Articles | Volume 21, issue 11
Research article
22 Nov 2021
Research article |  | 22 Nov 2021

Multiscale analysis of surface roughness for the improvement of natural hazard modelling

Natalie Brožová, Tommaso Baggio, Vincenzo D'Agostino, Yves Bühler, and Peter Bebi

Related authors

H. Bernsteiner, N. Brožová, I. Eischeid, A. Hamer, S. Haselberger, M. Huber, A. Kollert, T. M. Vandyk, and F. Pirotti
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-3-2020, 431–437,,, 2020

Related subject area

Databases, GIS, Remote Sensing, Early Warning Systems and Monitoring Technologies
A neural network model for automated prediction of avalanche danger level
Vipasana Sharma, Sushil Kumar, and Rama Sushil
Nat. Hazards Earth Syst. Sci., 23, 2523–2530,,, 2023
Short summary
Fixed photogrammetric systems for natural hazard monitoring with high spatio-temporal resolution
Xabier Blanch, Marta Guinau, Anette Eltner, and Antonio Abellan
Nat. Hazards Earth Syst. Sci. Discuss.,,, 2023
Revised manuscript accepted for NHESS
Short summary
Brief communication: Landslide activity on the Argentinian Santa Cruz River mega dam works confirmed by PSI DInSAR
Guillermo Tamburini-Beliveau, Sebastián Balbarani, and Oriol Monserrat
Nat. Hazards Earth Syst. Sci., 23, 1987–1999,,, 2023
Short summary
Inform@Risk. The Development of a Prototype for an Integrated Landslide Early Warning System in an Informal Settlement: the Case of Bello Oriente in Medellín, Colombia
Christian Werthmann, Marta Sapena, Marlene Kühnl, John Singer, Carolina Garcia, Bettina Menschik, Heike Schäfer, Sebastian Schröck, Lisa Seiler, Kurosch Thuro, and Hannes Taubenböck
Nat. Hazards Earth Syst. Sci. Discuss.,,, 2023
Revised manuscript under review for NHESS
Short summary
Impact of topography on in situ soil wetness measurements for regional landslide early warning – a case study from the Swiss Alpine Foreland
Adrian Wicki, Peter Lehmann, Christian Hauck, and Manfred Stähli
Nat. Hazards Earth Syst. Sci., 23, 1059–1077,,, 2023
Short summary

Cited articles

Amman, M.: Schutzwirkung abgestorbener Bäume gegen Naturgefahren, PhD thesis, Eidgenössische Forschungsanstalt für Wald, Schnee und Landschaft, ETH Zürich, Zurich, Switzerland, 240 pp., 2006. 
Baggio, T.: TommBagg/terrain_roughness_GRASS: Roughness calculation in GRASS, v1.0, Zenodo [code],, 2021. 
Baroni, C., Armiraglio, S., Gentili, R., and Carton, A.: Landform-vegetation units for investigating the dynamics and geomorphologic evolution of alpine composite debris cones (Valle dell'Avio, Adamello Group, Italy), Geomorphology, 84, 59–79,, 2007. 
Bartelt, P., Bühler, Y., Christen, M., Deubelbeiss, Y., Salz, M., Schneider, M., and Schumacher, L.: A numerical model for snow avalanches in research and practice, RAMMS User Manual v. 1.7. 0 Avalanche, WSL Institute for Snow and Avalanche Research SLF, Davos, 104 pp., 2017. 
Bebi, P., Kulakowski, D., and Rixen, C.: Snow avalanche disturbances in forest ecosystems-State of research and implications for management, Forest. Ecol. Manag., 257, 1883–1892,, 2009. 
Short summary
Surface roughness plays a great role in natural hazard processes but is not always well implemented in natural hazard modelling. The results of our study show how surface roughness can be useful in representing vegetation and ground structures, which are currently underrated. By including surface roughness in natural hazard modelling, we could better illustrate the processes and thus improve hazard mapping, which is crucial for infrastructure and settlement planning in mountainous areas.
Final-revised paper