Articles | Volume 24, issue 3
https://doi.org/10.5194/nhess-24-757-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-24-757-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Evidence of Middle Holocene landslide-generated tsunamis recorded in lake sediments from Saqqaq, West Greenland
Department of Glaciology and Climate, Geological Survey of Denmark and Greenland, Copenhagen, Denmark
Kristian Svennevig
Department of Glaciology and Climate, Geological Survey of Denmark and Greenland, Copenhagen, Denmark
Anne S. Søndergaard
Laboratory of Ion Beam Physics, ETH Zürich, Zurich, Switzerland
Gregor Luetzenburg
Department of Glaciology and Climate, Geological Survey of Denmark and Greenland, Copenhagen, Denmark
Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
Mimmi Oksman
Department of Glaciology and Climate, Geological Survey of Denmark and Greenland, Copenhagen, Denmark
Nicolaj K. Larsen
Globe Institute, University of Copenhagen, Copenhagen, Denmark
Related authors
Gregor Luetzenburg, Niels J. Korsgaard, Anna K. Deichmann, Tobias Socher, Karin Gleie, Thomas Scharffenberger, Rasmus P. Meyer, Dominik Fahrner, Eva B. Nielsen, Penelope How, Anders A. Bjørk, Kristian K. Kjeldsen, Andreas P. Ahlstrøm, and Robert S. Fausto
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-415, https://doi.org/10.5194/essd-2025-415, 2025
Preprint under review for ESSD
Short summary
Short summary
We mapped the edge of the Greenland Ice Sheet using recent satellite images to create a detailed outline of its extent in 2022. This helps track how the ice sheet is changing as the climate warms. By carefully combining satellite data and checking results by hand, we created one of the most accurate maps of the ice sheet to date. This map supports research on ice loss and improves predictions of future changes in Greenland’s ice and its effect on the planet.
Sophie Goliber, Taryn Black, Ginny Catania, James M. Lea, Helene Olsen, Daniel Cheng, Suzanne Bevan, Anders Bjørk, Charlie Bunce, Stephen Brough, J. Rachel Carr, Tom Cowton, Alex Gardner, Dominik Fahrner, Emily Hill, Ian Joughin, Niels J. Korsgaard, Adrian Luckman, Twila Moon, Tavi Murray, Andrew Sole, Michael Wood, and Enze Zhang
The Cryosphere, 16, 3215–3233, https://doi.org/10.5194/tc-16-3215-2022, https://doi.org/10.5194/tc-16-3215-2022, 2022
Short summary
Short summary
Terminus traces have been used to understand how Greenland's glaciers have changed over time; however, manual digitization is time-intensive, and a lack of coordination leads to duplication of efforts. We have compiled a dataset of over 39 000 terminus traces for 278 glaciers for scientific and machine learning applications. We also provide an overview of an updated version of the Google Earth Engine Digitization Tool (GEEDiT), which has been developed specifically for the Greenland Ice Sheet.
Robert S. Fausto, Dirk van As, Kenneth D. Mankoff, Baptiste Vandecrux, Michele Citterio, Andreas P. Ahlstrøm, Signe B. Andersen, William Colgan, Nanna B. Karlsson, Kristian K. Kjeldsen, Niels J. Korsgaard, Signe H. Larsen, Søren Nielsen, Allan Ø. Pedersen, Christopher L. Shields, Anne M. Solgaard, and Jason E. Box
Earth Syst. Sci. Data, 13, 3819–3845, https://doi.org/10.5194/essd-13-3819-2021, https://doi.org/10.5194/essd-13-3819-2021, 2021
Short summary
Short summary
The Programme for Monitoring of the Greenland Ice Sheet (PROMICE) has been measuring climate and ice sheet properties since 2007. Here, we present our data product from weather and ice sheet measurements from a network of automatic weather stations mainly located in the melt area of the ice sheet. Currently the PROMICE automatic weather station network includes 25 instrumented sites in Greenland.
Anne Solgaard, Anders Kusk, John Peter Merryman Boncori, Jørgen Dall, Kenneth D. Mankoff, Andreas P. Ahlstrøm, Signe B. Andersen, Michele Citterio, Nanna B. Karlsson, Kristian K. Kjeldsen, Niels J. Korsgaard, Signe H. Larsen, and Robert S. Fausto
Earth Syst. Sci. Data, 13, 3491–3512, https://doi.org/10.5194/essd-13-3491-2021, https://doi.org/10.5194/essd-13-3491-2021, 2021
Short summary
Short summary
The PROMICE Ice Velocity product is a time series of Greenland Ice Sheet ice velocity mosaics spanning September 2016 to present. It is derived from Sentinel-1 SAR data and has a spatial resolution of 500 m. Each mosaic spans 24 d (two Sentinel-1 cycles), and a new one is posted every 12 d (every Sentinel-1A cycle). The spatial comprehensiveness and temporal consistency make the product ideal for monitoring and studying ice-sheet-wide ice discharge and dynamics of glaciers.
Gregor Luetzenburg, Niels J. Korsgaard, Anna K. Deichmann, Tobias Socher, Karin Gleie, Thomas Scharffenberger, Rasmus P. Meyer, Dominik Fahrner, Eva B. Nielsen, Penelope How, Anders A. Bjørk, Kristian K. Kjeldsen, Andreas P. Ahlstrøm, and Robert S. Fausto
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-415, https://doi.org/10.5194/essd-2025-415, 2025
Preprint under review for ESSD
Short summary
Short summary
We mapped the edge of the Greenland Ice Sheet using recent satellite images to create a detailed outline of its extent in 2022. This helps track how the ice sheet is changing as the climate warms. By carefully combining satellite data and checking results by hand, we created one of the most accurate maps of the ice sheet to date. This map supports research on ice loss and improves predictions of future changes in Greenland’s ice and its effect on the planet.
Anna Bang Kvorning, Marie-Alexandrine Sicre, Gregor Luetzenburg, Sabine Schmidt, Thorbjørn Joest Andersen, Vincent Klein, Eleanor Georgiadis, Audrey Limoges, Jacques Giraudeau, Anders Anker Bjørk, Nicolaj Krog Larsen, and Sofia Ribeiro
EGUsphere, https://doi.org/10.5194/egusphere-2025-2641, https://doi.org/10.5194/egusphere-2025-2641, 2025
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
We compare two marine sediment cores collected from contrasting locations in Kane Basin, northwest Greenland. The two sites differ in terms of sedimentation rates, primary production, and organic matter composition and source. Despite these spatial differences, both records reveal a similar long-term trend, a shift from cold, heavy sea ice influenced conditions between ca. 1750–1900 CE, towards more open, fresher, and biologically productive waters beginning around 1950 CE.
Shfaqat A. Khan, Helene Seroussi, Mathieu Morlighem, William Colgan, Veit Helm, Gong Cheng, Danjal Berg, Valentina R. Barletta, Nicolaj K. Larsen, William Kochtitzky, Michiel van den Broeke, Kurt H. Kjær, Andy Aschwanden, Brice Noël, Jason E. Box, Joseph A. MacGregor, Robert S. Fausto, Kenneth D. Mankoff, Ian M. Howat, Kuba Oniszk, Dominik Fahrner, Anja Løkkegaard, Eigil Y. H. Lippert, Alicia Bråtner, and Javed Hassan
Earth Syst. Sci. Data, 17, 3047–3071, https://doi.org/10.5194/essd-17-3047-2025, https://doi.org/10.5194/essd-17-3047-2025, 2025
Short summary
Short summary
The surface elevation of the Greenland Ice Sheet is changing due to surface mass balance processes and ice dynamics, each exhibiting distinct spatiotemporal patterns. Here, we employ satellite and airborne altimetry data with fine spatial (1 km) and temporal (monthly) resolutions to document this spatiotemporal evolution from 2003 to 2023. This dataset of fine-resolution altimetry data in both space and time will support studies of ice mass loss and be useful for GIS ice sheet modeling.
Kristian Svennevig, Julian Koch, Marie Keiding, and Gregor Luetzenburg
Nat. Hazards Earth Syst. Sci., 24, 1897–1911, https://doi.org/10.5194/nhess-24-1897-2024, https://doi.org/10.5194/nhess-24-1897-2024, 2024
Short summary
Short summary
In our study, we analysed publicly available data in order to investigate the impact of climate change on landslides in Denmark. Our research indicates that the rising groundwater table due to climate change will result in an increase in landslide activity. Previous incidents of extremely wet winters have caused damage to infrastructure and buildings due to landslides. This study is the first of its kind to exclusively rely on public data and examine landslides in Denmark.
Sophie Goliber, Taryn Black, Ginny Catania, James M. Lea, Helene Olsen, Daniel Cheng, Suzanne Bevan, Anders Bjørk, Charlie Bunce, Stephen Brough, J. Rachel Carr, Tom Cowton, Alex Gardner, Dominik Fahrner, Emily Hill, Ian Joughin, Niels J. Korsgaard, Adrian Luckman, Twila Moon, Tavi Murray, Andrew Sole, Michael Wood, and Enze Zhang
The Cryosphere, 16, 3215–3233, https://doi.org/10.5194/tc-16-3215-2022, https://doi.org/10.5194/tc-16-3215-2022, 2022
Short summary
Short summary
Terminus traces have been used to understand how Greenland's glaciers have changed over time; however, manual digitization is time-intensive, and a lack of coordination leads to duplication of efforts. We have compiled a dataset of over 39 000 terminus traces for 278 glaciers for scientific and machine learning applications. We also provide an overview of an updated version of the Google Earth Engine Digitization Tool (GEEDiT), which has been developed specifically for the Greenland Ice Sheet.
Gregor Luetzenburg, Kristian Svennevig, Anders A. Bjørk, Marie Keiding, and Aart Kroon
Earth Syst. Sci. Data, 14, 3157–3165, https://doi.org/10.5194/essd-14-3157-2022, https://doi.org/10.5194/essd-14-3157-2022, 2022
Short summary
Short summary
We produced the first landslide inventory for Denmark. Over 3200 landslides were mapped using a high-resolution elevation model and orthophotos. We implemented an independent validation into our mapping and found an overall level of completeness of 87 %. The national inventory represents a range of landslide sizes covering all regions that were covered by glacial ice during the last glacial period. This inventory will be used for investigating landslide causes and for natural hazard mitigation.
Mimmi Oksman, Anna Bang Kvorning, Signe Hillerup Larsen, Kristian Kjellerup Kjeldsen, Kenneth David Mankoff, William Colgan, Thorbjørn Joest Andersen, Niels Nørgaard-Pedersen, Marit-Solveig Seidenkrantz, Naja Mikkelsen, and Sofia Ribeiro
The Cryosphere, 16, 2471–2491, https://doi.org/10.5194/tc-16-2471-2022, https://doi.org/10.5194/tc-16-2471-2022, 2022
Short summary
Short summary
One of the questions facing the cryosphere community today is how increasing runoff from the Greenland Ice Sheet impacts marine ecosystems. To address this, long-term data are essential. Here, we present multi-site records of fjord productivity for SW Greenland back to the 19th century. We show a link between historical freshwater runoff and productivity, which is strongest in the inner fjord – influenced by marine-terminating glaciers – where productivity has increased since the late 1990s.
Robert S. Fausto, Dirk van As, Kenneth D. Mankoff, Baptiste Vandecrux, Michele Citterio, Andreas P. Ahlstrøm, Signe B. Andersen, William Colgan, Nanna B. Karlsson, Kristian K. Kjeldsen, Niels J. Korsgaard, Signe H. Larsen, Søren Nielsen, Allan Ø. Pedersen, Christopher L. Shields, Anne M. Solgaard, and Jason E. Box
Earth Syst. Sci. Data, 13, 3819–3845, https://doi.org/10.5194/essd-13-3819-2021, https://doi.org/10.5194/essd-13-3819-2021, 2021
Short summary
Short summary
The Programme for Monitoring of the Greenland Ice Sheet (PROMICE) has been measuring climate and ice sheet properties since 2007. Here, we present our data product from weather and ice sheet measurements from a network of automatic weather stations mainly located in the melt area of the ice sheet. Currently the PROMICE automatic weather station network includes 25 instrumented sites in Greenland.
Anne Solgaard, Anders Kusk, John Peter Merryman Boncori, Jørgen Dall, Kenneth D. Mankoff, Andreas P. Ahlstrøm, Signe B. Andersen, Michele Citterio, Nanna B. Karlsson, Kristian K. Kjeldsen, Niels J. Korsgaard, Signe H. Larsen, and Robert S. Fausto
Earth Syst. Sci. Data, 13, 3491–3512, https://doi.org/10.5194/essd-13-3491-2021, https://doi.org/10.5194/essd-13-3491-2021, 2021
Short summary
Short summary
The PROMICE Ice Velocity product is a time series of Greenland Ice Sheet ice velocity mosaics spanning September 2016 to present. It is derived from Sentinel-1 SAR data and has a spatial resolution of 500 m. Each mosaic spans 24 d (two Sentinel-1 cycles), and a new one is posted every 12 d (every Sentinel-1A cycle). The spatial comprehensiveness and temporal consistency make the product ideal for monitoring and studying ice-sheet-wide ice discharge and dynamics of glaciers.
Svend Funder, Anita H. L. Sørensen, Nicolaj K. Larsen, Anders A. Bjørk, Jason P. Briner, Jesper Olsen, Anders Schomacker, Laura B. Levy, and Kurt H. Kjær
Clim. Past, 17, 587–601, https://doi.org/10.5194/cp-17-587-2021, https://doi.org/10.5194/cp-17-587-2021, 2021
Short summary
Short summary
Cosmogenic 10Be exposure dates from outlying islets along 300 km of the SW Greenland coast indicate that, although affected by inherited 10Be, the ice margin here was retreating during the Younger Dryas. These results seem to be corroborated by recent studies elsewhere in Greenland. The apparent mismatch between temperatures and ice margin behaviour may be explained by the advection of warm water to the ice margin on the shelf and by increased seasonality, both caused by a weakened AMOC.
Kristian Svennevig, Trine Dahl-Jensen, Marie Keiding, John Peter Merryman Boncori, Tine B. Larsen, Sara Salehi, Anne Munck Solgaard, and Peter H. Voss
Earth Surf. Dynam., 8, 1021–1038, https://doi.org/10.5194/esurf-8-1021-2020, https://doi.org/10.5194/esurf-8-1021-2020, 2020
Short summary
Short summary
The 17 June 2017 Karrat landslide in Greenland caused a tsunami that killed four people. We apply a multidisciplinary workflow to reconstruct a timeline of events and find that three historic landslides occurred in 2009, 2016, and 2017. We also find evidence of much older periods of landslide activity. Three newly discovered active slopes might pose a future hazard. We speculate that the trigger for the recent events is melting permafrost due to a warming climate.
Anne Sofie Søndergaard, Nicolaj Krog Larsen, Olivia Steinemann, Jesper Olsen, Svend Funder, David Lundbek Egholm, and Kurt Henrik Kjær
Clim. Past, 16, 1999–2015, https://doi.org/10.5194/cp-16-1999-2020, https://doi.org/10.5194/cp-16-1999-2020, 2020
Short summary
Short summary
We present new results that show how the north Greenland Ice Sheet responded to climate changes over the last 11 700 years. We find that the ice sheet was very sensitive to past climate changes. Combining our findings with recently published studies reveals distinct differences in sensitivity to past climate changes between northwest and north Greenland. This highlights the sensitivity to past and possible future climate changes of two of the most vulnerable areas of the Greenland Ice Sheet.
Cited articles
Battarbee, R. W., Jones, V. J., Flower, R. J., Cameron, N. G., Bennion, H., Carvalho, L., and Juggins, S.: Diatoms, in: Tracking Environmental Change Using Lake Sediments Volume 3, Terrestial, Algal, and Siliceous Indicators, edited by: Smol, J. P., Birks, H. J. B., and Last, W. M., Kluwer Academic Publishers, Dordrecht, the Netherlands, 155–202, https://doi.org/10.1007/0-306-47668-1, 2001.
Blikra, L. H., Longva, O., Braathen, A., Dehls, J. F., Stalsberg, K., and Anda, E.: Rock slope failures in Norwegian fjord areas: Examples, spatial distribution and temporal pattern, in: Landslides from Massive Rock Slope Failure, edited by: Evans, S. G., Mugnozza, G. S., Strom, A., and Hermanns, R. L., NATO Science Series, vol 49. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4037-5_26, 2006.
Bondevik, S., Svendsen, J. I., and Mangerud, J.: Tsunami sedimentary facies deposited by the Storegga tsunami in shallow marine basins and coastal lakes, western Norway, Sedimentology, 44, 1115–1131, https://doi.org/10.1046/j.1365-3091.1997.d01-63.x, 1997a.
Bondevik, S., Svendsen, J. I., Johnsen, G., Mangerud, J., and Kaland, P. E.: The Storegga tsunami along the Norwegian coast, its age and runup, Boreas, 26, 29–53, https://doi.org/10.1111/j.1502-3885.1997.tb00649.x, 1997b.
Bronk Ramsey, C.: Bayesian analysis of radiocarbon dates, Radiocarbon, 51, 337–360, https://doi.org/10.1017/S0033822200033865, 2009.
Chagué-Goff, C., Szczuciński, W., and Shinozaki, T.: Applications of geochemistry in tsunami research: A review, Earth-Sci. Rev., 165, 203–244, https://doi.org/10.1016/j.earscirev.2016.12.003, 2017.
Coeurdevey, L. and Soubirane, J.: SPOT 6/7 Imagery – User Guide, Technical Reference, Report No. SI/DC/13034-v1.0, Airbus Defence and Space Intelligence, France, 1–62, https://earth.esa.int/eogateway/documents/20142/37627/SPOT-6-7-imagery-user-guide.pdf (last access: 26 April 2024), 2013.
Cremer, H.: The diatom flora of the Laptev Sea (Arctic Ocean), Bibliotheca Diatomologica Bd. 40, J. Cramer, Berlin & Stuttgart, ISBN 978-3-443-57031-6, 1998.
Dahl-Jensen, T., Larsen L. M., Pedersen, S. A. S., Pedersen, J., Jepsen, H. F., Pedersen, G., Nielsen, T., Pedersen, A. K., von Platen-Hallermund, F., and Weng, W.: Landslide and Tsunami 21 November 2000 in Paatuut, West Greenland, Nat. Hazards, 31, 277–287, https://doi.org/10.1023/B:NHAZ.0000020264.70048.95, 2004.
Dam, G., Krarup Pedersen, G., Sønderholm, M., Midtgaard, H. H., Melchior Larsen, L., Nøhr-Hansen, H., and Pedersen, A. K.: Lithostratigraphy of the Cretaceous–Paleocene Nuussuaq Group, Nuussuaq Basin, West Greenland, GEUS Bulletin, 19, 1–171, https://doi.org/10.34194/geusb.v19.4886, 2009.
Franco, A., Moernaut, J., Schneider-Muntau, B., Strasser, M., and Gems, B.: The 1958 Lituya Bay tsunami – pre-event bathymetry reconstruction and 3D numerical modelling utilising the computational fluid dynamics software Flow-3D, Nat. Hazards Earth Syst. Sci., 20, 2255–2279, https://doi.org/10.5194/nhess-20-2255-2020, 2020.
Garde, A. and Steenfelt, A.: Precambrian geology between Qarajaq Isfjord and Jakobshavn Isfjord, West Greenland , Grønlands Geologiske Undersøgelse, 1994.
GRASS Development Team: Geographic Resources Analysis Support System (GRASS) Software, Version 8.0. Open Source Geospatial Foundation, https://grass.osgeo.org (last access: 26 April 2024), 2022.
Heaton, T. J., Kohler, P., Butzin, M., Bard, E., Reimer, R. W., Austin, W. E. N., Bronk Ramsey, C., Grootes, P. M., Hughen, K. A., Kromer, B., Reimer, P. J., Adkins, J., Burke, A., Cook, M. S., Olsen, J., and Skinner, L. C.: Marine20 – the marine radiocarbon age calibration curve (0–55,000 cal Bp), Radiocarbon, 62, 779–820, https://doi.org/10.1017/RDC.2020.68, 2020.
Hermanns, R. L., L'heureux, J. S., and Blikra, L. H.: Landslide triggered tsunami, displacement wave, Encyclopedia of Earth Sciences Series, 611–615, https://doi.org/10.1007/978-1-4020-4399-4_95, 2013.
Hermanns, R. L., Penna, I. M., Oppikofer, T., Noël, F., and Velardi, G.: Rock Avalanche, edited by: Shroder, J. F., Treatise on Geomorphology, Elsevier, https://doi.org/10.1016/B978-0-12-818234-5.00183-8, 2021.
Higman, B., Shugar, D. H., Stark, C. P., Ekström, G., Koppes, M. N., Lynett, P., Dufresne, A., Haeussler, P. J., Geertsema, M., Gulick, S., Mattox, A., Venditti, J. G., Walton, M. A. L., McCall, N., Mckittrick, E., MacInnes, B., Bilderback, E. L., Tang H., Willis, M. J., Richmond, B., Reece, R. S., Larsen, C., Olson, B., Capra, J., Ayca, A., Bloom, C., Williams, H., Bonno, D., Weiss, R., Keen, A., Skanavis, V., and Loso, M.: The 2015 landslide and tsunami in Taan Fiord, Alaska, Sci. Rep., 8, 1–13, https://doi.org/10.1038/s41598-018-30475-w, 2018.
Hungr, O., Leroueil, S., and Picarelli, L.: The Varnes classification of landslide types, an update, Landslides 11, 167–194, https://doi.org/10.1007/s10346-013-0436-y, 2014.
Korsgaard, N. J.:, Data from sediment lake cores from Saqqaq, West Greenland, V1, GEUS Dataverse [data set], https://doi.org/10.22008/FK2/J1FUMQ, 2024.
Long, A. J., Roberts, D. H., and Wright, M. R.: Isolation basin stratigraphy and Holocene relative sea-level change on Arveprinsen Ejland, Disko Bugt, West Greenland, J. Quaternary Sci., 14, 323–345, https://doi.org/10.1002/(SICI)1099-1417(199907)14:4<323::AID-JQS442>3.0.CO;2-0, 1999.
Long, A. J., Roberts, D. H., Simpson, M. J. R., Dawson, S., Milne, G. A., and Huybrechts, P.: Late Weichselian relative sea-level changes and ice sheet history in southeast Greenland, Earth Planet. Sc. Lett., 8, 8–18, https://doi.org/10.1016/j.epsl.2008.03.042, 2008.
Long, A. J., Szczuciński, W., and Lawrence. T.: Sedimentary evidence for a mid-Holocene iceberg-generated tsunami in a coastal lake, west Greenland, Arktos, 1, 6, https://doi.org/10.1007/s41063-015-0007-7, 2015.
MacAyeal, D. R., Abbot, D. S., and Sergienko, O. V.: Iceberg-capsize tsunamigenesis, Ann. Glaciol., 52, 51–56, https://doi.org/10.3189/172756411797252103, 2011.
Marcussen, C., Chalmers, J. A., Andersen, H. L., Rasmussen, R. and Dahl-Jensen, T.: Acquisition of high-resolution multichannel seismic data in the offshore part of the Nuussuaq Basin, central West Greenland, Geology of Greenland Survey Bulletin, 189, 34–40, https://doi.org/10.34194/ggub.v189.5195, 2001.
Marty, J. and Myrbo, A.: Radiocarbon dating suitability of aquatic plant macrofossils, J. Paleolimnol., 52, 435–443, https://doi.org/10.1007/s10933-014-9796-0, 2014.
Morlighem, M., Williams, C. N., Rignot, E. J., An, L., Arndt, J. E., Bamber, J. L., Catania, G. A., Chauché, N., Dowdeswell, J. A., Dorschel, B., Fenty, I., Hogan, K., Howat, I. M., Hubbard, A. L., Jakobsson, M., Jordan, T. M., Kjeldsen, K. K., Millan, R., Mayer, L., Mouginot, J., Noël, B. P. Y., O'Cofaigh, C., Palmer, S. J., Rysgaard, S., Seroussi, H., Siegert, M. J., Slabon, P., Straneo, F., Broeke, M. R. van den, Weinrebe, W., Wood, M., and Zinglersen, K. B.: IceBridge BedMachine Greenland, Version 4, NASA National Snow and Ice Data Center Distributed Active Archive Center [data set], https://doi.org/10.5067/VLJ5YXKCNGXO, 2021.
Oksman, M., Kvorning, A. B., Larsen, S. H., Kjeldsen, K. K., Mankoff, K. D., Colgan, W., Andersen, T. J., Nørgaard-Pedersen, N., Seidenkrantz, M.-S., Mikkelsen, N., and Ribeiro, S.: Impact of freshwater runoff from the southwest Greenland Ice Sheet on fjord productivity since the late 19th century, The Cryosphere, 16, 2471–2491, https://doi.org/10.5194/tc-16-2471-2022, 2022.
Oppikofer, T., Hermanns, R. L., Roberts, N. J., and Böhme, M.: SPLASH: semi-empirical prediction of landslide-generated displacement wave run-up heights, Subaqueous Mass Movements, edited by: Lintern, D. G., Mosher, D. C., Moscardelli, L. G., Bobrowsky, P. T., Campbell, C., Chaytor, J. D., Clague, J. J., Georgiopoulou, A., Lajeunesse, P., Normandeau, A., Piper, D. J. W., Scherwath, M., Stacey, C., and Turmel, D., Geological Society, London, Special Publications, 477, https://doi.org/10.1144/SP477.1, 2018.
Paris, A., Okal, E. A., Guérin, C., Heinrich, P., Schindelé, F., and Hébert, H.: Numerical Modeling of the June 17, 2017 Landslide and Tsunami Events in Karrat Fjord, West Greenland, Pure Appl. Geophys., 176, 3035–3057, https://doi.org/10.1007/s00024-019-02123-5, 2019.
Patton, A. I., Rathburn, S. L., and Capps, D. M.: Landslide response to climate change in permafrost regions, Geomorphology, 340, 116–128, https://doi.org/10.1016/j.geomorph.2019.04.029, 2019.
Pearce, C., Weckström, K., Sha, L., Miettinen, A., and Seidenkrantz, M.-S.: The Holocene marine diatom flora of Eastern Newfoundland bays, Diatom Res., 29, 441–454, https://doi.org/10.1080/0269249X.2014.925508, 2014.
Pearce, C., Özdemir, K. S., Forchhammer Mathiasen, R., Detlef, H., and Olsen, J.: The marine reservoir age of Greenland coastal waters, Geochronology, 5, 451–465, https://doi.org/10.5194/gchron-5-451-2023, 2023.
Pedersen, M., Weng, W. L., Keulen, N., and Kokfelt, T. F.: A new seamless digital 1:500 000 scale geological map of Greenland, GEUS Bulletin, 28, 65–68, https://doi.org/10.34194/geusb.v28.4727, 2013.
Pedersen, S. A. S., Larsen, L. M., Dahl-jensen, T., Jepsen, H. F., Krarup, G., Nielsen, T., Pedersen, A. K., von Platen-Hallermund, F., and Weng, W. L.: Tsunami-generating rock fall and landslide on the south coast of Nuussuaq, central West Greenland, Geology of Greenland Survey Bulletin, 191, 73–83, https://doi.org/10.34194/ggub.v191.5131, 2002.
Porter, C., Morin, P., Howat, I., Noh, M.-J., Bates, B., Peterman, K., Keesey, S., Schlenk, M., Gardiner, J., Tomko, K., Willis, M., Kelleher, C., Cloutier, M., Husby, E., Foga, S., Nakamura, H., Platson, M., Wethington, M. Jr., Williamson, C., Bauer, G., Enos, J., Arnold, G., Kramer, W., Becker, P., Doshi, A., D'Souza, C., Cummens, P., Laurier, F., and Bojesen, M.: ArcticDEM, v3.0, Harvard Dataverse [data set], https://doi.org/10.7910/DVN/OHHUKH, 2018.
Pulvertaft, T. C. R.: The geology of Sarqaqdalen, west Greenland, with special reference to the Cretaceous boundary fault system, Grønlands Geologiske Undersøgelse Open File Series No. 89/5, 1989.
Reimer, P. J., Austin, W. E. N., Bard, E., Bayliss, A., Blackwell, P. G., Bronk Ramsey, C., Butzin, M., Cheng, H., Edwards, R.L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Hajdas, I., Heaton, T. J., Hogg, A. G., Hughen, K. A., Kromer, B., Manning, S. W., Muscheler, R., Palmer, J. G., Pearson, C., van der Plicht, H., Reimer, R. W., Richards, D., Scott, E. M., Southon, J. R., Turney, C. S. M., Wacker, L., Adophi, F., Büntgen, U., Capano, M., Fahrni, S., Fogtmann-Schulz, A., Friedrich, R., Kudsk, S., Miyake, F., Olsen, J., Reinig, F., Minoru Sakamoto, M., Sookde A., and Talamo, S.: The IntCal20 Northern Hemisphere radiocar-bon calibration curve (0–55 kcal BP), Radiocarbon, 62, 725–757, https://doi.org/10.1017/RDC.2020.41, 2020.
Rothwell, R. and Croudace, I.: Twenty Years of XRF Core Scanning Marine Sediments: What Do Geochemical Proxies Tell Us?, in: Micro-XRF Studies of Sediment Cores. Developments in Paleoenvironmental Research, edited by: Croudace, I. and Rothwell, R., Springer, Dordrecht, 17, 25–102, https://doi.org/10.1007/978-94-017-9849-5_2, 2015.
SDFI (Agency for Data Supply and Infrastructure): Grønlandske pilotdata – Disko Bugt [DEM] [ORTOFOTO] [TOPO50], https://dataforsyningen.dk/data/4516, last access: 28 June 2018.
Sepulveda, S. A., Serey, A., Lara, M., Pavez, A., and Rebolledo, S.: Landslides induced by the April 2007 Aysén Fjord earthquake, Chilean Patagonia: Landslides, 7, 483–492, https://doi.org/10.1007/s10346-010-0203-2, 2010.
Shinozaki, T.: Geochemical approaches in tsunami research: current knowledge and challenges, Geosci. Lett., 8, 6, https://doi.org/10.1186/s40562-021-00177-9, 2021.
Strunk, A., Olsen, J., Sanei, H., Rudra, A. and Larsen, N.K.: Improving the reliability of bulk sediment radiocarbon dating, Quaternary Sci. Rev., 242, 106442, https://doi.org/10.1016/j.quascirev.2020.106442, 2020.
Svennevig, K.: Preliminary landslide mapping in Greenland, Geol. Surv. Den. Greenl., 43, 1–5, https://doi.org/10.34194/GEUSB-201943-02-07, 2019.
Svennevig, K., Dahl-Jensen, T., Keiding, M., Merryman Boncori, J. P., Larsen, T. B., Salehi, S., Munck Solgaard, A., and Voss, P. H.: Evolution of events before and after the 17 June 2017 rock avalanche at Karrat Fjord, West Greenland – a multidisciplinary approach to detecting and locating unstable rock slopes in a remote Arctic area, Earth Surf. Dynam., 8, 1021–1038, https://doi.org/10.5194/esurf-8-1021-2020, 2020.
Svennevig, K., Hermanns, R. L., Keiding, M., Binder, D., Citterio, M., Dahl-Jensen, T., Mertl, S., Sørensen, E. V., and Voss, P. H.: A large frozen debris avalanche entraining warming permafrost ground – the June 2021 Assapaat landslide, West Greenland, Landslides, 19, 2549–2567, https://doi.org/10.1007/s10346-022-01922-7, 2022.
Svennevig, K., Keiding, M., Korsgaard, N. J., Lucas, A., Owen, M., Poulsen, M. D., Priebe, J., Sørensen, E. V., and Morino, C.: Uncovering a 70-year-old permafrost degradation induced disaster in the Arctic, the 1952 Niiortuut landslide-tsunami in central West Greenland, Sci. Total Environ., 859, 160110, https://doi.org/10.1016/j.scitotenv.2022.160110, 2023a.
Svennevig, K., Owen, M. J., Citterio, M., Nielsen, T., Rosing, S., Harff, J., Endler, R., Morlighem, M., and Rignot, E.: Holocene giga-scale rock avalanches in Vaigat, West Greenland – implications for geohazard, Geology, 52, 147–152, https://doi.org/10.1130/G51234.1, 2023b.
Voss, P. H., Poulsen, K., Simonsen, S. B., and Gregersen, S.: Seismic hazard assessment of Greenland, Geol. Surv. Denmark Greenl. Bull., 13, 57–60, https://doi.org/10.34194/geusb.v13.4976, 2007.
Wagner, B., Bennike, O., Klug, M., and Cremer, H.: First indication of Storegga tsunami deposits from East Greenland, J. Quaternary Sci., 22, 321–325, https://doi.org/10.1002/jqs.1064, 2006.
Weidick, A.: Observations on some Holocene glacier fluctuations in West Greenland, Bulletin Grønlands Geologiske Undersøgelse, 73, 1–202, https://doi.org/10.34194/bullggu.v73.6611, 1968.
Weidick, A.: Holocene shore-lines and glacial stages in Greenland – an attempt at correlation. Rapport Grønlands Geologiske Undersøgelse, 41, 1–39, https://doi.org/10.34194/rapggu.v41.7281, 1972.
Weidick, A. and Bennike, O.: Quaternary glaciation history and glaciology of Jakobshavn Isbræ and the Disko Bugt region, West Greenland: a review, GEUS Bulletin, 14, 1–78, https://doi.org/10.34194/geusb.v14.4985, 2007.
Witkowski, A., Lange-Bertalot, H., and Metzeltin, D.: Diatom flora of marine coasts I. Iconographia Diatomologica, Vol. 7, A.R.G. Ganter Verlag K.G., Ruggell, 925 pp., ISBN 9783904144100, 2000.
Short summary
A tsunami wave will leave evidence of erosion and deposition in coastal lakes, making it possible to determine the runup height and when it occurred. Here, we use four lakes now located at elevations of 19–91 m a.s.l. close to the settlement of Saqqaq, West Greenland, to show that at least two giant tsunamis occurred 7300–7600 years ago with runup heights larger than 40 m. We infer that any tsunamis from at least nine giga-scale landslides must have happened 8500–10 000 years ago.
A tsunami wave will leave evidence of erosion and deposition in coastal lakes, making it...
Altmetrics
Final-revised paper
Preprint