Articles | Volume 23, issue 11
https://doi.org/10.5194/nhess-23-3445-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-23-3445-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Prediction of natural dry-snow avalanche activity using physics-based snowpack simulations
Stephanie Mayer
CORRESPONDING AUTHOR
WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland
Frank Techel
WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland
Jürg Schweizer
WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland
Alec van Herwijnen
WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland
Related authors
Stephanie Mayer, Martin Hendrick, Adrien Michel, Bettina Richter, Jürg Schweizer, Heini Wernli, and Alec van Herwijnen
The Cryosphere, 18, 5495–5517, https://doi.org/10.5194/tc-18-5495-2024, https://doi.org/10.5194/tc-18-5495-2024, 2024
Short summary
Short summary
Understanding the impact of climate change on snow avalanche activity is crucial for safeguarding lives and infrastructure. Here, we project changes in avalanche activity in the Swiss Alps throughout the 21st century. Our findings reveal elevation-dependent patterns of change, indicating a decrease in dry-snow avalanches alongside an increase in wet-snow avalanches at elevations above the current treeline. These results underscore the necessity to revisit measures for avalanche risk mitigation.
Frank Techel, Stephanie Mayer, Ross S. Purves, Günter Schmudlach, and Kurt Winkler
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-158, https://doi.org/10.5194/nhess-2024-158, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
We evaluate fully data- and model-driven predictions of avalanche danger in Switzerland and compare them with human-made avalanche forecasts as a benchmark. We show that model predictions perform similarly to human forecasts calling for a systematic integration of forecast chains into the forecasting process.
Stephanie Mayer, Alec van Herwijnen, Frank Techel, and Jürg Schweizer
The Cryosphere, 16, 4593–4615, https://doi.org/10.5194/tc-16-4593-2022, https://doi.org/10.5194/tc-16-4593-2022, 2022
Short summary
Short summary
Information on snow instability is crucial for avalanche forecasting. We introduce a novel machine-learning-based method to assess snow instability from snow stratigraphy simulated with the snow cover model SNOWPACK. To develop the model, we compared observed and simulated snow profiles. Our model provides a probability of instability for every layer of a simulated snow profile, which allows detection of the weakest layer and assessment of its degree of instability with one single index.
Frank Techel, Stephanie Mayer, Cristina Pérez-Guillén, Günter Schmudlach, and Kurt Winkler
Nat. Hazards Earth Syst. Sci., 22, 1911–1930, https://doi.org/10.5194/nhess-22-1911-2022, https://doi.org/10.5194/nhess-22-1911-2022, 2022
Short summary
Short summary
Can the resolution of forecasts of avalanche danger be increased by using a combination of absolute and comparative judgments? Using 5 years of Swiss avalanche forecasts, we show that, on average, sub-levels assigned to a danger level reflect the expected increase in the number of locations with poor snow stability and in the number and size of avalanches with increasing forecast sub-level.
Antoine Guillemot, Alec van Herwijnen, Eric Larose, Stephanie Mayer, and Laurent Baillet
The Cryosphere, 15, 5805–5817, https://doi.org/10.5194/tc-15-5805-2021, https://doi.org/10.5194/tc-15-5805-2021, 2021
Short summary
Short summary
Ambient noise correlation is a broadly used method in seismology to monitor tiny changes in subsurface properties. Some environmental forcings may influence this method, including snow. During one winter season, we studied this snow effect on seismic velocity of the medium, recorded by a pair of seismic sensors. We detected and modeled a measurable effect during early snowfalls: the fresh new snow layer modifies rigidity and density of the medium, thus decreasing the recorded seismic velocity.
Frank Techel, Karsten Müller, Christopher Marquardt, and Christoph Mitterer
EGUsphere, https://doi.org/10.5194/egusphere-2025-3349, https://doi.org/10.5194/egusphere-2025-3349, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
We studied how avalanche forecasters across Europe used a new tool called the EAWS Matrix to assess avalanche danger levels. Despite different approaches, many services used the Matrix in similar ways. Our findings can help to further improve the Matrix and support more consistent avalanche forecasts, leading to more reliable and credible avalanche information for people in snow-covered mountain regions.
Grégoire Bobillier, Bertil Trottet, Bastian Bergfeld, Ron Simenhois, Alec van Herwijnen, Jürg Schweizer, and Johan Gaume
Nat. Hazards Earth Syst. Sci., 25, 2215–2223, https://doi.org/10.5194/nhess-25-2215-2025, https://doi.org/10.5194/nhess-25-2215-2025, 2025
Short summary
Short summary
Our study investigates the initiation of snow slab avalanches. Combining experimental data with numerical simulations, we show that on gentle slopes, cracks form and propagate due to compressive fractures within a weak layer. On steeper slopes, crack velocity can increase dramatically after approximately 5 m due to a fracture mode transition from compression to shear. Understanding these dynamics provides a crucial missing piece in the puzzle of dry-snow slab avalanche formation.
Philipp L. Rosendahl, Johannes Schneider, Grégoire Bobillier, Florian Rheinschmidt, Bastian Bergfeld, Alec van Herwijnen, and Philipp Weißgraeber
Nat. Hazards Earth Syst. Sci., 25, 1975–1991, https://doi.org/10.5194/nhess-25-1975-2025, https://doi.org/10.5194/nhess-25-1975-2025, 2025
Short summary
Short summary
Avalanche formation depends on crack propagation in weak snow layers, but the conditions that stop a crack remain unclear. We show that slab touchdown reduces the energy driving crack growth, which can halt propagation even under static conditions. This suggests that crack arrest is influenced not only by snowpack variability or dynamics but also by mechanical interactions within the snowpack. Our findings refine avalanche prediction models and improve hazard assessment.
Leonie Schäfer, Frank Techel, Günter Schmudlach, and Ross S. Purves
EGUsphere, https://doi.org/10.5194/egusphere-2025-2344, https://doi.org/10.5194/egusphere-2025-2344, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
Backcountry skiing is a popular form of recreation in Switzerland and worldwide, despite numerous avalanche accidents and fatalities that are recorded each year. There is a need for spatially explicit information on backcountry usage for effective risk estimations and avalanche forecast verification. We successfully used GPS tracks and online engagement data to model daily backcountry skiing base rates in the Swiss Alps based on a set of snow, weather, temporal and environmental variables.
Cristina Pérez-Guillén, Frank Techel, Michele Volpi, and Alec van Herwijnen
Nat. Hazards Earth Syst. Sci., 25, 1331–1351, https://doi.org/10.5194/nhess-25-1331-2025, https://doi.org/10.5194/nhess-25-1331-2025, 2025
Short summary
Short summary
This study assesses the performance and explainability of a random-forest classifier for predicting dry-snow avalanche danger levels during initial live testing. The model achieved ∼ 70 % agreement with human forecasts, performing equally well in nowcast and forecast modes, while capturing the temporal dynamics of avalanche forecasting. The explainability approach enhances the transparency of the model's decision-making process, providing a valuable tool for operational avalanche forecasting.
Amelie Fees, Michael Lombardo, Alec van Herwijnen, Peter Lehmann, and Jürg Schweizer
The Cryosphere, 19, 1453–1468, https://doi.org/10.5194/tc-19-1453-2025, https://doi.org/10.5194/tc-19-1453-2025, 2025
Short summary
Short summary
Glide-snow avalanches release at the soil–snow interface due to a loss of friction, which is suspected to be linked to interfacial water. The importance of the interfacial water was investigated with a spatio-temporal monitoring setup for soil and local snow on an avalanche-prone slope. Seven glide-snow avalanches were released on the monitoring grid (winter seasons 2021/22 to 2023/24) and provided insights into the source, quantity, and spatial distribution of interfacial water before avalanche release.
Jan Svoboda, Marc Ruesch, David Liechti, Corinne Jones, Michele Volpi, Michael Zehnder, and Jürg Schweizer
Geosci. Model Dev., 18, 1829–1849, https://doi.org/10.5194/gmd-18-1829-2025, https://doi.org/10.5194/gmd-18-1829-2025, 2025
Short summary
Short summary
Accurately measuring snow height is key for modeling approaches in climate science, snow hydrology, and avalanche forecasting. Erroneous snow height measurements often occur when snow height is low or changes, for instance during snowfall in summer. We prepare a new benchmark dataset with annotated snow height data and demonstrate how to improve the measurement quality using modern deep-learning approaches. Our approach can be easily implemented in a data pipeline for snow modeling.
Michael Lombardo, Amelie Fees, Anders Kaestner, Alec van Herwijnen, Jürg Schweizer, and Peter Lehmann
EGUsphere, https://doi.org/10.5194/egusphere-2025-304, https://doi.org/10.5194/egusphere-2025-304, 2025
Short summary
Short summary
Water flow in snow is important for many applications including snow hydrology and avalanche forecasting. This work investigated the role of capillary forces at the soil-snow interface during capillary rise experiments using neutron radiography. The results showed that the properties of both the snow and the transitional layer below the snow affected the water flow. This work will allow for better representations of water flow across the soil-snow interface in snowpack models.
Bastian Bergfeld, Karl W. Birkeland, Valentin Adam, Philipp L. Rosendahl, and Alec van Herwijnen
Nat. Hazards Earth Syst. Sci., 25, 321–334, https://doi.org/10.5194/nhess-25-321-2025, https://doi.org/10.5194/nhess-25-321-2025, 2025
Short summary
Short summary
To release a slab avalanche, a crack in a weak snow layer beneath a cohesive slab has to propagate. Information on that is essential for assessing avalanche risk. In the field, information can be gathered with the propagation saw test (PST). However, there are different standards on how to cut the PST. In this study, we experimentally investigate the effect of these different column geometries and provide models to correct for imprecise field test geometry effects on the critical cut length.
Stephanie Mayer, Martin Hendrick, Adrien Michel, Bettina Richter, Jürg Schweizer, Heini Wernli, and Alec van Herwijnen
The Cryosphere, 18, 5495–5517, https://doi.org/10.5194/tc-18-5495-2024, https://doi.org/10.5194/tc-18-5495-2024, 2024
Short summary
Short summary
Understanding the impact of climate change on snow avalanche activity is crucial for safeguarding lives and infrastructure. Here, we project changes in avalanche activity in the Swiss Alps throughout the 21st century. Our findings reveal elevation-dependent patterns of change, indicating a decrease in dry-snow avalanches alongside an increase in wet-snow avalanches at elevations above the current treeline. These results underscore the necessity to revisit measures for avalanche risk mitigation.
Alessandro Maissen, Frank Techel, and Michele Volpi
Geosci. Model Dev., 17, 7569–7593, https://doi.org/10.5194/gmd-17-7569-2024, https://doi.org/10.5194/gmd-17-7569-2024, 2024
Short summary
Short summary
By harnessing AI models, this work enables processing large amounts of data, including weather conditions, snowpack characteristics, and historical avalanche data, to predict human-like avalanche forecasts in Switzerland. Our proposed model can significantly assist avalanche forecasters in their decision-making process, thereby facilitating more efficient and accurate predictions crucial for ensuring safety in Switzerland's avalanche-prone regions.
Amelie Fees, Alec van Herwijnen, Michael Lombardo, Jürg Schweizer, and Peter Lehmann
Nat. Hazards Earth Syst. Sci., 24, 3387–3400, https://doi.org/10.5194/nhess-24-3387-2024, https://doi.org/10.5194/nhess-24-3387-2024, 2024
Short summary
Short summary
Glide-snow avalanches release at the ground–snow interface, and their release process is poorly understood. To investigate the influence of spatial variability (snowpack and basal friction) on avalanche release, we developed a 3D, mechanical, threshold-based model that reproduces an observed release area distribution. A sensitivity analysis showed that the distribution was mostly influenced by the basal friction uniformity, while the variations in snowpack properties had little influence.
Frank Techel, Stephanie Mayer, Ross S. Purves, Günter Schmudlach, and Kurt Winkler
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-158, https://doi.org/10.5194/nhess-2024-158, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
We evaluate fully data- and model-driven predictions of avalanche danger in Switzerland and compare them with human-made avalanche forecasts as a benchmark. We show that model predictions perform similarly to human forecasts calling for a systematic integration of forecast chains into the forecasting process.
Gwendolyn Dasser, Valentin T. Bickel, Marius Rüetschi, Mylène Jacquemart, Mathias Bavay, Elisabeth D. Hafner, Alec van Herwijnen, and Andrea Manconi
EGUsphere, https://doi.org/10.5194/egusphere-2024-1510, https://doi.org/10.5194/egusphere-2024-1510, 2024
Short summary
Short summary
Understanding snowpack wetness is crucial for predicting wet snow avalanches, but detailed data is often limited to certain locations. Using satellite radar, we monitor snow wetness spatially continuously. By combining different radar tracks from Sentinel-1, we improved spatial resolution and tracked snow wetness over several seasons. Our results indicate higher snow wetness to correlate with increased wet snow avalanche activity, suggesting our method can help identify potential risk areas.
Andri Simeon, Cristina Pérez-Guillén, Michele Volpi, Christine Seupel, and Alec van Herwijnen
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-76, https://doi.org/10.5194/gmd-2024-76, 2024
Preprint under review for GMD
Short summary
Short summary
Avalanche seismic detection systems are key for forecasting, but distinguishing avalanches from other seismic sources remains challenging. We propose novel autoencoder models to automatically extract features and compare them with standard seismic attributes. These features are then used to classify avalanches and noise events. The autoencoder feature classifiers have the highest sensitivity to detect avalanches, while the standard seismic classifier performs better overall.
Karsten Müller, Frank Techel, and Christoph Mitterer
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-48, https://doi.org/10.5194/nhess-2024-48, 2024
Preprint under review for NHESS
Short summary
Short summary
Avalanche forecasting is crucial for mountain safety. Tools like the European Avalanche Danger Scale and Matrix set standards for forecasters, but consistency still varies. We analyzed the use of the EAWS Matrix, aiding danger level assignment. Our analysis shows inconsistencies, suggesting further need for refinement and training.
Elisabeth D. Hafner, Frank Techel, Rodrigo Caye Daudt, Jan Dirk Wegner, Konrad Schindler, and Yves Bühler
Nat. Hazards Earth Syst. Sci., 23, 2895–2914, https://doi.org/10.5194/nhess-23-2895-2023, https://doi.org/10.5194/nhess-23-2895-2023, 2023
Short summary
Short summary
Oftentimes when objective measurements are not possible, human estimates are used instead. In our study, we investigate the reproducibility of human judgement for size estimates, the mappings of avalanches from oblique photographs and remotely sensed imagery. The variability that we found in those estimates is worth considering as it may influence results and should be kept in mind for several applications.
Mathieu Le Breton, Éric Larose, Laurent Baillet, Yves Lejeune, and Alec van Herwijnen
The Cryosphere, 17, 3137–3156, https://doi.org/10.5194/tc-17-3137-2023, https://doi.org/10.5194/tc-17-3137-2023, 2023
Short summary
Short summary
We monitor the amount of snow on the ground using passive radiofrequency identification (RFID) tags. These small and inexpensive tags are wirelessly read by a stationary reader placed above the snowpack. Variations in the radiofrequency phase delay accurately reflect variations in snow amount, known as snow water equivalent. Additionally, each tag is equipped with a sensor that monitors the snow temperature.
Bastian Bergfeld, Alec van Herwijnen, Grégoire Bobillier, Philipp L. Rosendahl, Philipp Weißgraeber, Valentin Adam, Jürg Dual, and Jürg Schweizer
Nat. Hazards Earth Syst. Sci., 23, 293–315, https://doi.org/10.5194/nhess-23-293-2023, https://doi.org/10.5194/nhess-23-293-2023, 2023
Short summary
Short summary
For a slab avalanche to release, the snowpack must facilitate crack propagation over large distances. Field measurements on crack propagation at this scale are very scarce. We performed a series of experiments, up to 10 m long, over a period of 10 weeks. Beside the temporal evolution of the mechanical properties of the snowpack, we found that crack speeds were highest for tests resulting in full propagation. Based on these findings, an index for self-sustained crack propagation is proposed.
Stephanie Mayer, Alec van Herwijnen, Frank Techel, and Jürg Schweizer
The Cryosphere, 16, 4593–4615, https://doi.org/10.5194/tc-16-4593-2022, https://doi.org/10.5194/tc-16-4593-2022, 2022
Short summary
Short summary
Information on snow instability is crucial for avalanche forecasting. We introduce a novel machine-learning-based method to assess snow instability from snow stratigraphy simulated with the snow cover model SNOWPACK. To develop the model, we compared observed and simulated snow profiles. Our model provides a probability of instability for every layer of a simulated snow profile, which allows detection of the weakest layer and assessment of its degree of instability with one single index.
Cristina Pérez-Guillén, Frank Techel, Martin Hendrick, Michele Volpi, Alec van Herwijnen, Tasko Olevski, Guillaume Obozinski, Fernando Pérez-Cruz, and Jürg Schweizer
Nat. Hazards Earth Syst. Sci., 22, 2031–2056, https://doi.org/10.5194/nhess-22-2031-2022, https://doi.org/10.5194/nhess-22-2031-2022, 2022
Short summary
Short summary
A fully data-driven approach to predicting the danger level for dry-snow avalanche conditions in Switzerland was developed. Two classifiers were trained using a large database of meteorological data, snow cover simulations, and danger levels. The models performed well throughout the Swiss Alps, reaching a performance similar to the current experience-based avalanche forecasts. This approach shows the potential to be a valuable supplementary decision support tool for assessing avalanche hazard.
Frank Techel, Stephanie Mayer, Cristina Pérez-Guillén, Günter Schmudlach, and Kurt Winkler
Nat. Hazards Earth Syst. Sci., 22, 1911–1930, https://doi.org/10.5194/nhess-22-1911-2022, https://doi.org/10.5194/nhess-22-1911-2022, 2022
Short summary
Short summary
Can the resolution of forecasts of avalanche danger be increased by using a combination of absolute and comparative judgments? Using 5 years of Swiss avalanche forecasts, we show that, on average, sub-levels assigned to a danger level reflect the expected increase in the number of locations with poor snow stability and in the number and size of avalanches with increasing forecast sub-level.
Achille Capelli, Franziska Koch, Patrick Henkel, Markus Lamm, Florian Appel, Christoph Marty, and Jürg Schweizer
The Cryosphere, 16, 505–531, https://doi.org/10.5194/tc-16-505-2022, https://doi.org/10.5194/tc-16-505-2022, 2022
Short summary
Short summary
Snow occurrence, snow amount, snow density and liquid water content (LWC) can vary considerably with climatic conditions and elevation. We show that low-cost Global Navigation Satellite System (GNSS) sensors as GPS can be used for reliably measuring the amount of water stored in the snowpack or snow water equivalent (SWE), snow depth and the LWC under a broad range of climatic conditions met at different elevations in the Swiss Alps.
Antoine Guillemot, Alec van Herwijnen, Eric Larose, Stephanie Mayer, and Laurent Baillet
The Cryosphere, 15, 5805–5817, https://doi.org/10.5194/tc-15-5805-2021, https://doi.org/10.5194/tc-15-5805-2021, 2021
Short summary
Short summary
Ambient noise correlation is a broadly used method in seismology to monitor tiny changes in subsurface properties. Some environmental forcings may influence this method, including snow. During one winter season, we studied this snow effect on seismic velocity of the medium, recorded by a pair of seismic sensors. We detected and modeled a measurable effect during early snowfalls: the fresh new snow layer modifies rigidity and density of the medium, thus decreasing the recorded seismic velocity.
Veronika Hutter, Frank Techel, and Ross S. Purves
Nat. Hazards Earth Syst. Sci., 21, 3879–3897, https://doi.org/10.5194/nhess-21-3879-2021, https://doi.org/10.5194/nhess-21-3879-2021, 2021
Short summary
Short summary
How is avalanche danger described in public avalanche forecasts? We analyzed 6000 textual descriptions of avalanche danger in Switzerland, taking the perspective of the forecaster. Avalanche danger was described rather consistently, although the results highlight the difficulty of communicating conditions that are neither rare nor frequent, neither small nor large. The study may help to refine the ways in which avalanche danger could be communicated to the public.
Nora Helbig, Michael Schirmer, Jan Magnusson, Flavia Mäder, Alec van Herwijnen, Louis Quéno, Yves Bühler, Jeff S. Deems, and Simon Gascoin
The Cryosphere, 15, 4607–4624, https://doi.org/10.5194/tc-15-4607-2021, https://doi.org/10.5194/tc-15-4607-2021, 2021
Short summary
Short summary
The snow cover spatial variability in mountains changes considerably over the course of a snow season. In applications such as weather, climate and hydrological predictions the fractional snow-covered area is therefore an essential parameter characterizing how much of the ground surface in a grid cell is currently covered by snow. We present a seasonal algorithm and a spatiotemporal evaluation suggesting that the algorithm can be applied in other geographic regions by any snow model application.
Bastian Bergfeld, Alec van Herwijnen, Benjamin Reuter, Grégoire Bobillier, Jürg Dual, and Jürg Schweizer
The Cryosphere, 15, 3539–3553, https://doi.org/10.5194/tc-15-3539-2021, https://doi.org/10.5194/tc-15-3539-2021, 2021
Short summary
Short summary
The modern picture of the snow slab avalanche release process involves a
dynamic crack propagation phasein which a whole slope becomes detached. The present work contains the first field methodology which provides the temporal and spatial resolution necessary to study this phase. We demonstrate the versatile capabilities and accuracy of our method by revealing intricate dynamics and present how to determine relevant characteristics of crack propagation such as crack speed.
Jürg Schweizer, Christoph Mitterer, Benjamin Reuter, and Frank Techel
The Cryosphere, 15, 3293–3315, https://doi.org/10.5194/tc-15-3293-2021, https://doi.org/10.5194/tc-15-3293-2021, 2021
Short summary
Short summary
Snow avalanches threaten people and infrastructure in snow-covered mountain regions. To mitigate the effects of avalanches, warnings are issued by public forecasting services. Presently, the five danger levels are described in qualitative terms. We aim to characterize the avalanche danger levels based on expert field observations of snow instability. Our findings contribute to an evidence-based description of danger levels and to improve consistency and accuracy of avalanche forecasts.
Elisabeth D. Hafner, Frank Techel, Silvan Leinss, and Yves Bühler
The Cryosphere, 15, 983–1004, https://doi.org/10.5194/tc-15-983-2021, https://doi.org/10.5194/tc-15-983-2021, 2021
Short summary
Short summary
Satellites prove to be very valuable for documentation of large-scale avalanche periods. To test reliability and completeness, which has not been satisfactorily verified before, we attempt a full validation of avalanches mapped from two optical sensors and one radar sensor. Our results demonstrate the reliability of high-spatial-resolution optical data for avalanche mapping, the suitability of radar for mapping of larger avalanches and the unsuitability of medium-spatial-resolution optical data.
Michaela Wenner, Clément Hibert, Alec van Herwijnen, Lorenz Meier, and Fabian Walter
Nat. Hazards Earth Syst. Sci., 21, 339–361, https://doi.org/10.5194/nhess-21-339-2021, https://doi.org/10.5194/nhess-21-339-2021, 2021
Short summary
Short summary
Mass movements constitute a risk to property and human life. In this study we use machine learning to automatically detect and classify slope failure events using ground vibrations. We explore the influence of non-ideal though commonly encountered conditions: poor network coverage, small number of events, and low signal-to-noise ratios. Our approach enables us to detect the occurrence of rare events of high interest in a large data set of more than a million windowed seismic signals.
Bettina Richter, Alec van Herwijnen, Mathias W. Rotach, and Jürg Schweizer
Nat. Hazards Earth Syst. Sci., 20, 2873–2888, https://doi.org/10.5194/nhess-20-2873-2020, https://doi.org/10.5194/nhess-20-2873-2020, 2020
Short summary
Short summary
We investigated the sensitivity of modeled snow instability to uncertainties in meteorological input, typically found in complex terrain. The formation of the weak layer was very robust due to the long dry period, indicated by a widespread avalanche problem. Once a weak layer has formed, precipitation mostly determined slab and weak layer properties and hence snow instability. When spatially assessing snow instability for avalanche forecasting, accurate precipitation patterns have to be known.
Frank Techel, Karsten Müller, and Jürg Schweizer
The Cryosphere, 14, 3503–3521, https://doi.org/10.5194/tc-14-3503-2020, https://doi.org/10.5194/tc-14-3503-2020, 2020
Short summary
Short summary
Exploring a large data set of snow stability tests and avalanche observations, we quantitatively describe the three key elements that characterize avalanche danger: snowpack stability, the frequency distribution of snowpack stability, and avalanche size. The findings will aid in refining the definitions of the avalanche danger scale and in fostering its consistent usage.
Louis Quéno, Charles Fierz, Alec van Herwijnen, Dylan Longridge, and Nander Wever
The Cryosphere, 14, 3449–3464, https://doi.org/10.5194/tc-14-3449-2020, https://doi.org/10.5194/tc-14-3449-2020, 2020
Short summary
Short summary
Deep ice layers may form in the snowpack due to preferential water flow with impacts on the snowpack mechanical, hydrological and thermodynamical properties. We studied their formation and evolution at a high-altitude alpine site, combining a comprehensive observation dataset at a daily frequency (with traditional snowpack observations, penetration resistance and radar measurements) and detailed snowpack modeling, including a new parameterization of ice formation in the 1-D SNOWPACK model.
Cited articles
Ancey, C., Gervasoni, C., and Meunier, M.: Computing extreme avalanches, Cold Reg. Sci. Technol., 39, 161–180, https://doi.org/10.1016/j.coldregions.2004.04.004, 2004. a, b
Bartelt, P. and Lehning, M.: A physical SNOWPACK model for the Swiss avalanche warning Part I: Numerical model, Cold Reg. Sci. Technol., 35, 123–145, https://doi.org/10.1016/S0165-232X(02)00074-5, 2002. a
Bartelt, P., Bühler, Y., Christen, M., Deubelbeiss, Y., Salz, M., Schneider, M., and Schumacher, L.: RAMMS::AVALANCHE User Manual – A numerical model for snow avalanches in research and practice, WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland, https://ramms.slf.ch/fileadmin/user_upload/WSL/Microsite/RAMMS/Downloads/RAMMS_AVAL_Manual.pdf (last access: 28 July 2022), 2017. a
Bavay, M. and Egger, T.: MeteoIO 2.4.2: a preprocessing library for meteorological data, Geosci. Model Dev., 7, 3135–3151, https://doi.org/10.5194/gmd-7-3135-2014, 2014. a
Bellaire, S. and Jamieson, B.: On estimating avalanche danger from simulated snow profiles, in: Proceedings of the International Snow Science Workshop, 7–11 October 2013, Grenoble and Chamonix, France, 154–161, https://arc.lib.montana.edu/snow-science/item/1740 (last access: 7 November 2023), 2013a. a, b, c
Bellaire, S. and Jamieson, B.: Forecasting the formation of critical snow layers using a coupled snow cover and weather model, Cold Reg. Sci. Technol., 94, 37–44, https://doi.org/10.1016/j.coldregions.2013.06.007, 2013b. a
Brun, E., Martin, E., Simon, V., Gendre, C., and Coléou, C.: An energy and mass model of snow cover suitable for operational avalanche forecasting, J. Glaciology, 35, 333–342, https://doi.org/10.3189/S0022143000009254, 1989. a
Brun, E., David, P., Sudul, M., and Brunot, G.: A numerical model to simulate snow-cover stratigraphy for operational avalanche forecasting, J. Glaciol., 38, 13–22, https://doi.org/10.3189/S0022143000009552, 1992. a
Conway, H. and Wilbour, C.: Evolution of snow slope stability during storms, Cold Reg. Sci. Technol., 30, 67–77, https://doi.org/10.1016/S0165-232X(99)00009-9, 1999. a
EAWS: Standards: avalanche size, https://www.avalanches.org/standards/avalanche-size/ (last access: 13 May 2022), 2019. a
EAWS: Standards: European Avalanche Danger Scale, European Avalanche Warning Services (EAWS), https://www.avalanches.org/standards/avalanche-danger-scale/ (last access: 24 May 2023), 2023. a
Fierz, C., Armstrong, R., Durand, Y., Etchevers, P., Greene, E., McClung, D., Nishimura, K., Satyawali, P., and Sokratov, S.: The international classification for seasonal snow on the ground, HP-VII Technical Document in Hydrology, in: 83. UNESCO-IHP, Paris, France, p. 90, https://unesdoc.unesco.org/ark:/48223/pf0000186462 (last access: 7 November 2023), 2009. a, b
Föhn, P. M. B.: The “Rutschblock” as a practical tool for slope stability evaluation, IAHS Publ., 162, 223–228, 1987. a
Hafner, E. D., Techel, F., Leinss, S., and Bühler, Y.: Mapping avalanches with satellites – evaluation of performance and completeness, The Cryosphere, 15, 983–1004, https://doi.org/10.5194/tc-15-983-2021, 2021. a
Hafner, E. D., Techel, F., Daudt, R. C., Wegner, J. D., Schindler, K., and Bühler, Y.: Avalanche size estimation and avalanche outline determination by experts: reliability and implications for practice, Nat. Hazards Earth Syst. Sci., 23, 2895–2914, https://doi.org/10.5194/nhess-23-2895-2023, 2023. a
Heck, M., van Herwijnen, A., Hammer, C., Hobiger, M., Schweizer, J., and Fäh, D.: Automatic detection of avalanches combining array classification and localization, Earth Surf. Dynam., 7, 491–503, https://doi.org/10.5194/esurf-7-491-2019, 2019. a, b
Hendrikx, J., Murphy, M., and Onslow, T.: Classification trees as a tool for operational avalanche forecasting on the Seward Highway, Alaska, Cold Reg. Sci. Technol., 97, 113–120, https://doi.org/10.1016/j.coldregions.2013.08.009, 2014. a
Honts, C. and Schweinle, W.: Information gain of psychophysiological detection of deception in forensic and screening settings, Appl. Psychophysiol. Biofeed., 34, 161–172, https://doi.org/10.1007/s10484-009-9096-z, 2009. a, b, c
Horton, S., Schirmer, M., and Jamieson, B.: Meteorological, elevation, and slope effects on surface hoar formation, The Cryosphere, 9, 1523–1533, https://doi.org/10.5194/tc-9-1523-2015, 2015. a
Hutter, V., Techel, F., and Purves, R. S.: How is avalanche danger described in textual descriptions in avalanche forecasts in Switzerland? Consistency between forecasters and avalanche danger, Nat. Hazards Earth Syst. Sci., 21, 3879–3897, https://doi.org/10.5194/nhess-21-3879-2021, 2021. a, b
Jamieson, B., Zeidler, A., and Brown, C.: Explanation and limitations of study plot stability indices for forecasting dry snow slab avalanches in surrounding terrain, Cold Reg. Sci. Technol., 50, 23–34, https://doi.org/10.1016/j.coldregions.2007.02.010, 2007. a, b
Jamieson, J. and Johnston, C.: Refinements to the stability index for skier-triggered dry-slab avalanches, Ann. Glaciol., 26, 296–302, https://doi.org/10.3189/1998AoG26-1-296-302, 1998. a
Jamieson, J. and Johnston, C.: Evaluation of the shear frame test for weak snowpack layers, Ann. Glaciol., 32, 59–68, 2001. a
Kronholm, K., Vikhamar-Schuler, D., Jaedicke, C., Isaksen, K., Sorteberg, A., and Kristensen, K.: Forecasting snow avalanche days from meteorological data using classification trees; Grasdalen, Norway, in: Proceedings ISSW 2006, International Snow Science Workshop, 1–6 October 2006, Telluride, 786–795, https://arc.lib.montana.edu/snow-science/item/1016 (last access: 7 November 2023), 2006. a
Lehning, M. and Fierz, C.: Assessment of snow transport in avalanche terrain, Cold Reg. Sci. Technol., 51, 240–252, https://doi.org/10.1016/j.coldregions.2007.05.012, 2008. a
Lehning, M., Bartelt, P., and Brown, B.: SNOWPACK model calculations for avalanche warning based upon a new network of weather and snow stations, Cold Reg. Sci. Technol., 30, 145–157, https://doi.org/10.1016/S0165-232X(99)00022-1, 1999. a, b
Lehning, M., Doorschot, J., and Bartelt, P.: A snowdrift index based on SNOWPACK model calculations, Ann. Glaciol., 31, 382–386, https://doi.org/10.3189/172756400781819770, 2000. a
Lehning, M., Bartelt, P., Brown, R., and Fierz, C.: A physical SNOWPACK model for the Swiss avalanche warning; Part III: meteorological forcing, thin layer formation and evaluation, Cold Reg. Sci. Technol., 35, 169–184, https://doi.org/10.1016/S0165-232X(02)00072-1, 2002a. a
Lehning, M., Bartelt, P., Brown, R., Fierz, C., and Satyawali, P.: A physical SNOWPACK model for the Swiss avalanche warning; Part II. Snow microstructure, Cold Reg. Sci. Technol., 35, 147–167, https://doi.org/10.1016/S0165-232X(02)00073-3, 2002b. a, b
Lehning, M., Fierz, C., Brown, B., and Jamieson, B.: Modeling snow instability with the snow-cover model SNOWPACK, Ann. Glaciol., 38, 331–338, https://doi.org/10.3189/172756404781815220, 2004. a
Mayer, S. and Techel, F.: Data-set for prediction of natural dry-snow avalanche activity and avalanche size using physics-based snowpack simulations, EnviDat [data set], https://doi.org/10.16904/envidat.425, 2023. a
Mayer, S., van Herwijnen, A., Ulivieri, G., and Schweizer, J.: Evaluating the performance of an operational infrasound avalanche detection system at three locations in the Swiss Alps during two winter seasons, Cold Reg. Sci. Technol., 173, 102962, https://doi.org/10.1016/j.coldregions.2019.102962, 2020. a, b
Mitterer, C., Techel, F., Fierz, C., and Schweizer, J.: An operational supporting tool for assessing wet-snow avalanche danger, in: Proceedings ISSW 2013, International Snow Science Workshop, 7–11 October 2013, Grenoble – Chamonix Mont-Blanc, France, 334–338, https://arc.lib.montana.edu/snow-science/item/1860 (last access: 7 November 2023), 2013. a
Morin, S., Horton, S., Techel, F., Bavay, M., Coléou, C., Fierz, C., Gobiet, A., Hagenmuller, P., Lafaysse, M., Lžar, M., Mitterer, C., Monti, F., Müller, K., Olefs, M., Snook, J. S., van Herwijnen, A., and Vionnet, V.: Application of physical snowpack models in support of operational avalanche hazard forecasting: A status report on current implementations and prospects for the future, Cold Reg. Sci. Technol., 170, 102910, https://doi.org/10.1016/j.coldregions.2019.102910, 2020. a, b
Pérez-Guillén, C., Techel, F., Hendrick, M., Volpi, M., van Herwijnen, A., Olevski, T., Obozinski, G., Pérez-Cruz, F., and Schweizer, J.: Data-driven automated predictions of the avalanche danger level for dry-snow conditions in Switzerland, Nat. Hazards Earth Syst. Sci., 22, 2031–2056, https://doi.org/10.5194/nhess-22-2031-2022, 2022. a, b, c, d
Reuter, B., Richter, B., and Schweizer, J.: Snow instability patterns at the scale of a small basin, J. Geophys. Res.-Earth, 257, 257–282, https://doi.org/10.1002/2015JF003700, 2016. a
Reuter, B., Viallon-Galinier, L., Horton, S., van Herwijnen, A., Mayer, S., Hagenmuller, P., and Morin, S.: Characterizing snow instability with avalanche problem types derived from snow cover simulations, Cold Reg. Sci. Technol., 194, 103462, https://doi.org/10.1016/j.coldregions.2021.103462, 2022. a, b, c, d, e
Richter, B., van Herwijnen, A., Rotach, M. W., and Schweizer, J.: Sensitivity of modeled snow stability data to meteorological input uncertainty, Nat. Hazards Earth Syst. Sci., 20, 2873–2888, https://doi.org/10.5194/nhess-20-2873-2020, 2020. a
Richter, B., Schweizer, J., Rotach, M. W., and van Herwijnen, A.: Modeling spatially distributed snow instability at a regional scale using Alpine3D, J. Glaciol., 67, 1147–1162, https://doi.org/10.1017/jog.2021.61, 2021. a
Schirmer, M., Lehning, M., and Schweizer, J.: Statistical forecasting of regional avalanche danger using simulated snow-cover data, J. Glaciol., 55, 761–768, https://doi.org/10.3189/002214309790152429, 2009. a
Schneebeli, M., Laternser, M., Föhn, P., and Ammann, W.: Wechselwirkungen zwischen Klima, Lawinen und technischen Massnahmen, Schlussbericht NFP 31, vdf Hochschulverlag AG an der ETH, Zurich, ISBN 3728126047, 1998. a
Schweizer, J.: The Rutschblock test – procedure and application in Switzerland, Avalanche Rev., 20, 14–15, 2002. a
Schweizer, J., Kronholm, K., and Wiesinger, T.: Verification of regional snowpack stability and avalanche danger, Cold Reg. Sci. Technol., 37, 277–288, https://doi.org/10.1016/S0165-232X(03)00070-3, 2003. a
Schweizer, J., Mitterer, C., Techel, F., Stoffel, A., and Reuter, B.: Snow avalanche data Davos, Switzerland, 1999–2019, Envidat [data set], https://doi.org/10.16904/envidat.134, 2020b. a
Schweizer, J., Mitterer, C., Reuter, B., and Techel, F.: Avalanche danger level characteristics from field observations of snow instability, The Cryosphere, 15, 3293–3315, https://doi.org/10.5194/tc-15-3293-2021, 2021. a, b, c, d
Sielenou, P. D., Viallon-Galinier, L., Hagenmuller, P., Naveau, P., Morin, S., Dumont, M., Verfaillie, D., and Eckert, N.: Combining random forests and class-balancing to discriminate between three classes of avalanche activity in the French Alps, Cold Reg. Sci. Technol., 187, 103276, https://doi.org/10.1016/j.coldregions.2021.103276, 2021. a
Techel, F.: Re-analyzed regional avalanche danger levels in Switzerland, EnviDat [data set], https://doi.org/10.16904/envidat.426, 2023. a
Techel, F., Mayer, S., Pérez-Guillén, C., Schmudlach, G., and Winkler, K.: On the correlation between a sub-level qualifier refining the danger level with observations and models relating to the contributing factors of avalanche danger, Nat. Hazards Earth Syst. Sci., 22, 1911–1930, https://doi.org/10.5194/nhess-22-1911-2022, 2022. a, b, c, d, e, f, g
van Herwijnen, A. and Jamieson, B.: Snowpack properties associated with fracture initiation and propagation resulting in skier-triggered dry snow slab avalanches, Cold Reg. Sci. Technol., 50, 13–22, https://doi.org/10.1016/j.coldregions.2007.02.004, 2007. a
van Herwijnen, A., Heck, M., and Schweizer, J.: Forecasting snow avalanches using avalanche activity data obtained through seismic monitoring, Cold Reg. Sci. Technol., 132, 68–80, https://doi.org/10.1016/j.coldregions.2016.09.014, 2016. a, b
Viallon-Galinier, L., Hagenmuller, P., and Eckert, N.: Combining modelled snowpack stability with machine learning to predict avalanche activity, The Cryosphere, 17, 2245–2260, https://doi.org/10.5194/tc-17-2245-2023, 2023. a, b, c
Vionnet, V., Brun, E., Morin, S., Boone, A., Faroux, S., Le Moigne, P., Martin, E., and Willemet, J.-M.: The detailed snowpack scheme Crocus and its implementation in SURFEX v7.2, Geosci. Model Dev., 5, 773–791, https://doi.org/10.5194/gmd-5-773-2012, 2012. a, b
Wilks, D.: Statistical methods in the atmospheric sciences, in: vol. 100 of International Geophysics Series, 3rd Edn., Academic Press, San Diego, CA, USA, ISBN 9780123850225, 2011. a
WSL Institute for Snow and Avalanche Research SLF: WFJ_MOD: Meteorological and snowpack measurements from Weissfluhjoch, WSL Institute for Snow and Avalanche Research SLF, https://doi.org/10.16904/1, 2015. a
Short summary
We present statistical models to estimate the probability for natural dry-snow avalanche release and avalanche size based on the simulated layering of the snowpack. The benefit of these models is demonstrated in comparison with benchmark models based on the amount of new snow. From the validation with data sets of quality-controlled avalanche observations and danger levels, we conclude that these models may be valuable tools to support forecasting natural dry-snow avalanche activity.
We present statistical models to estimate the probability for natural dry-snow avalanche release...
Altmetrics
Final-revised paper
Preprint