructure failures in an urban periphery
Automated determination of landslide locations after large trigger events: advantages and disadvantages compared to manual mapping
Evaluation of filtering methods for use on high-frequency measurements of landslide displacements
A modeling methodology to study the tributary-junction alluvial fan connectivity during a debris flow event
Physically-Based Modelling of co-seismic Landslide, Debris Flow and Flood Cascade
Establishing the timings of individual rainfall-triggered landslides using Sentinel-1 satellite radar data
Brief communication: The role of geophysical imaging in local landslide early warning systems
Evaluating landslide response in a seismic and rainfall regime: a case study from the SE Carpathians, Romania
Estimating global landslide susceptibility and its uncertainty through ensemble modelling
Main Ethiopian Rift landslides formed in contrasting geological settings and climatic conditions
Investigating causal factors of shallow landslides in grassland regions of Switzerland
Debris flow event on Osorno volcano, Chile, during summer 2017: new interpretations for chain processes in the southern Andes
Integrating empirical models and satellite radar can improve landslide detection for emergency response
Evaluating methods for debris-flow prediction based on rainfall in an Alpine catchment
Optimizing and validating the Gravitational Process Path model for regional debris-flow runout modelling
Geographic-information-system-based topographic reconstruction and geomechanical modelling of the Köfels rockslide
Spatiotemporal clustering of flash floods in a changing climate (China, 1950–2015)
Atmospheric triggering conditions and climatic disposition of landslides in Kyrgyzstan and Tajikistan at the beginning of the 21st century
Analysis of meteorological parameters triggering rainfall-induced landslide: a review of 70 years in Valtellina
Landslide risk management analysis on expansive residential areas – case study of La Marina (Alicante, Spain)
Uncertainty analysis of a rainfall threshold estimate for stony debris flow based on the backward dynamical approach
Controls on the formation and size of potential landslide dams and dammed lakes in the Austrian Alps
Introducing SlideforMap; a probabilistic finite slope approach for modelling shallow landslide probability in forested situations
The role of geomorphology, rainfall and soil moisture in the occurrence of landslides triggered by 2018 Typhoon Mangkhut in the Philippines
Invited perspectives: Landslide populations – can they be predicted?
Glacier detachments and rock-ice avalanches in the Petra Pervogo range, Tajikistan (1973–2019)
Exploring the potential relationship between the occurrence of debris flow and landslides
Cascade effect of rock bridge failure in planar rock slides: numerical test with a distinct element code
DebrisFlow Predictor: an agent-based runout program for shallow landslides
Leveraging time series analysis of radar coherence and normalized difference vegetation index ratios to characterize pre-failure activity of the Mud Creek landslide, California
A model for interpreting the deformation mechanism of reservoir landslides in the Three Gorges Reservoir area, China
Nepalese landslide information system (NELIS): a conceptual framework for a web-based geographical information system for enhanced landslide risk management in Nepal
Modelling landslide hazards under global changes: the case of a Pyrenean valley
Debris flows recorded in the Moscardo catchment (Italian Alps) between 1990 and 2019
The potential of Smartstone probes in landslide experiments: how to read motion data
Chuxuan Li, Alexander L. Handwerger, Jiali Wang, Wei Yu, Xiang Li, Noah J. Finnegan, Yingying Xie, Giuseppe Buscarnera, and Daniel E. Horton
Nat. Hazards Earth Syst. Sci., 22, 2317–2345, https://doi.org/10.5194/nhess-22-2317-2022, https://doi.org/10.5194/nhess-22-2317-2022, 2022
Short summary
Short summary
In January 2021 a storm triggered numerous debris flows in a wildfire burn scar in California. We use a hydrologic model to assess debris flow susceptibility in pre-fire and postfire scenarios. Compared to pre-fire conditions, postfire conditions yield dramatic increases in peak water discharge, substantially increasing debris flow susceptibility. Our work highlights the hydrologic model's utility in investigating and potentially forecasting postfire debris flows at regional scales.
Saskia de Vilder, Chris Massey, Biljana Lukovic, Tony Taig, and Regine Morgenstern
Nat. Hazards Earth Syst. Sci., 22, 2289–2316, https://doi.org/10.5194/nhess-22-2289-2022, https://doi.org/10.5194/nhess-22-2289-2022, 2022
Short summary
Short summary
This study calculates the fatality risk posed by landslides while visiting Franz Josef Glacier and Fox Glacier valleys, New Zealand, for nine different scenarios, where the variables of the risk equation were adjusted to determine the range in risk values and associated uncertainty. The results show that it is important to consider variable inputs that change through time, such as the increasing probability of an earthquake and the impact of climate change on landslide characteristics.
Yiwei Zhang, Jianping Chen, Qing Wang, Chun Tan, Yongchao Li, Xiaohui Sun, and Yang Li
Nat. Hazards Earth Syst. Sci., 22, 2239–2255, https://doi.org/10.5194/nhess-22-2239-2022, https://doi.org/10.5194/nhess-22-2239-2022, 2022
Short summary
Short summary
The disaster prevention and mitigation of debris flow is a very important scientific problem. Our model is based on geographic information system (GIS), combined with grey relational, data-driven and fuzzy logic methods. Through our results, we believe that the streamlining of factors and scientific classification should attract attention from other researchers to optimize a model. We also propose a good perspective to make better use of the watershed feature parameters.
Jan Pfeiffer, Thomas Zieher, Jan Schmieder, Thom Bogaard, Martin Rutzinger, and Christoph Spötl
Nat. Hazards Earth Syst. Sci., 22, 2219–2237, https://doi.org/10.5194/nhess-22-2219-2022, https://doi.org/10.5194/nhess-22-2219-2022, 2022
Short summary
Short summary
The activity of slow-moving deep-seated landslides is commonly governed by pore pressure variations within the shear zone. Groundwater recharge as a consequence of precipitation therefore is a process regulating the activity of landslides. In this context, we present a highly automated geo-statistical approach to spatially assess groundwater recharge controlling the velocity of a deep-seated landslide in Tyrol, Austria.
Ivo Fustos-Toribio, Nataly Manque-Roa, Daniel Vásquez Antipan, Mauricio Hermosilla Sotomayor, and Viviana Letelier Gonzalez
Nat. Hazards Earth Syst. Sci., 22, 2169–2183, https://doi.org/10.5194/nhess-22-2169-2022, https://doi.org/10.5194/nhess-22-2169-2022, 2022
Short summary
Short summary
We develop for the first time a rainfall-induced landslide early warning system for the south of Chile. We used forecast precipitation values at different scales using mesoscale models to evaluate the probability of landslides using statistical models. We showed the feasibility of implementing these models in future, supporting stakeholders and decision-makers.
Katrin M. Nissen, Stefan Rupp, Thomas M. Kreuzer, Björn Guse, Bodo Damm, and Uwe Ulbrich
Nat. Hazards Earth Syst. Sci., 22, 2117–2130, https://doi.org/10.5194/nhess-22-2117-2022, https://doi.org/10.5194/nhess-22-2117-2022, 2022
Short summary
Short summary
A statistical model is introduced which quantifies the influence of individual potential triggering factors and their interactions on rockfall probability in central Europe. The most important factor is daily precipitation, which is most effective if sub-surface moisture levels are high. Freeze–thaw cycles in the preceding days can further increase the rockfall hazard. The model can be applied to climate simulations in order to investigate the effect of climate change on rockfall probability.
Andreas Schimmel, Velio Coviello, and Francesco Comiti
Nat. Hazards Earth Syst. Sci., 22, 1955–1968, https://doi.org/10.5194/nhess-22-1955-2022, https://doi.org/10.5194/nhess-22-1955-2022, 2022
Short summary
Short summary
The estimation of debris flow velocity and volume is a fundamental task for the development of early warning systems and other mitigation measures. This work provides a first approach for estimating the velocity and the total volume of debris flows based on the seismic signal detected with simple, low-cost geophones installed along the debris flow channel. The developed method was applied to seismic data collected at three test sites in the Alps: Gadria and Cancia (IT) and Lattenbach (AT).
Judith Uwihirwe, Markus Hrachowitz, and Thom Bogaard
Nat. Hazards Earth Syst. Sci., 22, 1723–1742, https://doi.org/10.5194/nhess-22-1723-2022, https://doi.org/10.5194/nhess-22-1723-2022, 2022
Short summary
Short summary
This research tested the value of regional groundwater level information to improve landslide predictions with empirical models based on the concept of threshold levels. In contrast to precipitation-based thresholds, the results indicated that relying on threshold models exclusively defined using hydrological variables such as groundwater levels can lead to improved landslide predictions due to their implicit consideration of long-term antecedent conditions until the day of landslide occurrence.
Andrea Manconi, Alessandro C. Mondini, and the AlpArray working group
Nat. Hazards Earth Syst. Sci., 22, 1655–1664, https://doi.org/10.5194/nhess-22-1655-2022, https://doi.org/10.5194/nhess-22-1655-2022, 2022
Short summary
Short summary
Information on when, where, and how landslide events occur is the key to building complete catalogues and performing accurate hazard assessments. Here we show a procedure that allows us to benefit from the increased density of seismic sensors installed on ground for earthquake monitoring and from the unprecedented availability of satellite radar data. We show how the procedure works on a recent sequence of landslides that occurred at Piz Cengalo (Swiss Alps) in 2017.
Andrew Mitchell, Sophia Zubrycky, Scott McDougall, Jordan Aaron, Mylène Jacquemart, Johannes Hübl, Roland Kaitna, and Christoph Graf
Nat. Hazards Earth Syst. Sci., 22, 1627–1654, https://doi.org/10.5194/nhess-22-1627-2022, https://doi.org/10.5194/nhess-22-1627-2022, 2022
Short summary
Short summary
Debris flows are complex, surging movements of sediment and water. Discharge observations from well-studied debris-flow channels were used as inputs for a numerical modelling study of the downstream effects of chaotic inflows. The results show that downstream impacts are sensitive to inflow conditions. Inflow conditions for predictive modelling are highly uncertain, and our method provides a means to estimate the potential variability in future events.
Sansar Raj Meena, Silvia Puliero, Kushanav Bhuyan, Mario Floris, and Filippo Catani
Nat. Hazards Earth Syst. Sci., 22, 1395–1417, https://doi.org/10.5194/nhess-22-1395-2022, https://doi.org/10.5194/nhess-22-1395-2022, 2022
Short summary
Short summary
The study investigated the importance of the conditioning factors in predicting landslide occurrences using the mentioned models. In this paper, we evaluated the importance of the conditioning factors (features) in the overall prediction capabilities of the statistical and machine learning algorithms.
Pierpaolo Distefano, David J. Peres, Pietro Scandura, and Antonino Cancelliere
Nat. Hazards Earth Syst. Sci., 22, 1151–1157, https://doi.org/10.5194/nhess-22-1151-2022, https://doi.org/10.5194/nhess-22-1151-2022, 2022
Short summary
Short summary
In the communication, we introduce the use of artificial neural networks (ANNs) for improving the performance of rainfall thresholds for landslide early warning. Results show how ANNs using rainfall event duration and mean intensity perform significantly better than a classical power law based on the same variables. Adding peak rainfall intensity as input to the ANN improves performance even more. This further demonstrates the potentialities of the proposed machine learning approach.
Robert Emberson, Dalia B. Kirschbaum, Pukar Amatya, Hakan Tanyas, and Odin Marc
Nat. Hazards Earth Syst. Sci., 22, 1129–1149, https://doi.org/10.5194/nhess-22-1129-2022, https://doi.org/10.5194/nhess-22-1129-2022, 2022
Short summary
Short summary
Understanding where landslides occur in mountainous areas is critical to support hazard analysis as well as understand landscape evolution. In this study, we present a large compilation of inventories of landslides triggered by rainfall, including several that are described here for the first time. We analyze the topographic characteristics of the landslides, finding consistent relationships for landslide source and deposition areas, despite differences in the inventories' locations.
Alexander L. Handwerger, Mong-Han Huang, Shannan Y. Jones, Pukar Amatya, Hannah R. Kerner, and Dalia B. Kirschbaum
Nat. Hazards Earth Syst. Sci., 22, 753–773, https://doi.org/10.5194/nhess-22-753-2022, https://doi.org/10.5194/nhess-22-753-2022, 2022
Short summary
Short summary
Rapid detection of landslides is critical for emergency response and disaster mitigation. Here we develop a global landslide detection tool in Google Earth Engine that uses satellite radar data to measure changes in the ground surface properties. We find that we can detect areas with high landslide density within days of a triggering event. Our approach allows the broader hazard community to utilize these state-of-the-art data for improved situational awareness of landslide hazards.
Qiwen Lin, Yufeng Wang, Yu Xie, Qiangong Cheng, and Kaifeng Deng
Nat. Hazards Earth Syst. Sci., 22, 639–657, https://doi.org/10.5194/nhess-22-639-2022, https://doi.org/10.5194/nhess-22-639-2022, 2022
Short summary
Short summary
Fracturing and fragmentation of rock blocks are important and universal phenomena during the movement of rock avalanches (large and long-run-out rockslide-debris avalanches). The movement of a fragmenting rock block is simulated by the discrete element method, aiming to quantify the fracturing and fragmentation effect of the block in propagation. The fracturing and fragmentation processes and their influences on energy transformation in the system are described in detail.
Napoleon Gudino-Elizondo, Matthew W. Brand, Trent W. Biggs, Alejandro Hinojosa-Corona, Álvaro Gómez-Gutiérrez, Eddy Langendoen, Ronald Bingner, Yongping Yuan, and Brett F. Sanders
Nat. Hazards Earth Syst. Sci., 22, 523–538, https://doi.org/10.5194/nhess-22-523-2022, https://doi.org/10.5194/nhess-22-523-2022, 2022
Short summary
Short summary
Mass movement hazards in the form of gullies and landslides pose significant risks in urbanizing areas yet are poorly documented. This paper presents observations and modeling of mass movement events over a 5-year period in Tijuana, Mexico. Three major events were observed, and all were linked to water resources infrastructure failures (WRIFs), namely leaks and breaks in water supply pipes. Modeling shows that WRIF-based erosion was also a non-negligible contributor to the total sediment budget.
David G. Milledge, Dino G. Bellugi, Jack Watt, and Alexander L. Densmore
Nat. Hazards Earth Syst. Sci., 22, 481–508, https://doi.org/10.5194/nhess-22-481-2022, https://doi.org/10.5194/nhess-22-481-2022, 2022
Short summary
Short summary
Earthquakes can trigger thousands of landslides, causing severe and widespread damage. Efforts to understand what controls these landslides rely heavily on costly and time-consuming manual mapping from satellite imagery. We developed a new method that automatically detects landslides triggered by earthquakes using thousands of free satellite images. We found that in the majority of cases, it was as skilful at identifying the locations of landslides as the manual maps that we tested it against.
Sohrab Sharifi, Michael T. Hendry, Renato Macciotta, and Trevor Evans
Nat. Hazards Earth Syst. Sci., 22, 411–430, https://doi.org/10.5194/nhess-22-411-2022, https://doi.org/10.5194/nhess-22-411-2022, 2022
Short summary
Short summary
This study is devoted to comparing the effectiveness of three different filters for noise reduction of instruments. It was observed that the Savitzky–Golay and Gaussian-weighted moving average filters outperform the simple moving average. Application of these two filters in real-time landslide monitoring leads to timely detection of acceleration moment and better preservation of information regarding displacement and velocity.
Alex Garcés, Gerardo Zegers, Albert Cabré, Germán Aguilar, Aldo Tamburrino, and Santiago Montserrat
Nat. Hazards Earth Syst. Sci., 22, 377–393, https://doi.org/10.5194/nhess-22-377-2022, https://doi.org/10.5194/nhess-22-377-2022, 2022
Short summary
Short summary
We propose a workflow to model the response of an alluvial fan located in the Atacama Desert during an extreme storm event. For this alluvial fan, five different deposits were identified and associated with different debris flow surges. Using a commercial software program, our workflow concatenates these surges into one model. This study depicts the significance of the mechanical classification of debris flows to reproduce how an alluvial fan controls the tributary–river junction connectivity.
Bastian van den Bout, Chenxiao Tang, Cees van Westen, and Victor Jetten
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2021-292, https://doi.org/10.5194/nhess-2021-292, 2022
Revised manuscript accepted for NHESS
Short summary
Short summary
Natural hazards such as earthquakes, landslides and flooding do not always occur as stand-alone events. After the 2008 Wenchuan earthquake, a co-seismic landslide blocked a stream in Hongchun. Two years later, a debris flow breached the material, blocked the Min river, resulting in flooding of a small town. We developed a multi-process model that captures the full cascade. Despite input and process uncertainties, probability of flooding was high due to topography and trigger intensities.
Katy Burrows, Odin Marc, and Dominique Remy
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-21, https://doi.org/10.5194/nhess-2022-21, 2022
Revised manuscript accepted for NHESS
Short summary
Short summary
The locations of triggered landslides following a rainfall event can be identified in optical satellite images. However cloud cover associated with the rainfall means that these images cannot be used to identify landslide timing. Timings of landslides triggered during long rainfall events are often unknown. Here we present methods of using Sentinel-1 satellite radar data, acquired every 12 days globally in all weather conditions, to better constrain the timings of rainfall-triggered landslides.
Jim S. Whiteley, Arnaud Watlet, J. Michael Kendall, and Jonathan E. Chambers
Nat. Hazards Earth Syst. Sci., 21, 3863–3871, https://doi.org/10.5194/nhess-21-3863-2021, https://doi.org/10.5194/nhess-21-3863-2021, 2021
Short summary
Short summary
This work summarises the contribution of geophysical imaging methods to establishing and operating local landslide early warning systems, demonstrated through a conceptual framework. We identify developments in geophysical monitoring equipment, the spatiotemporal resolutions of these approaches and methods to translate geophysical to geotechnical information as the primary benefits that geophysics brings to slope-scale early warning.
Vipin Kumar, Léna Cauchie, Anne-Sophie Mreyen, Mihai Micu, and Hans-Balder Havenith
Nat. Hazards Earth Syst. Sci., 21, 3767–3788, https://doi.org/10.5194/nhess-21-3767-2021, https://doi.org/10.5194/nhess-21-3767-2021, 2021
Short summary
Short summary
The SE Carpathians belong to one of the most active seismic regions of Europe. In recent decades, extreme rainfall events have also been common. These natural processes result in frequent landslides, particularly of a debris flow type. Despite such regimes, the region has been little explored to understand the response of the landslides in seismic and rainfall conditions. This study attempts to fill this gap by evaluating landslide responses under seismic and extreme-rainfall regimes.
Anne Felsberg, Jean Poesen, Michel Bechtold, Matthias Vanmaercke, and Gabriëlle J. M. De Lannoy
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2021-360, https://doi.org/10.5194/nhess-2021-360, 2021
Revised manuscript accepted for NHESS
Short summary
Short summary
In this study we assessed global landslide susceptibility at the coarse 36-km spatial resolution of global satellite soil moisture observations, to prepare for a subsequent combination of the two. Specifically, we focus therefore on the susceptibility of hydrologically triggered landslides. We introduce ensemble techniques, common in – for example – meteorology but not yet in the landslide community, to retrieve reliable estimates of the total prediction uncertainty.
Karel Martínek, Kryštof Verner, Tomáš Hroch, Leta A. Megerssa, Veronika Kopačková, David Buriánek, Ameha Muluneh, Radka Kalinová, Miheret Yakob, and Muluken Kassa
Nat. Hazards Earth Syst. Sci., 21, 3465–3487, https://doi.org/10.5194/nhess-21-3465-2021, https://doi.org/10.5194/nhess-21-3465-2021, 2021
Short summary
Short summary
This study combines field geological and geohazard mapping with remote sensing data. Geostatistical analysis evaluated precipitation, land use, vegetation density, rock mass strength, and tectonics. Contrasting tectonic and climatic setting of the Main Ethiopian Rift and uplifted Ethiopian Plateau have major impacts on the distribution of landslides.
Lauren Zweifel, Maxim Samarin, Katrin Meusburger, and Christine Alewell
Nat. Hazards Earth Syst. Sci., 21, 3421–3437, https://doi.org/10.5194/nhess-21-3421-2021, https://doi.org/10.5194/nhess-21-3421-2021, 2021
Short summary
Short summary
Mountainous grassland areas can be severely affected by soil erosion, such as by shallow landslides. With an automated mapping approach we are able to locate shallow-landslide sites on aerial images for 10 different study sites across Swiss mountain regions covering a total of 315 km2. Using a statistical model we identify important explanatory variables for shallow-landslide occurrence for the individual sites as well as across all regions, which highlight slope, aspect and terrain roughness.
Ivo Janos Fustos-Toribio, Bastian Morales-Vargas, Marcelo Somos-Valenzuela, Pablo Moreno-Yaeger, Ramiro Muñoz-Ramirez, Ines Rodriguez Araneda, and Ningsheng Chen
Nat. Hazards Earth Syst. Sci., 21, 3015–3029, https://doi.org/10.5194/nhess-21-3015-2021, https://doi.org/10.5194/nhess-21-3015-2021, 2021
Short summary
Short summary
Links between debris flow and volcanic evolution are an open question in the southern Andes. We modelled the catastrophic debris flow using field data, a geotechnical approach and numerical modelling of the Petrohué event (Chile, 2017). Our results indicated new debris-flow-prone zones. Finally, we propose considering connections between volcanoes and debris flow in the southern Andes.
Katy Burrows, David Milledge, Richard J. Walters, and Dino Bellugi
Nat. Hazards Earth Syst. Sci., 21, 2993–3014, https://doi.org/10.5194/nhess-21-2993-2021, https://doi.org/10.5194/nhess-21-2993-2021, 2021
Short summary
Short summary
When cloud cover obscures optical satellite imagery, there are two options remaining for generating information on earthquake-triggered landslide locations: (1) models which predict landslide locations based on, e.g., slope and ground shaking data and (2) satellite radar data, which penetrates cloud cover and is sensitive to landslides. Here we show that the two approaches can be combined to give a more consistent and more accurate model of landslide locations after an earthquake.
Jacob Hirschberg, Alexandre Badoux, Brian W. McArdell, Elena Leonarduzzi, and Peter Molnar
Nat. Hazards Earth Syst. Sci., 21, 2773–2789, https://doi.org/10.5194/nhess-21-2773-2021, https://doi.org/10.5194/nhess-21-2773-2021, 2021
Short summary
Short summary
Debris-flow prediction is often based on rainfall thresholds, but uncertainty assessments are rare. We established rainfall thresholds using two approaches and find that 25 debris flows are needed for uncertainties to converge in an Alpine basin and that the suitable method differs for regional compared to local thresholds. Finally, we demonstrate the potential of a statistical learning algorithm to improve threshold performance. These findings are helpful for early warning system development.
Jason Goetz, Robin Kohrs, Eric Parra Hormazábal, Manuel Bustos Morales, María Belén Araneda Riquelme, Cristián Henríquez, and Alexander Brenning
Nat. Hazards Earth Syst. Sci., 21, 2543–2562, https://doi.org/10.5194/nhess-21-2543-2021, https://doi.org/10.5194/nhess-21-2543-2021, 2021
Short summary
Short summary
Debris flows are fast-moving landslides that can cause incredible destruction to lives and property. Using the Andes of Santiago as an example, we developed tools to finetune and validate models predicting likely runout paths over large regions. We anticipate that our automated approach that links the open-source R software with SAGA-GIS will make debris-flow runout simulation more readily accessible and thus enable researchers and spatial planners to improve regional-scale hazard assessments.
Christian Zangerl, Annemarie Schneeberger, Georg Steiner, and Martin Mergili
Nat. Hazards Earth Syst. Sci., 21, 2461–2483, https://doi.org/10.5194/nhess-21-2461-2021, https://doi.org/10.5194/nhess-21-2461-2021, 2021
Short summary
Short summary
The Köfels rockslide in the Ötztal Valley (Austria) represents the largest known extremely rapid rockslide in metamorphic rock masses in the Alps and was formed in the early Holocene. Although many hypotheses for the conditioning and triggering factors were discussed in the past, until now no scientifically accepted explanatory model has been found. This study provides new data and numerical modelling results to better understand the cause and triggering factors of this gigantic natural event.
Nan Wang, Luigi Lombardo, Marj Tonini, Weiming Cheng, Liang Guo, and Junnan Xiong
Nat. Hazards Earth Syst. Sci., 21, 2109–2124, https://doi.org/10.5194/nhess-21-2109-2021, https://doi.org/10.5194/nhess-21-2109-2021, 2021
Short summary
Short summary
This study exploits 66 years of flash flood disasters across China.
The conclusions are as follows. The clustering procedure highlights distinct spatial and temporal patterns of flash flood disasters at different scales. There are distinguished seasonal, yearly and even long-term persistent flash flood behaviors of flash flood disasters. Finally, the decreased duration of clusters in the recent period indicates a possible activation induced by short-duration extreme rainfall events.
Xun Wang, Marco Otto, and Dieter Scherer
Nat. Hazards Earth Syst. Sci., 21, 2125–2144, https://doi.org/10.5194/nhess-21-2125-2021, https://doi.org/10.5194/nhess-21-2125-2021, 2021
Short summary
Short summary
We applied a high-resolution, gridded atmospheric data set combined with landslide inventories to investigate the atmospheric triggers, define triggering thresholds, and characterize the climatic disposition of landslides in Kyrgyzstan and Tajikistan. Our results indicate the crucial role of snowmelt in landslide triggering and prediction in Kyrgyzstan and Tajikistan, as well as the added value of climatic disposition derived from atmospheric triggering conditions.
Andrea Abbate, Monica Papini, and Laura Longoni
Nat. Hazards Earth Syst. Sci., 21, 2041–2058, https://doi.org/10.5194/nhess-21-2041-2021, https://doi.org/10.5194/nhess-21-2041-2021, 2021
Short summary
Short summary
In this paper the relation between the intensity of meteorological events and the magnitude of triggered geo-hydrological issues was examined. A back analysis was developed across a region of the central Alps. The meteorological triggers were interpreted using two approaches: the first using local rain gauge data and a new one considering meteorological reanalysis maps. The results obtained were compared and elaborated for defining a magnitude of each geo-hydrological event.
Isidro Cantarino, Miguel Angel Carrion, Jose Sergio Palencia-Jimenez, and Víctor Martínez-Ibáñez
Nat. Hazards Earth Syst. Sci., 21, 1847–1866, https://doi.org/10.5194/nhess-21-1847-2021, https://doi.org/10.5194/nhess-21-1847-2021, 2021
Short summary
Short summary
Risk ratio (RR), developed in this paper, stands out as a robust indicator for finding the relationship between residential construction and its associated landslide risk. It proved especially useful for municipalities on the Mediterranean coast, since it differentiates between those that take on a higher risk and those that do not. Our research establishes valuable criteria to find how suitable a specific local entity's risk management is and explore what causes the incidence of landslide risk.
Marta Martinengo, Daniel Zugliani, and Giorgio Rosatti
Nat. Hazards Earth Syst. Sci., 21, 1769–1784, https://doi.org/10.5194/nhess-21-1769-2021, https://doi.org/10.5194/nhess-21-1769-2021, 2021
Short summary
Short summary
Rainfall thresholds are relations between rainfall intensity and duration on which the forecast of the possible occurrence of a debris flow can be based. To check the robustness of a physically based stony debris flow rainfall threshold, in this work we developed a procedure to estimate the effects of various sources of error on the determination of the threshold parameters. Results show that these effects are limited and therefore show the good robustness of the threshold estimate.
Anne-Laure Argentin, Jörg Robl, Günther Prasicek, Stefan Hergarten, Daniel Hölbling, Lorena Abad, and Zahra Dabiri
Nat. Hazards Earth Syst. Sci., 21, 1615–1637, https://doi.org/10.5194/nhess-21-1615-2021, https://doi.org/10.5194/nhess-21-1615-2021, 2021
Short summary
Short summary
This study relies on topography to simulate the origin and displacement of potentially river-blocking landslides. It highlights a continuous range of simulated landslide dams that go unnoticed in the field due to their small scale. The computation results show that landslide-dammed lake volume can be estimated from upstream drainage area and landslide volume, thus enabling an efficient hazard assessment of possible landslide-dammed lake volume – and flooding magnitude in case of dam failure.
Feiko Bernard van Zadelhoff, Adel Albaba, Denis Cohen, Chris Phillips, Bettina Schaefli, Lucas Karel Agnes Dorren, and Massimiliano Schwarz
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2021-140, https://doi.org/10.5194/nhess-2021-140, 2021
Revised manuscript accepted for NHESS
Short summary
Short summary
Shallow landslides pose a risk to people, property and infrastructure. Assesment of this hazard and the impact of protective measures can reduce losses. We developed a model (SlideforMap) that can assess the shallow landslide risk on a regional scale for specific rainfall events. Trees are an effective and cheap protective measure on a regional scale. Our model can assess their hazard reduction down to the individual tree level.
Clàudia Abancó, Georgina L. Bennett, Adrian J. Matthews, Mark Anthony M. Matera, and Fibor J. Tan
Nat. Hazards Earth Syst. Sci., 21, 1531–1550, https://doi.org/10.5194/nhess-21-1531-2021, https://doi.org/10.5194/nhess-21-1531-2021, 2021
Short summary
Short summary
In 2018 Typhoon Mangkhut triggered thousands of landslides in the Itogon region (Philippines). An inventory of 1101 landslides revealed that landslides mostly occurred in slopes covered by wooded grassland in clayey materials, predominantly facing E-SE. Satellite rainfall and soil moisture data associated with Typhoon Mangkhut and the previous months in 2018 were analyzed. Results showed that landslides occurred during high-intensity rainfall that coincided with the highest soil moisture values.
Fausto Guzzetti
Nat. Hazards Earth Syst. Sci., 21, 1467–1471, https://doi.org/10.5194/nhess-21-1467-2021, https://doi.org/10.5194/nhess-21-1467-2021, 2021
Short summary
Short summary
This is a perspective based on personal experience on whether a large number of landslides caused by a single trigger (e.g. an earthquake, an intense rainfall, a rapid snowmelt event) or by multiple triggers in a period can be predicted, in space and time, considering the consequences of slope failures.
Silvan Leinss, Enrico Bernardini, Mylène Jacquemart, and Mikhail Dokukin
Nat. Hazards Earth Syst. Sci., 21, 1409–1429, https://doi.org/10.5194/nhess-21-1409-2021, https://doi.org/10.5194/nhess-21-1409-2021, 2021
Short summary
Short summary
A cluster of 13 large mass flow events including five detachments of entire valley glaciers was observed in the Petra Pervogo range, Tajikistan, in 1973–2019. The local clustering provides additional understanding of the influence of temperature, seismic activity, and geology. Most events occurred in summer of years with mean annual air temperatures higher than the past 46-year trend. The glaciers rest on weak bedrock and are rather short, making them sensitive to friction loss due to meltwater.
Zhu Liang, Changming Wang, Donghe Ma, and Kaleem Ullah Jan Khan
Nat. Hazards Earth Syst. Sci., 21, 1247–1262, https://doi.org/10.5194/nhess-21-1247-2021, https://doi.org/10.5194/nhess-21-1247-2021, 2021
Short summary
Short summary
In previous studies of landslide susceptibility mapping, one inventory is for one kind of landslide. However, this causes some problems for prevention and management. This study aims to map two kinds of landslides and use the results on the same map to explore the potential relationship. Through superimposition of two zoning maps, this provides a new way to evaluate the disaster chain and provides a valuable reference for land use planners.
Adeline Delonca, Yann Gunzburger, and Thierry Verdel
Nat. Hazards Earth Syst. Sci., 21, 1263–1278, https://doi.org/10.5194/nhess-21-1263-2021, https://doi.org/10.5194/nhess-21-1263-2021, 2021
Short summary
Short summary
Rockfalls are a major sources of danger, particularly along transportation routes. Thus, the assessment of their occurrence is a major challenge for risk management. One interesting factor involved in the occurrence of an event is the failure mechanism of rock bridges along the potential failure plane. This work proposes to study the phenomenology of this failure considering numerical modelling. The influence of rock bridge position in regard to the rockfall failure mode is highlighted.
Richard Guthrie and Andrew Befus
Nat. Hazards Earth Syst. Sci., 21, 1029–1049, https://doi.org/10.5194/nhess-21-1029-2021, https://doi.org/10.5194/nhess-21-1029-2021, 2021
Short summary
Short summary
In order to address a need for a debris flow or debris avalanche model that can be applied regionally with relatively few inputs, we developed and present herein an agent-based landslide-simulation model called DebrisFlow Predictor. DebrisFlow Predictor is a fully predictive, probabilistic debris flow runout model. It produces realistic results and can be applied easily to entire regions. We hope that the model will provide useful insight into hazard and risk assessments where it is applicable.
Mylène Jacquemart and Kristy Tiampo
Nat. Hazards Earth Syst. Sci., 21, 629–642, https://doi.org/10.5194/nhess-21-629-2021, https://doi.org/10.5194/nhess-21-629-2021, 2021
Short summary
Short summary
We used interferometric radar coherence – a data quality indicator typically used to assess the reliability of radar interferometry data – to document the destabilization of the Mud Creek landslide in California, 5 months prior to its catastrophic failure. We calculated a time series of coherence on the slide relative to the surrounding hillslope and suggest that this easy-to-compute metric might be useful for assessing the stability of a hillslope.
Zongxing Zou, Huiming Tang, Robert E. Criss, Xinli Hu, Chengren Xiong, Qiong Wu, and Yi Yuan
Nat. Hazards Earth Syst. Sci., 21, 517–532, https://doi.org/10.5194/nhess-21-517-2021, https://doi.org/10.5194/nhess-21-517-2021, 2021
Short summary
Short summary
The evolutionary trend of deforming landslides and feasible treatments for huge reservoir landslides needs further study. A geomechanical model is presented to elucidate the deformation mechanism of reservoir landslides. The deformation process of Shuping landslide is well interpreted by the geomechanical model. A successful engineering treatment is applied in treating the Shuping landslide, providing references for treating other huge landslides in the Three Gorges Reservoir area.
Sansar Raj Meena, Florian Albrecht, Daniel Hölbling, Omid Ghorbanzadeh, and Thomas Blaschke
Nat. Hazards Earth Syst. Sci., 21, 301–316, https://doi.org/10.5194/nhess-21-301-2021, https://doi.org/10.5194/nhess-21-301-2021, 2021
Short summary
Short summary
Comprehensive and sustainable landslide management, including identification of landslide-susceptible areas, requires a lot of organisations and people to collaborate efficiently. In this study, we propose a concept for a system that provides users with a platform to share the location of landslide events for further collaboration in Nepal. The system can be beneficial for specifying potentially risky regions and consequently, the development of risk mitigation strategies at the local level.
Séverine Bernardie, Rosalie Vandromme, Yannick Thiery, Thomas Houet, Marine Grémont, Florian Masson, Gilles Grandjean, and Isabelle Bouroullec
Nat. Hazards Earth Syst. Sci., 21, 147–169, https://doi.org/10.5194/nhess-21-147-2021, https://doi.org/10.5194/nhess-21-147-2021, 2021
Short summary
Short summary
The present study evaluates the impacts of land use and climate change, based on scenarios, on landslide hazards in a Pyrenean valley from the present to 2100.
The results demonstrate the influence of land cover on slope stability through the presence and type of forest. Climate change may have a significant impact because of the increase of the soil water content. The results indicate that the occurrence of landslide hazards in the future is expected to increase.
Lorenzo Marchi, Federico Cazorzi, Massimo Arattano, Sara Cucchiaro, Marco Cavalli, and Stefano Crema
Nat. Hazards Earth Syst. Sci., 21, 87–97, https://doi.org/10.5194/nhess-21-87-2021, https://doi.org/10.5194/nhess-21-87-2021, 2021
Short summary
Short summary
Debris-flow research requires experimental data that are difficult to collect because of the intrinsic characteristics of these hazardous processes. This paper presents debris-flow data recorded in the Moscardo Torrent (Italian Alps) between 1990 and 2019. In this time interval, 30 debris flows were observed. The paper presents data on triggering rainfall, flow velocity, peak discharge, and volume for the monitored hydrographs.
J. Bastian Dost, Oliver Gronz, Markus C. Casper, and Andreas Krein
Nat. Hazards Earth Syst. Sci., 20, 3501–3519, https://doi.org/10.5194/nhess-20-3501-2020, https://doi.org/10.5194/nhess-20-3501-2020, 2020
Short summary
Short summary
We show the potential to observe the unconfined internal-motion behaviour of single clasts in landslides using a wireless sensor measuring acceleration and rotation. The probe's dimensions are 10 mm × 55 mm. It measures up to 16 g and 2000° s−1 with a 100 Hz sampling rate. From the data, we derive transport mode, velocity, displacement and 3D trajectories of several probes. Results are verified by high-speed image analysis and laser distance measurements.
Cited articles
Abbruzzese, J. M., Sauthier, C., and Labiouse, V.: Considerations on Swiss methodologies for rock fall hazard mapping based on trajectory modelling, Nat. Hazards Earth Syst. Sci., 9, 1095–1109, https://doi.org/10.5194/nhess-9-1095-2009, 2009.
Agliardi, F. and Crosta, G. B.: High resolution three-dimensional numerical modelling of rockfalls, Int. J. Rock Mech. Min., 40, 455–471, https://doi.org/10.1016/S1365-1609(03)00021-2, 2003.
Agliardi, F., Crosta, G. B., and Frattini, P.: Integrating rockfall risk assessment and countermeasure design by 3D modelling techniques, Nat. Hazards Earth Syst. Sci., 9, 1059–1073, https://doi.org/10.5194/nhess-9-1059-2009, 2009.
Alila, Y., Kuraś, P. K., Schnorbus, M., and Hudson, R.: Forests and floods: A new paradigm sheds light on age-old controversies, Water Resour. Res., 45, W08416, https://doi.org/10.1029/2008WR007207, 2009.
Berger, F. and Dorren, L. K.: Principles of the tool Rockfor.net for quantifying the rockfall hazard below a protection forest, Schweizerische Zeitschrift fur Forstwesen, 158, 157–165, https://doi.org/10.3188/szf.2007.0157, 2007.
Bigot, C., Dorren, L., and Berger, F.: Quantifying the protective function of a forest against rockfall for past, present and future scenarios using two modelling approaches, Nat. Hazards, 49, 99–111, https://doi.org/10.1007/s11069-008-9280-0, 2009.
Bitterlich, W.: Die Winkelzählprobe, Allgemeine Forst- und Holzwirtschaftszeitung, 59, 4–5, 1948.
Borter, P., Heinimann, H. R., Bart, R., Egli, T., and Gächter, M.: Risikoanalyse bei gravitativen Naturgefahren: Methode, Umwelt-Materialien, 107/I, Bundesamt für Umwelt, BAFU, Bern, 117 pp., 1999.
Breiman, L., Friedman, J., Stone, C. J., and Olshen, R. A.: Classification and Regression Trees, Taylor & Francis, 1984.
Budetta, P.: Assessment of rockfall risk along roads, Nat. Hazards Earth Syst. Sci., 4, 71–81, https://doi.org/10.5194/nhess-4-71-2004, 2004.
Cordonnier, T., Courbaud, B., Berger, F., and Franc, A.: Permanence of resilience and protection efficiency in mountain Norway spruce forest stands: A simulation study, Forest Ecol. Manag., 256, 347–354, https://doi.org/10.1016/j.foreco.2008.04.028, 2008.
Corominas, J. and Moya, J.: Contribution of dendrochronology to the determination of magnitude–frequency relationships for landslides, Geomorphology, 124, 137–149, https://doi.org/10.1016/j.geomorph.2010.09.001, 2010.
Corominas, J., Copons, R., Moya, J., Vilaplana, J. M., Altimir, J., and Amigó, J.: Quantitative assessment of the residual risk in a rockfall protected area, Landslides, 2, 343–357, https://doi.org/10.1007/s10346-005-0022-z, 2005.
Corominas, J., van Westen, C., Frattini, P., Cascini, L., Malet, J.-P., Fotopoulou, S., Catani, F., Van Den Eeckhaut, M., Mavrouli, O., Agliardi, F., Pitilakis, K., Winter, M. G., Pastor, M., Ferlisi, S., Tofani, V., Hervás, J., and Smith, J. T.: Recommendations for the quantitative analysis of landslide risk, B. Eng. Geol. Environ., 73, 209–263, https://doi.org/10.1007/s10064-013-0538-8, 2013.
Corona, C., Trappmann, D., and Stoffel, M.: Parameterization of rockfall source areas and magnitudes with ecological recorders: When disturbances in trees serve the calibration and validation of simulation runs, Geomorphology, 202, 33–42, https://doi.org/10.1016/j.geomorph.2013.02.001, 2013.
Dancey, C. P. and Reidy, J.: Statistics without maths for psychology, Fifth Edn., Pearson Education, 2011.
Dorren, L.: Rockyfor3D (v5.2) revealed – Transparent description of the complete 3D rockfall model, ecorisQ paper, Geneva, 32, www.ecorisq.org (last access: 20 February 2017), 2015.
Dorren, L. and Berger, F.: Stem breakage of trees and energy dissipation during rockfall impacts, Tree Physiol., 26, 63–71, 2005.
Dorren, L., Maier, B., Putters, U. S., and Seijmonsbergen, A. C.: Combining field and modelling techniques to assess rockfall dynamics on a protection forest hillslope in the European Alps, Geomorphology, 57, 151–167, https://doi.org/10.1016/S0169-555X(03)00100-4, 2004.
Dorren, L. K. A., Berger, F., and Putters, U. S.: Real-size experiments and 3-D simulation of rockfall on forested and non-forested slopes, Nat. Hazards Earth Syst. Sci., 6, 145–153, https://doi.org/10.5194/nhess-6-145-2006, 2006.
Dorren, L., Berger, F., Jonsson, M., Krautblatter, M., Mölk, M., Stoffel, M., and Wehrli, A.: State of the art in rockfall – forest interactions, Schweizerische Zeitschrift für Forstwesen, 158, 128–141, https://doi.org/10.3188/szf.2007.0128, 2007.
Dorren, L., Berger, F., Frehner, M., Huber, M., Kühne, K., Métral, R., Sandri, A., Schwitter, R., Thormann, J.-J., and Wasser, B.: Das neue NaiS-Anforderungsprofil Steinschlag, Schweizerische Zeitschrift für Forstwesen, 166, 16–23, https://doi.org/10.3188/szf.2015.0016, 2015.
Draper, N. R. and Smith, H.: Applied regression analysis, 3th Edn., Wiley series in probability and statistics, John Wiley & Sons, Inc., 1998.
Dupire, S., Bourrier, F., Monnet, J.-M., Bigot, S., Borgniet, L., Berger, F., and Curt, T.: Novel quantitative indicators to characterize the protective effect of mountain forests against rockfall, Ecol. Indic., 67, 98–107, https://doi.org/10.1016/j.ecolind.2016.02.023, 2016.
Dussauge-Peisser, C., Helmstetter, A., Grasso, J.-R., Hantz, D., Desvarreux, P., Jeannin, M., and Giraud, A.: Probabilistic approach to rock fall hazard assessment: potential of historical data analysis, Nat. Hazards Earth Syst. Sci., 2, 15–26, https://doi.org/10.5194/nhess-2-15-2002, 2002.
Fuhr, M., Bourrier, F., and Cordonnier, T.: Protection against rockfall along a maturity gradient in mountain forests, Forest Ecol. Manag., 354, 224–231, https://doi.org/10.1016/j.foreco.2015.06.012, 2015.
Guzzetti, F., Reichenbach, P., and Wieczorek, G. F.: Rockfall hazard and risk assessment in the Yosemite Valley, California, USA, Nat. Hazards Earth Syst. Sci., 3, 491–503, https://doi.org/10.5194/nhess-3-491-2003, 2003.
Hantz, D., Dussauge-Peisser, C., Jeannin, M., and Vengeon, J. M.: Rock fall hazard assessment: From qualitative to quantitative failure probability, Fast Slope Movements, Naples, 263–267, 2003.
Hantz, D., Ventroux, Q., Rossetti, J., and Berger, F..: A new approach of diffuse rockfall hazard, in: Landslides and Engineered Slopes, Experience, Theory and Practice, edited by: Aversa, S., Cascini, L., Picarelli, L., and Scavia, C., CRC Press, 1063–1067, 2016.
Hoffmann, T. and Schrott, L.: Modelling sediment thickness and rockwall retreat in an Alpine valley using 2D-seismic refraction (Reintal, Bavarian Alps), Z. Geomorph. Supp., 127, 153–173, 2002.
Hungr, O., Evans, S. G., and Hazzard, J.: Magnitude and frequency of rock falls and rock slides along the main transportation corridors of southwestern British Columbia, Can. Geotech. J., 36, 224–238, https://doi.org/10.1139/t98-106, 1999.
Jaboyedoff, M., Dudt, J. P., and Labiouse, V.: An attempt to refine rockfall hazard zoning based on the kinetic energy, frequency and fragmentation degree, Nat. Hazards Earth Syst. Sci., 5, 621–632, https://doi.org/10.5194/nhess-5-621-2005, 2005.
Jahn, J.: Entwaldung und Steinschlag, in: International Congress Interpraevent, Conference Proceedings, Interpraevent, Graz, 185–198, 1988.
Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection, IJCAI'95 Proceedings of the 14th international joint conference on Artificial intelligence, Volume 2, 1137–1143, 1995.
Lan, H., Martin, C. D., Zhou, C., and Lim, C. H.: Rockfall hazard analysis using LiDAR and spatial modeling, Geomorphology, 118, 213–223, https://doi.org/10.1016/j.geomorph.2010.01.002, 2010.
Lang, A., Moya, J., Corominas, J., Schrott, L., and Dikau, R.: Classic and new dating methods for assessing the temporal occurrence of mass movements, Geomorphology, 30, 33–52, https://doi.org/10.1016/S0169-555X(99)00043-4, 1999.
Lari, S., Frattini, P., and Crosta, G. B.: A probabilistic approach for landslide hazard analysis, Eng. Geol., 182, 3–14, https://doi.org/10.1016/j.enggeo.2014.07.015, 2014.
Lopez-Saez, J., Corona, C., Eckert, N., Stoffel, M., Bourrier, F., and Berger, F.: Impacts of land-use and land-cover changes on rockfall propagation: Insights from the Grenoble conurbation, Sci. Total Environ., 547, 345–355, https://doi.org/10.1016/j.scitotenv.2015.12.148, 2016.
Lundström, T., Jonsson, M. J., Volkwein, A., and Stoffel, M.: Reactions and energy absorption of trees subject to rockfall: a detailed assessment using a new experimental method, Tree Physiol., 29, 345–359, https://doi.org/10.1093/treephys/tpn030, 2009.
Malamud, B. D., Turcotte, D. L., Guzzetti, F., and Reichenbach, P.: Landslide inventories and their statistical properties, Earth Surf. Proc. Land., 29, 687–711, https://doi.org/10.1002/esp.1064, 2004.
Maringer, J., Ascoli, D., Dorren, L., Bebi, P., and Conedera, M.: Temporal trends in the protective capacity of burnt beech forests (Fagus sylvatica L.) against rockfall, Eur. J. Forest Res., 135, 74–88, https://doi.org/10.1007/s10342-016-0962-y, 2016.
Masuya, H., Amanuma, K., Nishikawa, Y., and Tsuji, T.: Basic rockfall simulation with consideration of vegetation and application to protection measure, Nat. Hazards Earth Syst. Sci., 9, 1835–1843, https://doi.org/10.5194/nhess-9-1835-2009, 2009.
McCarroll, D., Shakesby, R. A., and Matthews, J. A.: Enhanced rockfall activity during the Little Ice Age: further lichenometric evidence from a Norwegian talus, Permafrost Periglac., 12, 157–164, https://doi.org/10.1002/ppp.359, 2001.
McCullagh, P. and Nelder, J. A.: Generalized Linear Models, 2th Edn., Chapman & Hall/CRC, London, 1989.
Messmer, C.: Grundflächen im Steinschlagschutzwald: Ein Vergleich mit LFI 3 Daten, MS, Institute for Terrestrial Ecosystems, Swiss Federal Institute of Technology, Zürich, 129 pp., 2014.
Moore, J. R., Sanders, J. W., Dietrich, W. E., and Glaser, S. D.: Influence of rock mass strength on the erosion rate of alpine cliffs, Earth Surf. Proc. Land., 34, 1339–1352, https://doi.org/10.1002/esp.1821, 2009.
Morel, P., Trappmann, D., Corona, C., and Stoffel, M.: Defining sample size and sampling strategy for dendrogeomorphic rockfall reconstructions, Geomorphology, 236, 79–89, https://doi.org/10.1016/j.geomorph.2015.02.017, 2015.
Moya, J., Corominas, J., Pérez Arcas, J., and Baeza, C.: Tree-ring based assessment of rockfall frequency on talus slopes at Solà d'Andorra, Eastern Pyrenees, Geomorphology, 118, 393–408, https://doi.org/10.1016/j.geomorph.2010.02.007, 2010.
Peila, D. and Guardini, C.: Use of the event tree to assess the risk reduction obtained from rockfall protection devices, Nat. Hazards Earth Syst. Sci., 8, 1441–1450, https://doi.org/10.5194/nhess-8-1441-2008, 2008.
Perret, S., Dolf, F., and Kienholz, H.: Rockfalls into forests: Analysis and simulation of rockfall trajectories – considerations with respect to mountainous forests in Switzerland, Landslides, 1, 123–130, https://doi.org/10.1007/s10346-004-0014-4, 2004.
Perret, S., Stoffel, M., and Kienholz, H.: Spatial and temporal rockfall activity in a forest stand in the Swiss Prealps – A dendrogeomorphological case study, Geomorphology, 74, 219–231, https://doi.org/10.1016/j.geomorph.2005.08.009, 2006.
Pfeiffer, T. and Bowen, T.: Computer simulation of rockfalls, Bulletin of the Association of Engineering Geologists, 26, 135–146, 1989.
Radtke, A., Toe, D., Berger, F., Zerbe, S., and Bourrier, F.: Managing coppice forests for rockfall protection – Lessons from modeling, Ann. For. Sci., 71, 485–494, https://doi.org/10.1007/s13595-013-0339-z, 2014.
Rammer, W., Brauner, M., Ruprecht, H., and Lexer, M. J.: Evaluating the effects of forest management on rockfall protection and timber production at slope scale, Scand. J. Forest Res., 30, 719–731, https://doi.org/10.1080/02827581.2015.1046911, 2015.
Renaud, F. G., Sudmeier-Rieux, K., and Estrella, M. (Eds.): The role of ecosystems in disaster risk reduction, United Nations University, Tokyo, 486 pp., 2013.
Ripley, B., Therneau, T., and Atkinson, B.: Package “rpart”, Ripley, Brian, 2015.
Romana, M., Seron, J. B., and Montalar, E. (Eds.): SMR Geomechanics classification: Application, experience and validation, South African Institute of Mining and Metallurgy, 4 pp., 2003.
Ruiz-Carulla, R., Corominas, J., and Mavrouli, O.: A methodology to obtain the block size distribution of fragmental rockfall deposits, Landslides, 12, 815–825, https://doi.org/10.1007/s10346-015-0600-7, 2015.
Sass, O. and Wollny, K.: Investigations regarding Alpine talus slopes using ground-penetrating radar (GPR) in the Bavarian Alps, Germany, Earth Surf. Proc. Land., 26, 1071–1086, https://doi.org/10.1002/esp.254, 2001.
Sättele, M., Bründl, M., and Straub, D.: Quantifying the effectiveness of early warning systems for natural hazards, Nat. Hazards Earth Syst. Sci., 16, 149–166, https://doi.org/10.5194/nhess-16-149-2016, 2016.
Stahel, W.: Lineare Regression – Unterlagen zum Teil 1 des Kurses in Angewandter Regression: Seminar für Statistik, ETH Zürich, Zürich, 111 pp., 2013.
Stoffel, M. and Corona, C.: Dendroecological dating of geomorphic disturbance in trees, Tree-Ring Res., 70, 3–20, https://doi.org/10.3959/1536-1098-70.1.3, 2014.
Stoffel, M., Schneuwly, D., Bollschweiler, M., Lièvre, I., Delaloye, R., Myint, M., and Monbaron, M.: Analyzing rockfall activity (1600–2002) in a protection forest—a case study using dendrogeomorphology, Geomorphology, 68, 224–241, https://doi.org/10.1016/j.geomorph.2004.11.017, 2005.
Straub, D.: Natural hazards risk assessment using Bayesian networks, in: Proceedings ICOSSAR'05, edited by: Augusti, G., Schueller, G. I., and Ciampoli, M., 9th International Conference on Structural Safety and Reliability, Rome, 19–23 June, Millpress, Rotterdam, 2509–2516, 2005.
Straub, D. and Schubert, M.: Modeling and managing uncertainties in rock-fall hazards, Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 2, 1–15, https://doi.org/10.1080/17499510701835696, 2008.
Trappmann, D. and Stoffel, M.: Counting scars on tree stems to assess rockfall hazards: A low effort approach, but how reliable?, Geomorphology, 180–181, 180–186, https://doi.org/10.1016/j.geomorph.2012.10.009, 2013.
Trappmann, D. and Stoffel, M.: Visual dating of rockfall scars in Larix decidua trees, Geomorphology, 245, 62–72, https://doi.org/10.1016/j.geomorph.2015.04.030, 2015.
Trappmann, D., Stoffel, M., and Corona, C.: Achieving a more realistic assessment of rockfall hazards by coupling three-dimensional process models and field-based tree-ring data, Earth Surf. Proc. Land., 39, 1866–1875, https://doi.org/10.1002/esp.3580, 2014.
Volkwein, A., Schellenberg, K., Labiouse, V., Agliardi, F., Berger, F., Bourrier, F., Dorren, L. K. A., Gerber, W., and Jaboyedoff, M.: Rockfall characterisation and structural protection – a review, Nat. Hazards Earth Syst. Sci., 11, 2617–2651, https://doi.org/10.5194/nhess-11-2617-2011, 2011.
Vorpahl, P., Elsenbeer, H., Märker, M., and Schröder, B.: How can statistical models help to determine driving factors of landslides?, Ecol. Model., 239, 27–39, https://doi.org/10.1016/j.ecolmodel.2011.12.007, 2012.
Wasser, B. and Perren, B.: Wirkung von Schutzwald gegen gravitative Naturgefahren – Protect-Bio, Schweizerische Zeitschrift für Forstwesen, 165, 275–283, https://doi.org/10.3188/szf.2014.0275, 2014.
Wehrli, A., Weisberg, P. J., Schönenberger, W., Brang, P., and Bugmann, H.: Improving the establishment submodel of a forest patch model to assess the long-term protective effect of mountain forests, Eur. J. Forest Res., 126, 131–145, https://doi.org/10.1007/s10342-006-0142-6, 2006.
Whittow, J.: Dictionary of Physical Geography, Penguin, London, 1984.
Short summary
The goal of this study was to quantify the effect of forests on the occurrence frequency and intensity of rockfalls. This was done based on 3-D rockfall simulations for different forest and non-forest scenarios on a virtual slope. The rockfall frequency and intensity below forested slopes is significantly reduced. Statistical models provide information on how specific forest and terrain parameters influence this reduction and they allow prediction and quantification of the forest effect.
The goal of this study was to quantify the effect of forests on the occurrence frequency and...
Altmetrics
Final-revised paper
Preprint