Articles | Volume 23, issue 6
https://doi.org/10.5194/nhess-23-2157-2023
https://doi.org/10.5194/nhess-23-2157-2023
Research article
 | 
16 Jun 2023
Research article |  | 16 Jun 2023

A predictive equation for wave setup using genetic programming

Charline Dalinghaus, Giovanni Coco, and Pablo Higuera

Related authors

On the use of convolutional deep learning to predict shoreline change
Eduardo Gomez-de la Peña, Giovanni Coco, Colin Whittaker, and Jennifer Montaño
Earth Surf. Dynam., 11, 1145–1160, https://doi.org/10.5194/esurf-11-1145-2023,https://doi.org/10.5194/esurf-11-1145-2023, 2023
Short summary
Modelling extreme water levels using intertidal topography and bathymetry derived from multispectral satellite images
Wagner L. L. Costa, Karin R. Bryan, and Giovanni Coco
Nat. Hazards Earth Syst. Sci., 23, 3125–3146, https://doi.org/10.5194/nhess-23-3125-2023,https://doi.org/10.5194/nhess-23-3125-2023, 2023
Short summary
The role of geological mouth islands on the morphodynamics of back-barrier tidal basins
Yizhang Wei, Yining Chen, Jufei Qiu, Zeng Zhou, Peng Yao, Qin Jiang, Zheng Gong, Giovanni Coco, Ian Townend, and Changkuan Zhang
Earth Surf. Dynam., 10, 65–80, https://doi.org/10.5194/esurf-10-65-2022,https://doi.org/10.5194/esurf-10-65-2022, 2022
Short summary
Emerging crescentic patterns in modelled double sandbar systems under normally incident waves
Giovanni Coco, Daniel Calvete, Francesca Ribas, Huib E. de Swart, and Albert Falqués
Earth Surf. Dynam., 8, 323–334, https://doi.org/10.5194/esurf-8-323-2020,https://doi.org/10.5194/esurf-8-323-2020, 2020
Short summary
The use of genetic programming to develop a predictor of swash excursion on sandy beaches
Marinella Passarella, Evan B. Goldstein, Sandro De Muro, and Giovanni Coco
Nat. Hazards Earth Syst. Sci., 18, 599–611, https://doi.org/10.5194/nhess-18-599-2018,https://doi.org/10.5194/nhess-18-599-2018, 2018

Related subject area

Sea, Ocean and Coastal Hazards
Modelling tsunami initial conditions due to rapid coseismic seafloor displacement: efficient numerical integration and a tool to build unit source databases
Alice Abbate, José M. González Vida, Manuel J. Castro Díaz, Fabrizio Romano, Hafize Başak Bayraktar, Andrey Babeyko, and Stefano Lorito
Nat. Hazards Earth Syst. Sci., 24, 2773–2791, https://doi.org/10.5194/nhess-24-2773-2024,https://doi.org/10.5194/nhess-24-2773-2024, 2024
Short summary
Estuarine hurricane wind can intensify surge-dominated extreme water level in shallow and converging coastal systems
Mithun Deb, James J. Benedict, Ning Sun, Zhaoqing Yang, Robert D. Hetland, David Judi, and Taiping Wang
Nat. Hazards Earth Syst. Sci., 24, 2461–2479, https://doi.org/10.5194/nhess-24-2461-2024,https://doi.org/10.5194/nhess-24-2461-2024, 2024
Short summary
Revisiting regression methods for estimating long-term trends in sea surface temperature
Ming-Huei Chang, Yen-Chen Huang, Yu-Hsin Cheng, Chuen-Teyr Terng, Jinyi Chen, and Jyh Cherng Jan
Nat. Hazards Earth Syst. Sci., 24, 2481–2494, https://doi.org/10.5194/nhess-24-2481-2024,https://doi.org/10.5194/nhess-24-2481-2024, 2024
Short summary
Global application of a regional frequency analysis to extreme sea levels
Thomas P. Collings, Niall D. Quinn, Ivan D. Haigh, Joshua Green, Izzy Probyn, Hamish Wilkinson, Sanne Muis, William V. Sweet, and Paul D. Bates
Nat. Hazards Earth Syst. Sci., 24, 2403–2423, https://doi.org/10.5194/nhess-24-2403-2024,https://doi.org/10.5194/nhess-24-2403-2024, 2024
Short summary
Tsunami hazard assessment in the South China Sea based on geodetic locking of the Manila subduction zone
Guangsheng Zhao and Xiaojing Niu
Nat. Hazards Earth Syst. Sci., 24, 2303–2313, https://doi.org/10.5194/nhess-24-2303-2024,https://doi.org/10.5194/nhess-24-2303-2024, 2024
Short summary

Cited articles

Battjes, J. A.: Computation of set-up, longshore currents, run-up and overtopping due to wind-generated waves, Ph.D. thesis, Delft University of Technology, http://resolver.tudelft.nl/uuid:e126e043-a858-4e58-b4c7-8a7bc5be1a44 (last access: 5 April 2022), 1974. a, b, c
Beuzen, T. and Splinter, K.: Machine learning and coastal processes, in: Sandy Beach Morphodynamics, edited by: Jackson, D. W. T. and Short, A. D., 689–710, Elsevier, https://doi.org/10.1016/B978-0-08-102927-5.00028-X, 2020. a, b
Bowen, A., Inman, D., and Simmons, V.: Wave “set-down”and set-up, J. Geophys. Res., 73, 2569–2577, https://doi.org/10.1029/JB073i008p02569, 1968. a, b, c, d, e
Camus, P., Mendez, F. J., and Medina, R.: A hybrid efficient method to downscale wave climate to coastal areas, Coast. Eng., 58, 851–862, https://doi.org/10.1016/j.coastaleng.2011.05.007, 2011. a, b
Coast and Ocean Collective: Data, Coast and Ocean Collective [data set], https://coastalhub.science/data (last access: 8 November 2022), 2019. a
Download
Short summary
Wave setup is a critical component of coastal flooding. Consequently, understanding and being able to predict wave setup is vital to protect coastal resources and the population living near the shore. Here, we applied machine learning to improve the accuracy of present predictors of wave setup. The results show that the new predictors outperform existing formulas demonstrating the capability of machine learning models to provide a physically sound description of wave setup.
Altmetrics
Final-revised paper
Preprint