Articles | Volume 23, issue 4
https://doi.org/10.5194/nhess-23-1409-2023
https://doi.org/10.5194/nhess-23-1409-2023
Research article
 | 
18 Apr 2023
Research article |  | 18 Apr 2023

An assessment of short–medium-term interventions using CAESAR-Lisflood in a post-earthquake mountainous area

Di Wang, Ming Wang, Kai Liu, and Jun Xie

Related authors

Projecting changes in rainfall-induced landslide susceptibility across China under climate change
Jinqi Wang, Hao Fang, Kai Liu, Yi Yue, Ming Wang, Bohao Li, and Xiaoyi Miao
EGUsphere, https://doi.org/10.5194/egusphere-2025-3834,https://doi.org/10.5194/egusphere-2025-3834, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Spatial accessibility of emergency medical services under inclement weather: a case study in Beijing, China
Yuting Zhang, Kai Liu, Xiaoyong Ni, Ming Wang, Jianchun Zheng, Mengting Liu, and Dapeng Yu
Nat. Hazards Earth Syst. Sci., 24, 63–77, https://doi.org/10.5194/nhess-24-63-2024,https://doi.org/10.5194/nhess-24-63-2024, 2024
Short summary
Flood detection using Gravity Recovery and Climate Experiment (GRACE) terrestrial water storage and extreme precipitation data
Jianxin Zhang, Kai Liu, and Ming Wang
Earth Syst. Sci. Data, 15, 521–540, https://doi.org/10.5194/essd-15-521-2023,https://doi.org/10.5194/essd-15-521-2023, 2023
Short summary
GPRChinaTemp1km: a high-resolution monthly air temperature data set for China (1951–2020) based on machine learning
Qian He, Ming Wang, Kai Liu, Kaiwen Li, and Ziyu Jiang
Earth Syst. Sci. Data, 14, 3273–3292, https://doi.org/10.5194/essd-14-3273-2022,https://doi.org/10.5194/essd-14-3273-2022, 2022
Short summary
System vulnerability to flood events and risk assessment of railway systems based on national and river basin scales in China
Weihua Zhu, Kai Liu, Ming Wang, Philip J. Ward, and Elco E. Koks
Nat. Hazards Earth Syst. Sci., 22, 1519–1540, https://doi.org/10.5194/nhess-22-1519-2022,https://doi.org/10.5194/nhess-22-1519-2022, 2022
Short summary

Cited articles

Bates, P. D., Horritt, M. S., and Fewtrell, T. J.: A simple inertial formulation of the shallow water equations for efficient two-dimensional flood inundation modelling, J. Hydrol., 387, 33–45, https://doi.org/10.1016/j.jhydrol.2010.03.027, 2010. 
Beven, K.: Linking parameters across scales: subgrid parameterizations and scale dependent hydrological models, Hydrol. Process., 9, 507–525, https://doi.org/10.1002/hyp.3360090504, 1995. 
Beven, K.: TOPMODEL: A critical, Hydrol. Process., 11, 1069–1085, https://doi.org/10.1002/(SICI)1099-1085(199707)11:9<1069::AID-HYP545>3.0.CO;2-O, 1997. 
Beven, K. J. and Kirkby, M. J.: A physically based, variable contributing area model of basin hydrology, Hydrol. Sci. B., 24, 43–69, https://doi.org/10.1080/02626667909491834, 1979. 
CAESAR-Lisflood team: CAESAR-Lisflood [code], https://sourceforge.net/projects/caesar-lisflood/, last access: 30 March 2023. 
Download
Short summary
The short–medium-term intervention effect on the post-earthquake area was analysed by simulations in different scenarios. The sediment transport patterns varied in different sub-regions, and the relative effectiveness in different scenarios changed over time with a general downward trend, where the steady stage implicated the scenario with more facilities performing better in controlling sediment output. Therefore, the simulation methods could support optimal rehabilitation strategies.
Share
Altmetrics
Final-revised paper
Preprint