Articles | Volume 23, issue 6
https://doi.org/10.5194/nhess-23-2157-2023
https://doi.org/10.5194/nhess-23-2157-2023
Research article
 | 
16 Jun 2023
Research article |  | 16 Jun 2023

A predictive equation for wave setup using genetic programming

Charline Dalinghaus, Giovanni Coco, and Pablo Higuera

Related authors

Development and Validation of an Early Warning System for Coastal Flooding on a Mediterranean Urban Beach
Antonis Chatzipavlis, Daniele Trogu, Andrea Ruju, Juan Montes, Antonio Usai, Marco Porta, Giovanni Coco, Sandro De Muro, and Paolo Ciavola
EGUsphere, https://doi.org/10.5194/egusphere-2025-2292,https://doi.org/10.5194/egusphere-2025-2292, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Nationwide Application of a Rapid Tsunami Inundation Model to New Zealand: Assessing Infrastructure and Land Exposure
Tate Kimpton, Colin Whittaker, Pablo Higuera, and Liam Wotherspoon
EGUsphere, https://doi.org/10.5194/egusphere-2024-3724,https://doi.org/10.5194/egusphere-2024-3724, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
On the use of convolutional deep learning to predict shoreline change
Eduardo Gomez-de la Peña, Giovanni Coco, Colin Whittaker, and Jennifer Montaño
Earth Surf. Dynam., 11, 1145–1160, https://doi.org/10.5194/esurf-11-1145-2023,https://doi.org/10.5194/esurf-11-1145-2023, 2023
Short summary
Modelling extreme water levels using intertidal topography and bathymetry derived from multispectral satellite images
Wagner L. L. Costa, Karin R. Bryan, and Giovanni Coco
Nat. Hazards Earth Syst. Sci., 23, 3125–3146, https://doi.org/10.5194/nhess-23-3125-2023,https://doi.org/10.5194/nhess-23-3125-2023, 2023
Short summary
The role of geological mouth islands on the morphodynamics of back-barrier tidal basins
Yizhang Wei, Yining Chen, Jufei Qiu, Zeng Zhou, Peng Yao, Qin Jiang, Zheng Gong, Giovanni Coco, Ian Townend, and Changkuan Zhang
Earth Surf. Dynam., 10, 65–80, https://doi.org/10.5194/esurf-10-65-2022,https://doi.org/10.5194/esurf-10-65-2022, 2022
Short summary

Related subject area

Sea, Ocean and Coastal Hazards
Advancing nearshore and onshore tsunami hazard approximation with machine learning surrogates
Naveen Ragu Ramalingam, Kendra Johnson, Marco Pagani, and Mario L. V. Martina
Nat. Hazards Earth Syst. Sci., 25, 1655–1679, https://doi.org/10.5194/nhess-25-1655-2025,https://doi.org/10.5194/nhess-25-1655-2025, 2025
Short summary
Untangling the waves: decomposing extreme sea levels in a non-tidal basin, the Baltic Sea
Marvin Lorenz, Katri Viigand, and Ulf Gräwe
Nat. Hazards Earth Syst. Sci., 25, 1439–1458, https://doi.org/10.5194/nhess-25-1439-2025,https://doi.org/10.5194/nhess-25-1439-2025, 2025
Short summary
Accelerating compound flood risk assessments through active learning: A case study of Charleston County (USA)
Lucas Terlinden-Ruhl, Anaïs Couasnon, Dirk Eilander, Gijs G. Hendrickx, Patricia Mares-Nasarre, and José A. Á. Antolínez
Nat. Hazards Earth Syst. Sci., 25, 1353–1375, https://doi.org/10.5194/nhess-25-1353-2025,https://doi.org/10.5194/nhess-25-1353-2025, 2025
Short summary
Tsunami detection methods for ocean-bottom pressure gauges
Cesare Angeli, Alberto Armigliato, Martina Zanetti, Filippo Zaniboni, Fabrizio Romano, Hafize Başak Bayraktar, and Stefano Lorito
Nat. Hazards Earth Syst. Sci., 25, 1169–1185, https://doi.org/10.5194/nhess-25-1169-2025,https://doi.org/10.5194/nhess-25-1169-2025, 2025
Short summary
Using random forests to forecast daily extreme sea level occurrences at the Baltic Coast
Kai Bellinghausen, Birgit Hünicke, and Eduardo Zorita
Nat. Hazards Earth Syst. Sci., 25, 1139–1162, https://doi.org/10.5194/nhess-25-1139-2025,https://doi.org/10.5194/nhess-25-1139-2025, 2025
Short summary

Cited articles

Battjes, J. A.: Computation of set-up, longshore currents, run-up and overtopping due to wind-generated waves, Ph.D. thesis, Delft University of Technology, http://resolver.tudelft.nl/uuid:e126e043-a858-4e58-b4c7-8a7bc5be1a44 (last access: 5 April 2022), 1974. a, b, c
Beuzen, T. and Splinter, K.: Machine learning and coastal processes, in: Sandy Beach Morphodynamics, edited by: Jackson, D. W. T. and Short, A. D., 689–710, Elsevier, https://doi.org/10.1016/B978-0-08-102927-5.00028-X, 2020. a, b
Bowen, A., Inman, D., and Simmons, V.: Wave “set-down”and set-up, J. Geophys. Res., 73, 2569–2577, https://doi.org/10.1029/JB073i008p02569, 1968. a, b, c, d, e
Camus, P., Mendez, F. J., and Medina, R.: A hybrid efficient method to downscale wave climate to coastal areas, Coast. Eng., 58, 851–862, https://doi.org/10.1016/j.coastaleng.2011.05.007, 2011. a, b
Coast and Ocean Collective: Data, Coast and Ocean Collective [data set], https://coastalhub.science/data (last access: 8 November 2022), 2019. a
Download
Short summary
Wave setup is a critical component of coastal flooding. Consequently, understanding and being able to predict wave setup is vital to protect coastal resources and the population living near the shore. Here, we applied machine learning to improve the accuracy of present predictors of wave setup. The results show that the new predictors outperform existing formulas demonstrating the capability of machine learning models to provide a physically sound description of wave setup.
Share
Altmetrics
Final-revised paper
Preprint