Articles | Volume 21, issue 11
https://doi.org/10.5194/nhess-21-3539-2021
https://doi.org/10.5194/nhess-21-3539-2021
Research article
 | 
22 Nov 2021
Research article |  | 22 Nov 2021

Multiscale analysis of surface roughness for the improvement of natural hazard modelling

Natalie Brožová, Tommaso Baggio, Vincenzo D'Agostino, Yves Bühler, and Peter Bebi

Related authors

Where to start with climate-smart forest management? Climatic risk for forest-based mitigation
Natalie Piazza, Luca Malanchini, Edoardo Nevola, and Giorgio Vacchiano
Nat. Hazards Earth Syst. Sci., 24, 3579–3595, https://doi.org/10.5194/nhess-24-3579-2024,https://doi.org/10.5194/nhess-24-3579-2024, 2024
Short summary
MACHINE LEARNING FOR CLASSIFICATION OF AN ERODING SCARP SURFACE USING TERRESTRIAL PHOTOGRAMMETRY WITH NIR AND RGB IMAGERY
H. Bernsteiner, N. Brožová, I. Eischeid, A. Hamer, S. Haselberger, M. Huber, A. Kollert, T. M. Vandyk, and F. Pirotti
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-3-2020, 431–437, https://doi.org/10.5194/isprs-annals-V-3-2020-431-2020,https://doi.org/10.5194/isprs-annals-V-3-2020-431-2020, 2020

Related subject area

Databases, GIS, Remote Sensing, Early Warning Systems and Monitoring Technologies
Review article: Physical vulnerability database for critical infrastructure hazard risk assessments – a systematic review and data collection
Sadhana Nirandjan, Elco E. Koks, Mengqi Ye, Raghav Pant, Kees C. H. Van Ginkel, Jeroen C. J. H. Aerts, and Philip J. Ward
Nat. Hazards Earth Syst. Sci., 24, 4341–4368, https://doi.org/10.5194/nhess-24-4341-2024,https://doi.org/10.5194/nhess-24-4341-2024, 2024
Short summary
Exploring drought hazard, vulnerability, and related impacts on agriculture in Brandenburg
Fabio Brill, Pedro Henrique Lima Alencar, Huihui Zhang, Friedrich Boeing, Silke Hüttel, and Tobia Lakes
Nat. Hazards Earth Syst. Sci., 24, 4237–4265, https://doi.org/10.5194/nhess-24-4237-2024,https://doi.org/10.5194/nhess-24-4237-2024, 2024
Short summary
Dynamical changes in seismic properties prior to, during, and after the 2014–2015 Holuhraun eruption, Iceland
Maria R. P. Sudibyo, Eva P. S. Eibl, Sebastian Hainzl, and Matthias Ohrnberger
Nat. Hazards Earth Syst. Sci., 24, 4075–4089, https://doi.org/10.5194/nhess-24-4075-2024,https://doi.org/10.5194/nhess-24-4075-2024, 2024
Short summary
The World Wide Lightning Location Network (WWLLN) over Spain
Enrique A. Navarro, Jorge A. Portí, Alfonso Salinas, Sergio Toledo-Redondo, Jaume Segura-García, Aida Castilla, Víctor Montagud-Camps, and Inmaculada Albert
Nat. Hazards Earth Syst. Sci., 24, 3925–3943, https://doi.org/10.5194/nhess-24-3925-2024,https://doi.org/10.5194/nhess-24-3925-2024, 2024
Short summary
AscDAMs: advanced SLAM-based channel detection and mapping system
Tengfei Wang, Fucheng Lu, Jintao Qin, Taosheng Huang, Hui Kong, and Ping Shen
Nat. Hazards Earth Syst. Sci., 24, 3075–3094, https://doi.org/10.5194/nhess-24-3075-2024,https://doi.org/10.5194/nhess-24-3075-2024, 2024
Short summary

Cited articles

Amman, M.: Schutzwirkung abgestorbener Bäume gegen Naturgefahren, PhD thesis, Eidgenössische Forschungsanstalt für Wald, Schnee und Landschaft, ETH Zürich, Zurich, Switzerland, 240 pp., 2006. 
Baggio, T.: TommBagg/terrain_roughness_GRASS: Roughness calculation in GRASS, v1.0, Zenodo [code], https://doi.org/10.5281/zenodo.5675833, 2021. 
Baroni, C., Armiraglio, S., Gentili, R., and Carton, A.: Landform-vegetation units for investigating the dynamics and geomorphologic evolution of alpine composite debris cones (Valle dell'Avio, Adamello Group, Italy), Geomorphology, 84, 59–79, https://doi.org/10.1016/j.geomorph.2006.07.002, 2007. 
Bartelt, P., Bühler, Y., Christen, M., Deubelbeiss, Y., Salz, M., Schneider, M., and Schumacher, L.: A numerical model for snow avalanches in research and practice, RAMMS User Manual v. 1.7. 0 Avalanche, WSL Institute for Snow and Avalanche Research SLF, Davos, 104 pp., 2017. 
Bebi, P., Kulakowski, D., and Rixen, C.: Snow avalanche disturbances in forest ecosystems-State of research and implications for management, Forest. Ecol. Manag., 257, 1883–1892, https://doi.org/10.1016/j.foreco.2009.01.050, 2009. 
Download
Short summary
Surface roughness plays a great role in natural hazard processes but is not always well implemented in natural hazard modelling. The results of our study show how surface roughness can be useful in representing vegetation and ground structures, which are currently underrated. By including surface roughness in natural hazard modelling, we could better illustrate the processes and thus improve hazard mapping, which is crucial for infrastructure and settlement planning in mountainous areas.
Altmetrics
Final-revised paper
Preprint