Articles | Volume 21, issue 3
https://doi.org/10.5194/nhess-21-861-2021
https://doi.org/10.5194/nhess-21-861-2021
Research article
 | 
05 Mar 2021
Research article |  | 05 Mar 2021

Simulating synthetic tropical cyclone tracks for statistically reliable wind and pressure estimations

Kees Nederhoff, Jasper Hoek, Tim Leijnse, Maarten van Ormondt, Sofia Caires, and Alessio Giardino

Related authors

A subgrid method for the linear inertial equations of a compound flood model
Maarten van Ormondt, Tim Leijnse, Roel de Goede, Kees Nederhoff, and Ap van Dongeren
EGUsphere, https://doi.org/10.5194/egusphere-2024-1839,https://doi.org/10.5194/egusphere-2024-1839, 2024
Short summary
Accounting for uncertainties in forecasting tropical-cyclone-induced compound flooding
Kees Nederhoff, Maarten van Ormondt, Jay Veeramony, Ap van Dongeren, José Antonio Álvarez Antolínez, Tim Leijnse, and Dano Roelvink
Geosci. Model Dev., 17, 1789–1811, https://doi.org/10.5194/gmd-17-1789-2024,https://doi.org/10.5194/gmd-17-1789-2024, 2024
Short summary
Generating reliable estimates of tropical-cyclone-induced coastal hazards along the Bay of Bengal for current and future climates using synthetic tracks
Tim Willem Bart Leijnse, Alessio Giardino, Kees Nederhoff, and Sofia Caires
Nat. Hazards Earth Syst. Sci., 22, 1863–1891, https://doi.org/10.5194/nhess-22-1863-2022,https://doi.org/10.5194/nhess-22-1863-2022, 2022
Short summary
The effect of changing sea ice on wave climate trends along Alaska's central Beaufort Sea coast
Kees Nederhoff, Li Erikson, Anita Engelstad, Peter Bieniek, and Jeremy Kasper
The Cryosphere, 16, 1609–1629, https://doi.org/10.5194/tc-16-1609-2022,https://doi.org/10.5194/tc-16-1609-2022, 2022
Short summary
Estimates of tropical cyclone geometry parameters based on best-track data
Kees Nederhoff, Alessio Giardino, Maarten van Ormondt, and Deepak Vatvani
Nat. Hazards Earth Syst. Sci., 19, 2359–2370, https://doi.org/10.5194/nhess-19-2359-2019,https://doi.org/10.5194/nhess-19-2359-2019, 2019
Short summary

Related subject area

Atmospheric, Meteorological and Climatological Hazards
Reconstructing hail days in Switzerland with statistical models (1959–2022)
Lena Wilhelm, Cornelia Schwierz, Katharina Schröer, Mateusz Taszarek, and Olivia Martius
Nat. Hazards Earth Syst. Sci., 24, 3869–3894, https://doi.org/10.5194/nhess-24-3869-2024,https://doi.org/10.5194/nhess-24-3869-2024, 2024
Short summary
GTDI: a game-theory-based integrated drought index implying hazard-causing and hazard-bearing impact change
Xiaowei Zhao, Tianzeng Yang, Hongbo Zhang, Tian Lan, Chaowei Xue, Tongfang Li, Zhaoxia Ye, Zhifang Yang, and Yurou Zhang
Nat. Hazards Earth Syst. Sci., 24, 3479–3495, https://doi.org/10.5194/nhess-24-3479-2024,https://doi.org/10.5194/nhess-24-3479-2024, 2024
Short summary
Insurance loss model vs. meteorological loss index – how comparable are their loss estimates for European windstorms?
Julia Moemken, Inovasita Alifdini, Alexandre M. Ramos, Alexandros Georgiadis, Aidan Brocklehurst, Lukas Braun, and Joaquim G. Pinto
Nat. Hazards Earth Syst. Sci., 24, 3445–3460, https://doi.org/10.5194/nhess-24-3445-2024,https://doi.org/10.5194/nhess-24-3445-2024, 2024
Short summary
Intense rains in Israel associated with the train effect
Baruch Ziv, Uri Dayan, Lidiya Shendrik, and Elyakom Vadislavsky
Nat. Hazards Earth Syst. Sci., 24, 3267–3277, https://doi.org/10.5194/nhess-24-3267-2024,https://doi.org/10.5194/nhess-24-3267-2024, 2024
Short summary
Convection-permitting climate model representation of severe convective wind gusts and future changes in southeastern Australia
Andrew Brown, Andrew Dowdy, and Todd P. Lane
Nat. Hazards Earth Syst. Sci., 24, 3225–3243, https://doi.org/10.5194/nhess-24-3225-2024,https://doi.org/10.5194/nhess-24-3225-2024, 2024
Short summary

Cited articles

Arthur, W. C.: A statistical-parametric model of tropical cyclones for hazard assessment, Nat. Hazards Earth Syst. Sci. Discuss. [preprint], https://doi.org/10.5194/nhess-2019-192, in review, 2019. 
Bader, D. J.: Including stochastic rainfall distributions in a probabilistic modelling approach for compound flooding due to tropical cyclones, Delft University of Technology, available at: http://resolver.tudelft.nl/uuid:57b9e495-0c90-4cf5-ab22-e169fb908ac1 (last access: 1 March 2018), 2019. 
Bloemendaal, N., Haigh, I. D., de Moel, H., Muis, S., Haarsma, R. J., and Aerts, J. C. J. H.: Generation of a global synthetic tropical cyclone hazard dataset using STORM, Sci. Data, 7, 1–19, https://doi.org/10.1038/s41597-020-0381-2, 2020. 
Brzeźniak, Z. and Zastawniak, T.: Basic Stochastic Processes, Springer, London., 2000. 
Caires, S.: A Comparative Simulation Study of the Annual Maxima and the Peaks-Over-Threshold Methods, J. Offshore Mech. Arct., 138, 051601, https://doi.org/10.1115/1.4033563, 2016. 
Short summary
The design of coastal protection affected by tropical cyclones is often based solely on the analysis of historical tropical cyclones (TCs). The simulation of numerous synthetic TC tracks based on historical data can overcome this limitation. In this paper, a new method for the generation of synthetic TC tracks is proposed, called the Tropical Cyclone Wind Statistical Estimation Tool (TCWiSE). TCWiSE can simulate thousands of tracks and wind fields in any oceanic basin based on any data source.
Altmetrics
Final-revised paper
Preprint