Articles | Volume 23, issue 4
https://doi.org/10.5194/nhess-23-1241-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-23-1241-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Debris-flow surges of a very active alpine torrent: a field database
Suzanne Lapillonne
CORRESPONDING AUTHOR
Univ. Grenoble Alpes, INRAE, CNRS, IRD, Grenoble INP, IGE, Grenoble, France
Firmin Fontaine
Univ. Grenoble Alpes, INRAE, CNRS, IRD, Grenoble INP, IGE, Grenoble, France
Frédéric Liebault
Univ. Grenoble Alpes, INRAE, CNRS, IRD, Grenoble INP, IGE, Grenoble, France
Vincent Richefeu
Univ. Grenoble Alpes, 3SR, Gières, France
Guillaume Piton
Univ. Grenoble Alpes, INRAE, CNRS, IRD, Grenoble INP, IGE, Grenoble, France
Related authors
Suzanne Lapillonne, Georgios Fourtakas, Vincent Richefeu, Guillaume Piton, and Guillaume Chambon
EGUsphere, https://doi.org/10.22541/au.170628457.73131740/v2, https://doi.org/10.22541/au.170628457.73131740/v2, 2024
Short summary
Short summary
Debris flows are fast flowing flows saturated with granular material. They naturally occur in steep creeks and are a threat to local communities. Scientists turn to numerical models to better understand how they behave. We investigate the accuracy of a numerical model which relies on modelling the debris flow as a mixture of a granular phase and a fluid phase. We focus on a demonstration of the capacity of the model to reliably represent the behaviour of the flow at different scales.
Loïs Ribet, Frédéric Liébault, Laurent Borgniet, Michaël Deschâtres, and Gabriel Melun
Earth Surf. Dynam., 13, 607–627, https://doi.org/10.5194/esurf-13-607-2025, https://doi.org/10.5194/esurf-13-607-2025, 2025
Short summary
Short summary
This work presents a protocol and a model to obtain the sizes of the pebbles in mountain rivers from uncrewed aerial vehicle images. A total of 12 rivers located in southeastern France were photographed to build the model. The results show that the model has little error and should be usable for similar rivers. The grain size of mountain rivers is an important parameter for environmental diagnostics by mapping the aquatic habitats and for flood management by estimating the pebble fluxes during floods.
Miao Huo, Stéphane Lambert, Firmin Fontaine, and Guillaume Piton
EGUsphere, https://doi.org/10.5194/egusphere-2024-3575, https://doi.org/10.5194/egusphere-2024-3575, 2024
Short summary
Short summary
The presented study mainly describes the loading on a flexible barrier at rest in order that the static component of the force exerted by the dead zone received limited attention up to now. Four interaction modes are identified from a gentle flow stopping to high granular jump and/or overtopping. Interestingly, overflow resulted in a significant increase in the residual load and were almost twice that observed in the absence of overflow.
Suzanne Lapillonne, Georgios Fourtakas, Vincent Richefeu, Guillaume Piton, and Guillaume Chambon
EGUsphere, https://doi.org/10.22541/au.170628457.73131740/v2, https://doi.org/10.22541/au.170628457.73131740/v2, 2024
Short summary
Short summary
Debris flows are fast flowing flows saturated with granular material. They naturally occur in steep creeks and are a threat to local communities. Scientists turn to numerical models to better understand how they behave. We investigate the accuracy of a numerical model which relies on modelling the debris flow as a mixture of a granular phase and a fluid phase. We focus on a demonstration of the capacity of the model to reliably represent the behaviour of the flow at different scales.
Sebastien Klotz, Caroline Le Bouteiller, Nicolle Mathys, Firmin Fontaine, Xavier Ravanat, Jean-Emmanuel Olivier, Frédéric Liébault, Hugo Jantzi, Patrick Coulmeau, Didier Richard, Jean-Pierre Cambon, and Maurice Meunier
Earth Syst. Sci. Data, 15, 4371–4388, https://doi.org/10.5194/essd-15-4371-2023, https://doi.org/10.5194/essd-15-4371-2023, 2023
Short summary
Short summary
Mountain badlands are places of intense erosion. They deliver large amounts of sediment to river systems, with consequences for hydropower sustainability, habitat quality and biodiversity, and flood hazard and river management. Draix-Bleone Observatory was created in 1983 to understand and quantify sediment delivery from such badland areas. Our paper describes how water and sediment fluxes have been monitored for almost 40 years in the small mountain catchments of this observatory.
Marie Dumont, Simon Gascoin, Marion Réveillet, Didier Voisin, François Tuzet, Laurent Arnaud, Mylène Bonnefoy, Montse Bacardit Peñarroya, Carlo Carmagnola, Alexandre Deguine, Aurélie Diacre, Lukas Dürr, Olivier Evrard, Firmin Fontaine, Amaury Frankl, Mathieu Fructus, Laure Gandois, Isabelle Gouttevin, Abdelfateh Gherab, Pascal Hagenmuller, Sophia Hansson, Hervé Herbin, Béatrice Josse, Bruno Jourdain, Irene Lefevre, Gaël Le Roux, Quentin Libois, Lucie Liger, Samuel Morin, Denis Petitprez, Alvaro Robledano, Martin Schneebeli, Pascal Salze, Delphine Six, Emmanuel Thibert, Jürg Trachsel, Matthieu Vernay, Léo Viallon-Galinier, and Céline Voiron
Earth Syst. Sci. Data, 15, 3075–3094, https://doi.org/10.5194/essd-15-3075-2023, https://doi.org/10.5194/essd-15-3075-2023, 2023
Short summary
Short summary
Saharan dust outbreaks have profound effects on ecosystems, climate, health, and the cryosphere, but the spatial deposition pattern of Saharan dust is poorly known. Following the extreme dust deposition event of February 2021 across Europe, a citizen science campaign was launched to sample dust on snow over the Pyrenees and the European Alps. This campaign triggered wide interest and over 100 samples. The samples revealed the high variability of the dust properties within a single event.
Maxime Morel, Guillaume Piton, Damien Kuss, Guillaume Evin, and Caroline Le Bouteiller
Nat. Hazards Earth Syst. Sci., 23, 1769–1787, https://doi.org/10.5194/nhess-23-1769-2023, https://doi.org/10.5194/nhess-23-1769-2023, 2023
Short summary
Short summary
In mountain catchments, damage during floods is generally primarily driven by the supply of a massive amount of sediment. Predicting how much sediment can be delivered by frequent and infrequent events is thus important in hazard studies. This paper uses data gathered during the maintenance operation of about 100 debris retention basins to build simple equations aiming at predicting sediment supply from simple parameters describing the upstream catchment.
Guillaume Piton, Toshiyuki Horiguchi, Lise Marchal, and Stéphane Lambert
Nat. Hazards Earth Syst. Sci., 20, 3293–3314, https://doi.org/10.5194/nhess-20-3293-2020, https://doi.org/10.5194/nhess-20-3293-2020, 2020
Short summary
Short summary
Open check dams are flood protection structures trapping sediment and large wood. Large wood obstructs openings of dams, thus increasing flow levels. If flow levels become higher than the dam crest, the trapped large wood may overtop the structure and be suddenly released downstream, which may also eventually obstruct downstream bridges. This paper is based on experiments on small-scale models. It shows how to compute the increase in flow level and conditions leading to sudden overtopping.
Cited articles
Abancó, C., Hürlimann, M., Fritschi, B., Graf, C., and Moya, J.: Transformation of Ground Vibration Signal for Debris-Flow Monitoring and Detection in Alarm Systems, Sensors, 12, 4870–4891, https://doi.org/10.3390/s120404870, 2012. a
Albaba, A., Lambert, S., Nicot, F., and Chareyre, B.: Modeling the Impact of Granular Flow against an Obstacle, in: Recent Advances in Modeling Landslides and Debris Flows, edited by: Wu, W., Springer International Publishing, 95–105, https://doi.org/10.1007/978-3-319-11053-0_9, 2015. a
Arattano, M., Abancó, C., Coviello, V., and Hürlimann, M.: Processing the ground vibration signal produced by debris flows: the methods of amplitude and impulses compared, Comput. Geosci., 73, 17–27, https://doi.org/10.1016/j.cageo.2014.08.005, 2014. a
Bardou, E., Ancey, C., Bonnard, C., and Vulliet, L.: Classification of debris-flow deposits for hazard assessment in alpine areas, in: 3th International Conference on Debris-Flow hazards mitigation: mechanics, prediction, and assessment, Davos, Switzerland, Millpress, 799–808, 2003. a
Ceccato, F., Redaelli, I., di Prisco, C., and Simonini, P.: Impact forces of granular flows on rigid structures: Comparison between discontinuous (DEM) and continuous (MPM) numerical approaches, Comput. Geotech., 103, 201–217, 2018. a
Chen, J., Wang, D., Zhao, W., Chen, H., Wang, T., Nepal, N., and Chen, X.: Laboratory study on the characteristics of large wood and debris flow processes at slit-check dams, Landslides, 17, 1703–1711, https://doi.org/10.1007/s10346-020-01409-3, 2020. a
Chmiel, M., Godano, M., Piantini, M., Brigode, P., Gimbert, F., Bakker, M., Courboulex, F., Ampuero, J.-P., Rivet, D., Sladen, A., Ambrois, D., and Chapuis, M.: Brief communication: Seismological analysis of flood dynamics and hydrologically triggered earthquake swarms associated with Storm Alex, Nat. Hazards Earth Syst. Sci., 22, 1541–1558, https://doi.org/10.5194/nhess-22-1541-2022, 2022. a
Cucchiaro, S., Cavalli, M., Vericat, D., Crema, S., Llena, M., Beinat, A., Marchi, L., and Cazorzi, F.: Monitoring topographic changes through 4D-structure-from-motion photogrammetry: application to a debris-flow channel, Environ. Earth Sci., 77, 632, https://doi.org/10.1007/s12665-018-7817-4, 2018. a
Cucchiaro, S., Cavalli, M., Vericat, D., Crema, S., Llena, M., Beinat, A., Marchi, L., and Cazorzi, F.: Geomorphic effectiveness of check dams in a debris-flow catchment using multi-temporal topographic surveys, CATENA, 174, 73–83, https://doi.org/10.1016/j.catena.2018.11.004, 2019a. a
Cucchiaro, S., Cazorzi, F., Marchi, L., Crema, S., Beinat, A., and Cavalli, M.: Multi-temporal analysis of the role of check dams in a debris-flow channel: Linking structural and functional connectivity, Geomorphology, 345, 106844, https://doi.org/10.1016/j.geomorph.2019.106844, 2019b. a
de Haas, T., McArdell, B. W., Nijland, W., Åberg, A. S., Hirschberg, J., and Huguenin, P.: Flow and Bed Conditions Jointly Control Debris-Flow Erosion and Bulking, Geophys. Res. Lett., 49, e2021GL097611, https://doi.org/10.1029/2021GL097611, 2022. a, b, c
Faug, T., Caccamo, P., and Chanut, B.: A scaling law for impact force of a granular avalanche flowing past a wall, Geophys. Res. Lett., 39, L23401, https://doi.org/10.1029/2012gl054112, 2012. a
Fontaine, F., Bel, C., Bellot, H., Piton, G., Liebault, F., Juppet, M., and Royer, K.: Suivi automatisé des crues à fort transport solide dans les torrents: stratégie de mesure et potentiel des données collectées, in: Collection EDYTEM, Monitoring en milieux naturels – Retours d'expériences en terrains difficiles, 19, 213–220, https://hal.archives-ouvertes.fr/hal-01656535 (last access: 17 March 2023), 2017. a, b
Goodwin, G. R. and Choi, C. E.: A depth-averaged SPH study on spreading mechanisms of geophysical flows in debris basins: Implications for terminal barrier design requirements, Comput. Geotech., 141, 104503, https://doi.org/10.1016/j.compgeo.2021.104503, 2022. a
Guo, X., Li, Y., Cui, P., Yan, H., and Zhuang, J.: Intermittent viscous debris flow formation in Jiangjia Gully from the perspectives of hydrological processes and material supply, J. Hydrol., 589, 125184, https://doi.org/10.1016/j.jhydrol.2020.125184, 2020. a, b, c, d
Hürlimann, M., Rickenmann, D., and Graf, C.: Field and monitoring data of debris-flow events in the Swiss Alps, Can. Geotech. J., 40, 161–175, https://doi.org/10.1139/t02-087, 2003. a
Hürlimann, M., Coviello, V., Bel, C., Guo, X., Berti, M., Graf, C., Hübl, J., Miyata, S., Smith, J. B., and Yin, H.-Y.: Debris-flow monitoring and warning: Review and examples, Earth-Sci. Rev., 199, 102981, https://doi.org/10.1016/j.earscirev.2019.102981, 2019. a, b, c
Jacquemart, M., Meier, L., Graf, C., and Morsdorf, F.: 3D dynamics of debris flows quantified at sub-second intervals from laser profiles, Nat. Hazards, 89, 785–800, https://doi.org/10.1007/s11069-017-2993-1, 2017. a
Jakob, M. and Hungr, O.: Debris-flow Hazards and Related Phenomena, Springer Praxis Books, Springer Berlin Heidelberg, IBSN: 978-3-540-27129-1, 2005. a
Kaitna, R. and Hübl, J.: Monitoring debris-flow surges and triggering rainfall at the Lattenbach creek, Austria, Environ. Eng. Geosci., 27, 213–220, 2021. a
Laigle, D. and Labbe, M.: SPH-Based Numerical Study of the Impact of Mudflows on Obstacles, International Journal of Erosion Control Engineering, 10, 56–66, 2017. a
Marchi, L., Cazorzi, F., Arattano, M., Cucchiaro, S., Cavalli, M., and Crema, S.: Debris flows recorded in the Moscardo catchment (Italian Alps) between 1990 and 2019, Nat. Hazards Earth Syst. Sci., 21, 87–97, https://doi.org/10.5194/nhess-21-87-2021, 2021. a
McArdell, B. W. and Hirschberg, J.: Debris-flow volumes at the Illgraben 2000-2017, EnviDat [data set], https://doi.org/10.16904/envidat.173, 2020. a, b, c
McCoy, S. W., Kean, J. W., Coe, J. A., Tucker, G. E., Staley, D. M., and Wasklewicz, T. A.: Sediment entrainment by debris flows: In situ measurements from the headwaters of a steep catchment, J. Geophys. Res., 117, F03016, https://doi.org/10.1029/2011JF002278, 2012. a, b, c
Mitchell, A., Zubrycky, S., McDougall, S., Aaron, J., Jacquemart, M., Hübl, J., Kaitna, R., and Graf, C.: Variable hydrograph inputs for a numerical debris-flow runout model, Nat. Hazards Earth Syst. Sci., 22, 1627–1654, https://doi.org/10.5194/nhess-22-1627-2022, 2022. a
Nagl, G., Hübl, J., and Kaitna, R.: Stress anisotropy in natural debris flows during impacting a monitoring structure, Landslides, 19, 211–220, 2022. a
Navratil, O., Liébault, F., Bellot, H., Theule, J., Ravanat, X., Ousset, F., Laigle, D., Segel, V., and Fiquet, M.: Installation d'un suivi en continu des crues et laves torrentielles dans les Alpes françaises, Journée de Rencontre sur les Dangers Naturels, Institut de Géomatique et d'Analyse du Risque, 8 pp., https://hal.science/hal-00615484 (last access: 17 March 2023), 2011. a
Ng, C. W. W., Liu, H., Choi, C. E., Kwan, J. S. H., and Pun, W. K.: Impact dynamics of boulder-enriched debris flow on a rigid barrier, J. Geotech. Geoenviron., 147, 04021004, https://doi.org/10.1061/(ASCE)GT.1943-5606.0002485, 2020. a, b
Piton, G., Berthet, J., Bel, C., Fontaine, F., Bellot, H., Malet, E., Astrade, L., Recking, A., Liebault, F., Astier, G., Juppet, M., and Royer, K.: Dynamique géomorphologique des torrents: intérêt de l’emploi des appareils photographiques automatiques, Collection EDYTEM,
in: Monitoring en milieux naturels – Retours d'expériences en terrains difficiles, Collection EDYTEM. Cahiers de géographie, 19, 205–212, https://hal.archives-ouvertes.fr/hal-01635571, 2017. a
Simoni, A., Bernard, M., Berti, M., Boreggio, M., Lanzoni, S., Stancanelli, L. M., and Gregoretti, C.: Runoff-generated debris flows: Observation of initiation conditions and erosion–deposition dynamics along the channel at Cancia (eastern Italian Alps), Earth Surf. Proc. Land., 45, 3556–3571, https://doi.org/10.1002/esp.4981, 2020.
a, b
Suwa, H., Okano, K., and Kanno, T.: Forty years of debris flow monitoring at Kamikamihorizawa Creek, Mount Yakedake, Japan, in: 5th international conference on debris-flow hazards mitigation: mechanics, prediction and assessment, Casa Editrice UniversitaLa Sapienza, Roma, 605–613, https://doi.org/10.4408/IJEGE.2011-03.B-066, 2011. a
Takahashi, T.: Debris flow: mechanics, prediction and countermeasures, 2nd edn. CRC Press, ISBN 978-1138000070, 2014. a
Theule, J. I., Liébault, F., Loye, A., Laigle, D., and Jaboyedoff, M.: Sediment budget monitoring of debris-flow and bedload transport in the Manival Torrent, SE France, Nat. Hazards Earth Syst. Sci., 12, 731–749, https://doi.org/10.5194/nhess-12-731-2012, 2012. a
Theule, J. I., Liébault, F., Laigle, D., Loye, A., and Jaboyedoff, M.: Channel scour and fill by debris flows and bedload transport, Geomorphology, 243, 92–105, https://doi.org/10.1016/j.geomorph.2015.05.003, 2015. a, b
Short summary
Debris flows are fast flows most often found in torrential watersheds. They are composed of two phases: a liquid phase which can be mud-like and a granular phase, including large boulders, transported along with the flow. Due to their destructive nature, accessing features of the flow, such as velocity and flow height, is difficult. We present a protocol to analyse debris flow data and results of the Réal torrent in France. These results will help experts in designing models.
Debris flows are fast flows most often found in torrential watersheds. They are composed of two...
Altmetrics
Final-revised paper
Preprint