Articles | Volume 23, issue 2
https://doi.org/10.5194/nhess-23-415-2023
https://doi.org/10.5194/nhess-23-415-2023
Research article
 | 
02 Feb 2023
Research article |  | 02 Feb 2023

Detecting anomalous sea-level states in North Sea tide gauge data using an autoassociative neural network

Kathrin Wahle, Emil V. Stanev, and Joanna Staneva

Related authors

Solving Coastal Dynamics: Introduction to High Resolution Ocean Forecasting Services
Joanna Staneva, Angelique Melet, Jennifer Veitch, and Pascal Matte
State Planet Discuss., https://doi.org/10.5194/sp-2024-44,https://doi.org/10.5194/sp-2024-44, 2024
Preprint under review for SP
Short summary
Sea Level Rise in Europe: Impacts and consequences
Roderik van de Wal, Angélique Melet, Debora Bellafiore, Paula Camus, Christian Ferrarin, Gualbert Oude Essink, Ivan D. Haigh, Piero Lionello, Arjen Luijendijk, Alexandra Toimil, Joanna Staneva, and Michalis Vousdoukas
State Planet, 3-slre1, 5, https://doi.org/10.5194/sp-3-slre1-5-2024,https://doi.org/10.5194/sp-3-slre1-5-2024, 2024
Short summary
Characteristics and trends of marine heatwaves in the northwest European Shelf and the impacts on density stratification
Wei Chen and Joanna Staneva
State Planet, 4-osr8, 7, https://doi.org/10.5194/sp-4-osr8-7-2024,https://doi.org/10.5194/sp-4-osr8-7-2024, 2024
Short summary
The Role of Rivers in Ocean Forecasting
Pascal Matte, John Wilkin, and Joanna Staneva
State Planet Discuss., https://doi.org/10.5194/sp-2024-9,https://doi.org/10.5194/sp-2024-9, 2024
Preprint under review for SP
Short summary
Recent changes in extreme wave events in the south-western South Atlantic
Carolina B. Gramcianinov, Joanna Staneva, Celia R. G. Souza, Priscila Linhares, Ricardo de Camargo, and Pedro L. da Silva Dias
State Planet, 1-osr7, 12, https://doi.org/10.5194/sp-1-osr7-12-2023,https://doi.org/10.5194/sp-1-osr7-12-2023, 2023
Short summary

Related subject area

Sea, Ocean and Coastal Hazards
Changing sea level, changing shorelines: integration of remote-sensing observations at the Terschelling barrier island
Benedikt Aschenneller, Roelof Rietbroek, and Daphne van der Wal
Nat. Hazards Earth Syst. Sci., 24, 4145–4177, https://doi.org/10.5194/nhess-24-4145-2024,https://doi.org/10.5194/nhess-24-4145-2024, 2024
Short summary
Regional modelling of extreme sea levels induced by hurricanes
Alisée A. Chaigneau, Melisa Menéndez, Marta Ramírez-Pérez, and Alexandra Toimil
Nat. Hazards Earth Syst. Sci., 24, 4109–4131, https://doi.org/10.5194/nhess-24-4109-2024,https://doi.org/10.5194/nhess-24-4109-2024, 2024
Short summary
New insights into combined surfzone, embayment, and estuarine bathing hazards
Christopher Stokes, Timothy Poate, Gerd Masselink, Tim Scott, and Steve Instance
Nat. Hazards Earth Syst. Sci., 24, 4049–4074, https://doi.org/10.5194/nhess-24-4049-2024,https://doi.org/10.5194/nhess-24-4049-2024, 2024
Short summary
Dynamic projections of extreme sea levels for western Europe based on ocean and wind-wave modelling
Alisée A. Chaigneau, Angélique Melet, Aurore Voldoire, Maialen Irazoqui Apecechea, Guillaume Reffray, Stéphane Law-Chune, and Lotfi Aouf
Nat. Hazards Earth Syst. Sci., 24, 4031–4048, https://doi.org/10.5194/nhess-24-4031-2024,https://doi.org/10.5194/nhess-24-4031-2024, 2024
Short summary
Brief communication: From modelling to reality – flood modelling gaps highlighted by a recent severe storm surge event along the German Baltic Sea coast
Joshua Kiesel, Claudia Wolff, and Marvin Lorenz
Nat. Hazards Earth Syst. Sci., 24, 3841–3849, https://doi.org/10.5194/nhess-24-3841-2024,https://doi.org/10.5194/nhess-24-3841-2024, 2024
Short summary

Cited articles

Balogun, A. L. and Adebisi, N.: Sea level prediction using ARIMA, SVR and LSTM neural network: assessing the impact of ensemble Ocean-Atmospheric processes on models' accuracy, Geomat. Nat. Haz. Risk, 12, 653–674, 2021. 
Belmonte Rivas, M. and Stoffelen, A.: Characterizing ERA-Interim and ERA5 surface wind biases using ASCAT, Ocean Sci., 15, 831–852, https://doi.org/10.5194/os-15-831-2019, 2019.  
Bonaduce, A., Staneva, J., Grayek, S., Bidlot, J. R., and Breivik, Ø.: Sea-state contributions to sea-level variability in the European Seas, Ocean Dynamics, 70, 1547–1569, 2020. 
Bruneau, N., Polton, J., Williams, J., and Holt, J.: Estimation of global coastal sea level extremes using neural networks. Environ. Res. Lett., 15, 074030, https://doi.org/10.1088/1748-9326/ab89d6, 2020. 
Climate Data Store (CDS): https://cds.climate.copernicus.eu/, last access: 20 July 2021. 
Download
Short summary
Knowledge of what causes maximum water levels is often key in coastal management. Processes, such as storm surge and atmospheric forcing, alter the predicted tide. Whilst most of these processes are modeled in present-day ocean forecasting, there is still a need for a better understanding of situations where modeled and observed water levels deviate from each other. Here, we will use machine learning to detect such anomalies within a network of sea-level observations in the North Sea.
Altmetrics
Final-revised paper
Preprint