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Abstract. Surface roughness influences the release of
avalanches and the dynamics of rockfall, avalanches and de-
bris flow, but it is often not objectively implemented in natu-
ral hazard modelling. For two study areas, a treeline ecotone
and a windthrow-disturbed forest landscape of the European
Alps, we tested seven roughness algorithms using a pho-
togrammetric digital surface model (DSM) with different res-
olutions (0.1, 0.5 and 1 m) and different moving-window ar-
eas (9, 25 and 49 m2). The vector ruggedness measure rough-
ness algorithm performed best overall in distinguishing be-
tween roughness categories relevant for natural hazard mod-
elling (including shrub forest, high forest, windthrow, snow
and rocky land cover). The results with 1 m resolution were
found to be suitable to distinguish between the roughness cat-
egories of interest, and the performance did not increase with
higher resolution. In order to improve the roughness calcula-
tion along the hazard flow direction, we tested a directional
roughness approach that improved the reliability of the sur-
face roughness computation in channelised paths. We simu-
lated avalanches on different elevation models (lidar-based)
to observe a potential influence of a DSM and a digital terrain
model (DTM) using the simulation tool Rapid Mass Move-
ment Simulation (RAMMS). In this way, we accounted for
the surface roughness based on a DSM instead of a DTM,
which resulted in shorter simulated avalanche runouts by
16 %–27 % in the two study areas. Surface roughness above
a treeline, which in comparison to the forest is not repre-
sented within the RAMMS, is therefore underestimated. We

conclude that using DSM-based surface roughness in combi-
nation with DTM-based surface roughness and considering
the directional roughness is promising for achieving better
assessment of terrain in an alpine landscape, which might
improve the natural hazard modelling.

1 Introduction

Surface roughness is a topographic parameter commonly
used to identify and characterise surface features, such as dif-
ferent vegetation types (Stambaugh and Guyette, 2008) and
geomorphological characteristics (Cavalli et al., 2008; McK-
ean and Roering, 2004; Nguyen and Fenton, 2005). Quan-
tifying surface roughness is thus central for the estimation
of various biophysical characteristics and ecosystem services
(Koponen et al., 2004; Wu et al., 2018). With the increasing
availability of high-resolution remote sensing data, it is in-
creasingly possible to quantify surface roughness over larger
areas and to estimate how related ecosystem services and cli-
mate feedbacks change over time (Mina et al., 2017; Myers-
Smith et al., 2015; Nel et al., 2014; Palomo, 2017). Surface
roughness has effects on one of the most relevant ecosystem
services in mountain regions: gravity-driven natural hazards.
In particular, the occurrence and runout distance of rockfall,
debris flows and snow avalanches are influenced by terrain
roughness and land cover (Baroni et al., 2007; May, 2002;
Michelini et al., 2017; Teich et al., 2014). In the following
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sections, we describe the most frequent gravity-driven nat-
ural hazards affecting the European Alps, highlighting why
it is important to consider surface roughness and land cover
when modelling and predicting such phenomena.

Debris flows can be defined as gravity-driven flows con-
sisting of interacting phases, mainly a debris and a fluid
phase (Jakob et al., 2005; Pudasaini, 2012; Takahashi, 2000).
Approaches to modelling flow propagation are numerous
(Frank et al., 2017; Pudasaini and Mergili, 2019). They can
represent the flow as a single phase or multiple phases con-
sisting of solid and water components propagating through
a given topography (Christen et al., 2010; Rosatti and Beg-
nudelli, 2013). Some of them include a spatial variability of
the friction parameters and can even simulate erosion pro-
cesses (Hungr and McDougall, 2009; Mergili et al., 2017).
However, a relatively small number of them consider the
presence or absence of forest and the surface roughness
(May, 2002). Ishikawa et al. (2000) emphasise the impor-
tance of the land cover (especially forests) as an active pre-
vention measure for stabilising slopes and reducing the de-
bris flow runout distance. Tree and shrub parameters are
known to influence the velocity and runout distance in differ-
ent parts of a debris flow fan (Ishikawa et al., 2000; Miche-
lini, 2016). On the other hand, intrinsic physical characteris-
tics and the solid volume concentration of the routing flow
are important parameters in determining the interaction be-
tween debris flows and surface roughness. In particular, de-
bris flows with a high concentration of the solid component
exhibit a strong interaction with forest structure (Michelini et
al., 2017). A spatially distributed surface roughness map can
increase the reliability of debris flow simulations. This aspect
is of particular importance in extreme scenarios where the
mass flow can spread outside the main channel path, propa-
gating on other surface types.

Rockfall processes are influenced by topographic parame-
ters (slope and terrain curvature), surface roughness and land
cover (Pfeiffer and Bowen, 1989; Wang and Lee, 2010). Sur-
face roughness and land cover influence the contact angle
between the rock and the surface, changing the velocity by
rolling and sliding (Wang and Lee, 2010) and influencing the
runout distance (Caviezel et al., 2019; Dorren et al., 2005;
Lopez-Saez et al., 2016). Vegetation decreases the energy
of moving rocks and eventually stops them (Jonsson, 2007).
Tree density and size are fundamental characteristics for as-
sessing the protection function of the forest (Dorren et al.,
2015).

Surface roughness is an important parameter in relation to
snow distribution (Lehning et al., 2011), and it is particularly
crucial in preventing weak layers and avalanche formation
and release (Schweizer et al., 2003; Viglietti et al., 2010).
The supporting force of tree stems and the heterogeneity of
the forest snowpack, influenced by crown interception, re-
duce the release of slab avalanches (Bebi et al., 2009; Mc-
Clung and Schaerer, 2006; Schneebeli and Bebi, 2004; Te-
ich et al., 2012b). The anchoring effect of the vegetation in

snow gliding has been demonstrated in several studies, and
the density, height and heterogeneity of vegetation cover are
crucial characteristics (Endo, 1983; Feistl et al., 2014; Höller,
2001, 2013). Furthermore, surface roughness has a critical
impact on the flow path and runout distance of avalanches
(Bühler et al., 2011).

Terrain roughness is increasingly considered an impor-
tant factor when evaluating vegetation effects on natural haz-
ards and also more generally in large-scale hazard mapping.
Moreover, vegetation effects on snow avalanches, rockfall
and debris flows are often strongly dependent on the type
of vegetation and on potential changes in vegetation over
time (Bigot et al., 2009; May, 2002). Digital surface mod-
els (DSMs) capture surface characteristics and, depending
on the frequency of acquisition, detect land cover changes
over time. Distinguishing among different vegetation types
and assessing their effects on natural hazards is particularly
important for spatially and temporally changing vegetation
patterns in mountainous terrain. While the consideration of
dense forest cover in natural hazard models is already ad-
vanced (Bühler et al., 2018; Feistl et al., 2015), this is clearly
not the case for shrub forests, very open forest structures and
early successional stages of forest cover, which occur pre-
dominantly near treeline or after natural or anthropogenic
disturbances (windthrows, bark beetle outbreaks, wildfires
and logging operations). Furthermore, treeline ecotones are
generally shifting upwards, and natural disturbances are ex-
pected to increase in the future, both due to global changes
(Harsch et al., 2009; Seidl et al., 2017). Such regions are
typical release and transition areas for gravitational hazards
like snow avalanches, rockfall, landslides and debris flows.
Widespread changes in landscape lead to shifts in vegetation
composition (Tasser and Tappeiner, 2002), thus influencing
surface roughness. It is necessary to understand which nat-
ural hazard processes can be expected with further changes
and to map where these natural hazards may occur, as the fre-
quency, intensity and extent of natural hazards may increase
with decreasing surface roughness.

Groups of trees and shrubs in treeline ecotones are not
usually characterised as forest, even if they influence the
release and dynamics of natural hazards (Elliott, 2017). It
would thus be useful to improve the characterisation of sur-
face roughness calculated outside and inside mapped for-
est vegetation and to include lower vegetation, shrub forests
and dead wood, which are not classified as forest. Natural
disturbances, such as windthrow and bark beetle outbreaks,
alter the forest structure and thus change the forest protec-
tive function. Such natural disturbances are expected to be-
come more frequent and severe under climate change (Bebi
et al., 2017; Seidl et al., 2017), and forest protective func-
tions may be reduced. The protective functions against snow
avalanches, rockfall and debris flows are particularly at risk
when a large-scale disturbance occurs and affects forests at
the stand level. Windthrow creates a high degree of sur-
face roughness from downed trees, root plates and stumps.
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In the case of snow avalanches, surface roughness modi-
fies snowpack properties and offers direct support (Schnee-
beli and Bebi, 2004), which, similarly to forest, may have
the ability to hinder the formation of continuous weak lay-
ers (Schweizer et al., 2003). Leaving dead wood in place
in protection forests after a windthrow event or bark bee-
tle outbreak may thus offer sufficient protection capacity
against snow avalanches until the post disturbance vegetation
can take over this function (Wohlgemuth et al., 2017). Like-
wise, increased surface roughness from dead wood may con-
siderably decrease the runout distance of rockfall processes
(Fuhr et al., 2015; Bourrier et al., 2012; Ringenbach et al.,
2021).

There are many algorithms quantifying surface roughness,
indicating the variability of a certain topographic variable
(slope, elevation, aspect, curvature and vector dispersion)
within a certain area defined by a certain number of neigh-
bouring cells (moving window) (Evans, 1984; Haneberg et
al., 2005; Hobson, 1967; Philip and Watson, 1986; Sapping-
ton et al., 2007; Smith, 2014). In this study we consider
roughness algorithms requiring a digital elevation model
(DEM) as input. Surface roughness maps based on the anal-
ysis of a DEM are influenced by its resolution (Shepard
et al., 2001) and moving-window size (Grohmann et al.,
2011). Higher DEM resolutions (<1 m) allow us to see
more detailed terrain, but they are usually only available for
smaller areas. DEM-based surface roughness algorithms cal-
culate the roughness value by analysing a certain number
of neighbourhood cells. In such a sense, most of the rough-
ness indices reported in literature considered the DEM as an
isotropic surface. However, the concept of surface anisotropy
is of fundamental importance for the investigation of geo-
morphological features and channelised or dispersed flows
(Busse and Jelly, 2020; Insua-Arévalo et al., 2021; Middle-
ton et al., 2020). If the surface shows an anisotropic texture,
the flow resistance is directly influenced by obstacles dis-
posed along the flow direction. Since the investigated nat-
ural hazards show a predominant diffusion direction identi-
fied as the combination of terrain slope and curvature, tex-
ture anisotropy has to be taken into account when simulat-
ing mass flows (Roy et al., 2016; Viero and Valipour, 2017).
Some attempts to calculate the roughness along a given di-
rection have been made, but they have not yet been applied
to large-scale hazard mapping (Michelini, 2016; Trevisani
and Cavalli, 2016). However, the investigated natural haz-
ards have a predominant diffusion direction identified as the
combination of terrain slope and curvature. Some studies im-
plemented the surface roughness along a predefined direction
(Michelini, 2016; Trevisani and Rocca, 2015). The direc-
tion for which roughness has been computed, usually derived
through a GIS algorithm (D8 or D-infinity), is applied to the
original or smoothed digital models. However, the direction
derived through neighbourhood cell analysis could not be the
same as that of the mass flow propagation. Such behaviours
may be observed when the routing volumes are extreme, and

therefore in some particular situations the propagation direc-
tion may be defined by its inertia rather than the topography
(Guo et al., 2020). In other cases, the particular mountain
topography may force mass flows to affect the opposite hill-
side of the valley through a runup mechanism (Iverson et al.,
2016). Furthermore, the flow direction of banks and chan-
nel side features computed with GIS algorithms do not usu-
ally correspond to the mass flow direction. In this situation
bank direction can be improved through a smoothing process
of the DTM in order to remove gullies and channels from
the basal topography. This technique can be easily applica-
ble in the case of regular channels, but it could become more
complex when the channel morphology is irregular, since it
could oversimplify the basal topography. For such reasons in
this study, we propose a novel approach to calculate surface
roughness along user-defined lines.

In this study we compare the efficiency of seven widely
used algorithms applied to high-resolution remote sensing
data in distinguishing among different surface roughness cat-
egories in two study areas. We specifically addressed the fol-
lowing research questions. (a) How well can different surface
roughness categories be distinguished with the selected algo-
rithms? (b) What is the influence of the DSM resolution and
moving-window area on the roughness classification? (c) Is it
possible to improve the roughness calculation by introducing
a directional roughness along the predominant mass flow di-
rection? (d) How much can a mass flow simulation improve
if roughness is properly taken into account?

2 Methods

We identified and tested seven algorithms calculating sur-
face roughness in order to understand which algorithm is
the most suitable for terrain feature classification. The algo-
rithms were chosen based on a literature review. Only those
algorithms that are recognised for their ability to provide
an accurate estimation of vegetation cover were selected.
We tested these algorithms on two study areas to evaluate
their performance in identifying the ground features of inter-
est: biomass on the ground (disturbed forest), rocky surface,
short vegetation and forest. We selected algorithms that use
a DEM, and we used the digital surface model (DSM), as it
represents all the ground features of interest.

We selected two study areas, where a high-resolution DSM
(0.1 m), derived by photogrammetry, and high-resolution
(0.5 m) lidar data were available and where relevant terrain
features of disturbed mountain forest landscapes and tree-
line ecosystems were represented. To evaluate the effects of
different cell resolutions, we tested three DSM resolutions,
equal to 0.1, 0.5 and 1 m, resampling the 0.1 m photogram-
metric DSM to 0.5 and 1 m (method: mean value). In previ-
ous studies the scale of the roughness calculation has been
represented as a moving window identified by the number
of cells (Grohmann and Riccomini, 2009; Michelini et al.,
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2017), which can result in different analysed areas (a moving
window of 3×3 m with a resolution of 1 m results in an area
of 9 m2, but with a resolution of 2 m the area is 36 m2). We
therefore compared the roughness algorithms (Table 1) using
different moving-window areas instead of different moving
windows (number of cells used). With this moving-window
area approach, the number of cells differs according to the
DSM resolution, but the analysed area remains the same.
The effect of scale was analysed using the smallest moving-
window areas in order to preserve the detailed terrain from
the high-resolution DSMs. The moving window for differ-
ent resolutions was approximated to the greater odd num-
ber. Using seven different algorithms to calculate roughness
with three resolutions (0.1, 0.5 and 1 m) and three moving-
window areas (3× 3 m, 5× 5 m and 7× 7 m) resulted in a
total of 63 combinations. We statistically tested (Sect. 2.3)
how well these algorithms, in different combinations of spa-
tial resolution and moving-window area, can distinguish be-
tween the seven roughness categories presented in Table 2.

After choosing the best performing algorithm to distin-
guish between the categories, we tested the difference be-
tween using a DSM and a DTM as an input for calculating
the surface roughness. We also simulated an avalanche on
both the DSM and DTM to observe the influence of the sur-
face roughness on the avalanche runout distance. The sur-
face roughness and its impact on the runout distance of an
avalanche are demonstrated when using a DSM, whereas the
surface roughness is filtered out when a DTM is used.

2.1 Study areas

The two selected study areas, Braema and Franza, are located
in the central and eastern European Alps (Fig. 1a). Braema
(Fig. 1b) is an example of a treeline ecotone with treeline
expansion. Franza (Fig. 1c) was impacted by the 2018 storm
Vaia and is an example of fully wind-thrown forest.

2.1.1 Braema

The Braema study area is located in south-east Switzer-
land near Davos (canton Grisons). The elevation varies be-
tween 1550 and 2300 m a.s.l., and the aspect is mostly north-
eastern. The upper part ranges in slope from 30 to 45◦

and is covered mainly by meadow and rocky terrain. The
area is steeper between 2000 and 2200 m a.s.l. (40–45◦),
where it is defined by open terrain and sparse vegetation.
The study area also includes four valley channels. They
are wider and less delineated at higher elevations but be-
come narrower with decreasing elevation. At the lower el-
evations the banks of these gullies are stabilised by shrub
forest dominated by green alder (Alnus viridis). Timber for-
est occurs below 1900 m a.s.l. on a moderately steep (less
than 30◦) to very steep slope (up to 45◦). The dominant tree
species is Norway spruce (Picea abies) with admixed Euro-
pean larch (Larix decidua) at high elevations (around 1800–

2000 m a.s.l.). Avalanche barriers are present in the upper
part of Braema, which served as a reference element for sur-
face roughness in this study (Sect. 3.1).

The area of almost 1 km2 was surveyed on 17 June
2019 using a senseFly eBee+ drone (Lausanne, Switzerland)
equipped with an RTK GNSS system for accurate georefer-
encing (better than 5 cm). The 404 photos were acquired with
a SODA camera (focal length 10.6 mm, pixel size 2.4 µm) at
a mean flight height of 148 m above ground and an over-
lap of 60 % (across track) and 70 % (along track), result-
ing in an average ground sampling distance (GSD) of 3 cm.
This imagery was successively processed with the software
Metashape (Agisoft LLC, Saint Petersburg, Russia), result-
ing in a point cloud with an average density of 263 points
m−2. The point cloud was then processed into a DSM with a
cell size of 0.1 m.

2.1.2 Franza

The Franza study area is located in the Dolomites, Italy, near
the village of Livinallongo del Col di Lana (Veneto region).
The elevation ranges between 1650 and 1950 m a.s.l., and the
aspect is south-western. The area extends for 12 ha and in-
cludes the Ru de Andraz stream in the lower part. The area
was strongly affected by the storm Vaia of 29 October 2018,
which uprooted a large part of the forest stand. The fallen
trees were left on the ground, and the area was not involved
in forest management, except for the forest road, which was
cleared of biomass. The remaining forest is just 5 %–10 % of
the original forest cover. The central upper part of this area
is covered by meadows and young open forests, which were
not affected by the storm. The disturbed forest was domi-
nated by Norway spruce (Picea abies) with admixed silver
fir (Abies alba). European larch (Larix decidua) was the only
tree species to survive the storm. The mean inclination of the
area varies between 30 and 40◦.

The area was surveyed using a Phantom 4 drone (DJI,
Shenzhen, China) with ground control points for image geo-
referencing. The drone flight took place on 26 October
2019, and the 971 images were successively processed in
Metashape. The mean flight height was 45 m above ground,
and the image overlap was greater than 70 %. The result was
a DSM with a cell resolution of 0.05 m and a mean point den-
sity of 557 points m−2 (ground control point residual error in
x, y and z: 3.7 cm), which was resampled to 0.1 m (mean
value method) and cropped to 11 ha for this study.

2.2 Surface roughness algorithms

In order to describe the roughness, which consists of both
geomorphological features and vegetation, we selected and
tested seven algorithms using high-resolution DSMs. We
selected widely used roughness algorithms already applied
in the context of natural hazard modelling (Bühler et al.,
2013; Crosta and Agliardi, 2004; Pfeiffer and Bowen, 1989;
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Table 1. Summary of the seven algorithms used to compute the terrain roughness.

Surface roughness algorithm Abbreviation Reference

Area ratio AR Hobson (1967)
Vector ruggedness measure VRM Sappington et al. (2007)
Standard deviation of the profile curvature SD_PC Grohmann et al. (2011)
Standard deviation of the residual topography SD_RT Grohmann et al. (2011)
Standard deviation of the slope SD_S Grohmann et al. (2011)
Terrain ruggedness index TRI Riley et al. (1999)
Vector dispersion VD Grohmann et al. (2011)

Figure 1. (a) Locations of the study areas in the central and eastern European Alps (map source: © OpenStreetMap contributors 2021;
distributed under the Open Data Commons Open Database License (ODbL) v1.0.). (b) Braema, located close to Davos (Grisons, Switzerland;
orthophoto in the background (© swisstopo, 2021) and orthophoto in the front from the drone flight 2019), and (c) Franza, located in the
Dolomites (Veneto, Italy; orthophoto from the drone flight 2019).

Table 2. Roughness categories using orthophotos and the vegetation
height model (VHM) were selected to evaluate the different surface
roughness algorithms.

Roughness category Braema Franza

Snow x
Very smooth x x
Smooth x x
Shrub forest x
High forest x x
Rocky x
Windthrow x

Veitinger and Sovilla, 2016; Wang and Lee, 2010). They
are based on standard deviation and vector dispersion ap-
proaches calculated in a certain moving window. We then
tested them with different spatial resolutions (0.1, 0.5 and
1 m) and moving-window areas (9, 25 and 49 m2) on both
study areas. The selected algorithms are summarised in Ta-
ble 1.

2.2.1 Area ratio

The area ratio is the ratio between the real area and the flat
area occupied by the square cell of the DSM (Hobson, 1967).
The real area is computed using the slope algorithm imple-
mented in GRASS GIS (Horn, 1981; Mitasova, 1985). The

https://doi.org/10.5194/nhess-21-3539-2021 Nat. Hazards Earth Syst. Sci., 21, 3539–3562, 2021



3544 N. Brožová et al.: Analysis of surface roughness for the improvement of natural hazard modelling

final map representing the area ratio is then smoothed us-
ing an average value within a moving window defined by the
user. The area ratio is close to 1 for flat areas, while it extends
up to an infinite value for extremely steep areas. In this study
the algorithm was implemented as a shell script and run in
the GRASS GIS environment (GRASS Development Team,
2021).

2.2.2 Vector ruggedness measure

For the vector ruggedness measure, the unit vector normal to
the raster cell is decomposed in the relative x, y and z direc-
tions using the slope and the aspect of the cell through stan-
dard trigonometric functions (Durrant, 1996; Pincus, 1956).
Its measure and computation are fully described in Sapping-
ton et al. (2007). The resultant vector is calculated over a
user-defined moving window. The strength of the vector is
normalised for the total number of cells included in the mov-
ing window. In this study the algorithm was implemented as
a raster module in GRASS GIS called r.vector.ruggedness.

2.2.3 Standard deviation of slope and profile curvature

The standard deviation (SD) of the slope represents the
slope standard deviation within a defined moving window
(Grohmann et al., 2011). The slope is derived from the DSM
using the algorithm r.slope.aspect implemented in GRASS
GIS derived from the formula proposed by Horn (1981).
With the same approach, the standard deviation of the profile
curvature (second derivative of the elevation) is computed
within a moving window (Grohmann et al., 2011). Here, both
algorithms were implemented in a shell script and run in
GRASS GIS.

2.2.4 Standard deviation of residual topography

The SD of residual topography is computed as the SD of the
difference between a smoothed DEM and the original one.
The SD is calculated within a moving window defined by
the user. This approach is widely used because it can be ap-
plied to different data types, such as point clouds (Vetter et
al., 2011), satellite imagery (Gille et al., 2000; Schumann et
al., 2007) and DEMs (Glenn et al., 2006; Cavalli and Marchi,
2008). In this study we calculated the smoothed DEM as the
average value within a moving window 10× 10 m indepen-
dently from the input DEM resolution. The moving window
used to compute the smoothed surface is automatically ad-
justed according to the model resolution. In this study this ap-
proach was implemented in a shell script and run in GRASS
GIS.

2.2.5 Terrain ruggedness index

The terrain ruggedness index (TRI) is calculated as the mean
change in elevation between a centre cell and its neighbours
defined by the user (Riley et al., 1999). It represents the ab-

solute variation between the centre cell and the surrounding
cells. The index is similar to the average deviation of the cen-
tre absolute value, but it differs by the use of the centre cell.
In the TRI, the centre cell is used as the reference instead of
the average value of the cells within the defined moving win-
dow, thus emphasising the roughness. For this reason, TRI
is more effective for highlighting the terrain features, espe-
cially in a small-scale analysis. In this study the algorithm
called r.tri was implemented as a raster module in GRASS
GIS, where it is possible to define the size of the moving
window.

2.2.6 Vector dispersion

Vector dispersion is calculated as the orientation of a three-
dimensional surface for the region of interest (Hobson,
1967). The different planes of the DSM are approximated
by normal unit vectors, and the relative mean, dispersion and
strength are calculated using the methods explained by Fisher
(1953) and successively adapted by McKean and Roering
(2004). This algorithm measures the degree of dispersion of
the unit vectors in a given moving window. Here, the script
was implemented as a raster GRASS GIS module called
r.roughness.vector (Grohmann et al., 2011). To obtain the
vector strength, the direction cosine maps are first calculated
Eq. (1) and successively summed for a user-defined moving-
window Eq. (2). The vector strength (R) and vector disper-
sion (k) are derived with Eqs. (3) and (4), respectively, where
N is the number of vectors. The vector dispersion has low
values for regular smooth surfaces because the vectors are
parallel and the vector strength becomes closer to the number
of vectors. This algorithm is sensitive to small-scale variation
in elevation and is therefore considered suitable for detecting
vegetated areas.

xi = sinθicosφiyi = sinθisinφizi = cosθi (1)

x =
∑N

i=1
xiy =

∑N

i=1
yiz=

∑N

i=1
zi (2)

R =

√
x2
+ y2
+ z2 (3)

k = (N − 1)/(N −R) (4)

2.3 Design and statistical analysis of roughness
categories

Seven different roughness categories (Table 2) were chosen
using orthophotos from the two study areas (Fig. 2). In or-
der to distinguish between the categories “very smooth” and
“smooth” and between “shrub forest” and “high forest”, we
used a vegetation height model (VHM), which we calculated
as the difference between the digital surface model and dig-
ital terrain model (VHM = DSM−DTM; we used the li-
dar data described in Sect. 2.5 lidar-based roughness). The
“snow” category was selected as the control, since in our case
this surface is the smoothest and should therefore have the
lowest roughness values. The very smooth category is domi-
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nated by features with heights up to 0.5 m, and the smooth
category mainly includes features from 0.5 to 1 m height.
Both of these categories are dominated by lower vegetation,
which is not considered important for the interaction with
natural hazards. Shrub forest is mainly composed of green
alder and smaller trees between 3 and 5 m tall, while the high
forest category has a minimum tree height of 10 m.

Control areas of 10× 10 m were manually selected using
the orthophotos in order to extract the calculated roughness
values and compare these values for different categories. The
number of values extracted per category depended on the
spatial resolution. A higher spatial resolution (0.1 m) results
in 10 000 values per feature, a medium resolution (0.5 m) re-
sults in 400 values per feature and a lower resolution (1 m)
results in 100 values per feature. We randomly sampled all
the values to obtain 1000 values per roughness category for
analysis. We statistically analysed (paired Wilcoxon test) the
algorithms to determine the overlapping distribution of pairs
of roughness categories. The tested algorithm in the corre-
sponding resolution and moving window was able to distin-
guish between the roughness categories in cases where there
was a significant difference (p value< 0.05) between the cat-
egories. In order to obtain a classification based on threshold
values for a technical purpose, we analysed the kernel den-
sity distribution between the roughness categories (Table 2),
after evaluating the best-performing algorithm, to determine
the point of minimum overlap. We used the overlap function
(overlapping package; Pastore, 2018; Pastore and Calcagnì,
2019) implemented in R (R Core Team, 2021). This intersec-
tion is the threshold between two roughness categories.

2.4 Directional roughness

Since mass flows have a propagation direction, one of our
aims was to improve the roughness calculation along the ex-
pected direction of diffusion. For this purpose, we modified
the SD of residual topography algorithm to test the rough-
ness improvement along open slopes, valleys and gullies. The
directional roughness is computed as the SD of the resid-
ual topography where only a subset of the neighbourhood
cells are analysed for 16 directions. The roughness direction
is identified using a manually designed polyline. In accor-
dance with the direction given by the polylines, the algorithm
computes the SD of six or four cells, without considering
the central cell value of the moving window (the resolution
used was 1 m, and the cell moving-window area was 9 m2).
We calculated the directional roughness for the Braema study
area only. In order to better understand the effects of the di-
rectional roughness, we manually identified four transects
(Fig. 3) and compared the directional and non-directional
roughness.

2.5 Lidar-based roughness

For the best performing algorithm, we compared the terrain
roughness from the DSM and a lidar-based DTM. Lidar data
were acquired in July 2019 (>35 points m−2) for Franza and
in August 2015 for Braema (>18 points m−2). Regarding the
Franza study area, the DSM and DTM were already produced
for the Veneto region as a raster layer at the final resolution of
0.5 m. The lidar survey of the Braema area was acquired with
an LMS-Q 780 and was part of a larger surveying campaign
and was provided by the Federal Office of Topography. The
final DEM products were resampled to a resolution of 0.5 m.

Based on the results of the roughness algorithm evalua-
tion, we calculated the terrain roughness for the DTM and
the DSM using the vector ruggedness measure algorithm
(moving-window area of 49 m2 and cell size of 0.5 m). We
then plotted the results to highlight the differences in terrain
roughness.

2.6 Case study: snow avalanche modelling

To investigate the importance of terrain roughness on
the numerical simulation results, we implemented a snow
avalanche simulation. We performed a total of four simu-
lations using two types of terrain morphology (the lidar-
derived DTM and the DSM) for both of the study areas. The
simulation tool that we applied is the snow avalanche module
of RAM (Christen et al., 2010), version 1.7.20. We identified
one release area for each study area based on topographic
and vegetation analysis (terrain slope, curvature and land
cover). The release depth was homogeneous and we set it
to 1 m, accounting for a total volume of 1457.9 m3 (Braema)
and 284.8 m3(Franza). We used the automatically calculated
friction values for different topographic conditions based
on the return period (30 years) and volume (small and tiny
for Braema and Franza, respectively), as described in the
RAMMS user manual (Bartelt et al., 2017). The forested ar-
eas are based on the forest characteristics specified in Swiss
law (Brändli and Speich, 2007) and delineated using an or-
thophoto. We determined the runout distance manually as the
projected run length in the main flow of the avalanche, where
the maximum flow depth of the simulated avalanche drops to
zero (Brožová et al., 2020). We also evaluated the maximum
flow height over the simulation duration.

3 Results

3.1 Roughness classification and algorithm evaluation

Four of the seven selected roughness algorithms were found
to be suitable for distinguishing the investigated vegetation
types and other land-cover categories, as shown in Fig. 4,
without any overlapping pairs. However, there were impor-
tant differences according to the spatial resolution and the
moving-window area considered for the analysis. With only
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Figure 2. Roughness categories were selected based on the orthophoto alone (a) and (c) (drone flights, 2019) and with the vegetation
height model (VHM, produced as the difference between the DSM and DTM provided by the Federal Office of Topography for Braema
(© swisstopo, 2018) and Veneto region for Franza; b and d). The Braema study area (Grisons, Switzerland) is shown in (a) and (b), and the
Franza study area (Veneto, Italy) is shown in (c) and (d).

4 of 441 possible pairs of overlapping distributions (red ar-
rows in Fig. 4), the algorithms generally distinguished better
between categories if applied using the lowest resolution of
1 m compared with applications using higher resolutions of
0.5 m (16 overlapping out of 441 pairs) and 0.1 m (9 of 441
pairs). In the lowest resolution, only the area ratio, SD of
slope and vector dispersion algorithms showed overlapping
distributions in some of the categorisation, and only the vec-
tor dispersion algorithm failed in two moving-window sizes
(9 and 49 m2) in comparison to higher resolutions, where
there was only one failure (Fig. 4). Overall, we found the best
differentiation between the roughness of different land-cover
categories for the largest considered moving-window area of
49 m2 in combination with the resolution of 1 m (no pairs of
overlapping distribution) compared with other combinations
of smaller moving-window areas of 9 or 25 m2.

The best performing algorithm without any significantly
overlapping distributions of pairs in all spatial resolutions
(0.1, 0.5 and 1 m) and all moving-window areas (9, 25 and
49 m2) was vector ruggedness measure. Other algorithms
that performed well in distinguishing the roughness cate-
gories were SD of profile curvature, SD of residual topog-
raphy and SD of slope. SD of slope had one overlapping
distribution of roughness values for the category shrub for-
est and high forest with a resolution of 1 m and a moving-
window area of 9 m2. SD of residual topography did not dis-
tinguish between very smooth and smooth when combined
with a resolution of 0.1 m and a moving-window area of
9 m2 or between shrub forest and windthrow (resolution of
0.5 m and moving-window area of 25 m2). SD of profile cur-
vature did not accurately differentiate between the categories
high forest and windthrow (resolution of 0.1 m and moving-
window area of 49 m2 and resolution of 0.5 m and moving-
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Figure 3. Four transects within gullies in the Braema study area
(Grisons, Switzerland; orthophoto from the drone flight, 2019). The
surface roughness was analysed using non-directional and direc-
tional SD of residual topography.

window area of 25 m2) and between the categories very
smooth and smooth (resolution of 0.5 and moving-window
area of 25 m2). The algorithms vector dispersion (4 pairs of
overlapping distribution), terrain ruggedness index (6 pairs)
and area ratio (13 pairs) were overall less efficient in distin-
guishing between different roughness and land-cover cate-
gories.

Surface roughness calculated with the seven different al-
gorithms and normalised using the same colour range (Fig. 5
and Fig. A1 in Appendix, for the Braema and Franza study
areas) revealed important differences in the ability to iden-
tify specific terrain and vegetation types. As visible for
the overall best performing combination of resolution and
moving window (1 m and 49 m2) in Fig. 5, all algorithms
distinguished accurately between high vegetation (forest)
and other vegetation types. Nevertheless, some of the algo-
rithms (vector dispersion, SD of residual topography, ter-
rain ruggedness index and area ratio) failed to detect the
avalanche barriers correctly and falsely identified them as
rather smooth. Also, small gullies were not clearly separated
with some of the algorithms and were particularly poorly vis-
ible with the algorithms SD of profile curvature and SD of
slope, whereas they were successfully identified with mod-
erate roughness values by the other algorithms. Smooth sur-
faces were visualised with lower roughness values (darker
blue in Fig. 5) by algorithms like vector ruggedness measure,
SD of residual topography and vector dispersion (panels 2, 4

Table 3. Thresholds of roughness values between roughness cate-
gories calculated using the vector ruggedness measure algorithm,
with 1 m resolution and a moving-window area of 49 m2.

Roughness category Threshold value

Snow to very smooth 0.006
Very smooth to smooth 0.017
Smooth to rocky 0.037
Rocky to shrub forest 0.089
Shrub forest to windthrow 0.171
Windthrow to high forest 0.301

and 7 in Fig. 5). Other algorithms (panels 1, 3, 5 and 6 in
Fig. 5) assigned these smooth surfaces rather high roughness
values (lighter blue to cyan blue in Fig. 5).

The vector ruggedness measure algorithm showed the least
overlapping of pairs and was found to be the best performing
algorithm for our application. We determined the intersecting
points within the densities of neighbouring roughness cate-
gories (Table 3), which may be used as thresholds for surface
classification based on roughness.

3.2 Directional roughness

The analysed surface roughness within gullies and valleys in
the study area using the SD residual topography algorithm
showed lower values for directional roughness than the non-
directional one. The calculated roughness in the mass flow
direction of propagation differed significantly from values
calculated without using the direction (p<0.05, Wilcoxon
test; Figs. 6, 7). In particular, for some transect parts the
non-directional values were twice as large as for the direc-
tional ones. In other parts, the two roughness maps were al-
most equal. However, the non-directional roughness never
exceeded values of the directional roughness within the se-
lected transects.

3.3 Case study: snow avalanche modelling

Calculated surface roughness differed strongly when a DSM
was used as input data instead of a DTM (Fig. A4). In
dense forest and in a windthrow area, the calculated sur-
face roughness was overestimated, and it depicted mostly the
tree crowns or branches of the fallen logs. Surface roughness
calculated from the DSM considered the uppermost surface
features, in comparison to calculations based on the DTM,
where only terrain was considered and all the surface fea-
tures were filtered out. The DTM-derived roughness values
were thus lower overall compared with the DSM-derived val-
ues, in particular in the presence of forest vegetation and in
the windthrow areas (Fig. A4).

The roughness difference between DSM and DTM has im-
portant implications for the numerical simulation of gravita-
tional mass movements, as illustrated in the avalanche sim-
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Figure 4. Distribution of roughness values according to different roughness categories (1 – snow, 2 – very smooth, 3 – smooth, 4 – shrub
forest, 5 – high forest, 6 – rocky, 7 – windthrow) for seven algorithms (area ratio, vector ruggedness measure, SD of profile curvature, SD
of residual topography, SD of slope, terrain ruggedness index and vector dispersion) for the spatial resolution of 1 m. Red arrows show the
overlapping distribution for a pair of categories that the given algorithm fails to distinguish.
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Figure 5. Calculated surface roughness in the study area Braema using the seven investigated algorithms: area ratio (1), vector ruggedness
measure (2), SD of profile curvature (3), SD of residual topography (4), SD of slope (5), terrain ruggedness index (6) and vector dispersion
(7). The same area is presented as an orthophoto (8) (drone flight, 2019) and in DSM hillshade (9) (© swisstopo). All algorithms were
calculated based on the overall best performing combination of spatial resolution (1 m) and neighbourhood (moving window 7× 7 m). To
improve the visualisation and compare the roughness maps, we normalised them with the 25th percentile as the minimum value and the 75th
percentile as the maximum one.

ulation based on lidar data. Simulations performed using the
DSM resulted in a 25 % (Braema) and 14 % (Franza) shorter
runout distance and a more dispersed flow pattern than those
based on the DTM (Figs. 8 and A5). When using the DSM,
we identified the interaction between the snow mass and the
features on and above the ground, such as sparse forest and
the wind-thrown areas. The maximum flow height based on
the DSM was therefore 0.4 and 0.2 m greater for Braema
and Franza, respectively, compared with values based on the
DTM. Using the DSM, the runout distance decreased by

112 m in Braema and by 20 m in Franza. As shown in Fig. 8,
the snow mass did not impact the forested areas, and there
was no tree destruction in the simulation. However, there was
a visible interaction between the avalanche and the sparse
trees in the runout area in the simulation based on the DSM.
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Figure 6. Surface roughness values calculated using non-directional and directional SD of residual topography. Using direction in the
calculation of the surface roughness within the gullies resulted in values significantly lower (p<0.05) than those calculated with the non-
directional method.

Figure 7. Analysis of the four transects from the Braema study
area using the SD of residual topography algorithm (red) or without
(blue) direction in the calculation.

4 Discussion

4.1 Roughness classification and algorithm evaluation

We tested seven algorithms for calculating surface rough-
ness, with three spatial resolutions and three moving-window
areas, for terrain classification. The best performing algo-
rithm was the vector ruggedness measure, which distin-
guished between the roughness categories in an accurate
way for all of our tested resolutions (0.1, 0.5 and 1 m) and
moving-window areas (9, 25 and 49 m2). However, the per-
formance did not increase with higher resolution. This is
probably due to the scale of our features of interest. Features

in our study areas like shrubs, rocks, standing or fallen trees,
and also gullies are usually in the scale of metres. These fea-
tures are not that detailed as the higher resolutions of 0.1–
0.5 m might be able to distinguish them. SD of profile cur-
vature, SD of residual topography and SD of slope were also
accurate in distinguishing between the roughness categories.
The fewest errors across all algorithms occurred with the res-
olution of 1 m, where only area ratio, SD of slope and vector
dispersion did not correctly classify some of the roughness
categories (one error for area ratio and SD slope and two
errors for vector dispersion). The lowest spatial resolution
(1 m) delivered the best results, offering a reliable basis for
roughness classification on larger scales. DEMs with higher
resolutions, such as 0.1 and 0.5 m, are not as widespread as
the 1 m resolution DEMs that are commonly available for
large areas of the Alpine region. Moreover, interpretations of
analysis based on data from larger areas will not be affected
by potential errors in DEMs (Riley, 1999). The best perform-
ing combination of spatial resolution and moving-window
area was 1 m and 49 m2 (with no pairs of overlapping dis-
tributions), which was the lowest resolution and the largest
moving-window area in our analysis. The use of higher-
resolution models (<1 m) had no additional advantage in
our study, which is in line with findings from other studies
(López-Vicente and Álvarez, 2018; Yang et al., 2014). More-
over, this result is relevant to large-scale risk evaluation and
analysis, since digital models with a resolution <1 m are not
so frequent. In our study, we could not find a relationship
between the size of the roughness features (in metre scale)
and the size of the moving-window area. The best perform-
ing moving-window area was analysed as the largest tested,
49 m2, in combination with the 1 m resolution.

All the tested algorithms had at least one combination of
spatial resolution and moving-window area without a pair of
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Figure 8. Avalanche simulation output (maximum flow height) in the Braema study area. The avalanche runout distance was 112 m greater
when the DTM was used as the input model for the simulation than when the DSM was used (visualised are the hillshades calculated from
the terrain and surface model swissALTI3D; © swisstopo, 2018). The maximum flow height was 0.4 m greater when the DSM was used, as
a result of the interaction with the roughness features.

overlapping distributions. The most suitable algorithm for an
investigation thus depends on its purpose and the land-cover
types involved. In two of the tested combinations of resolu-
tion and moving-window area (0.1 m and 49 m2, 0.5 m and
25 m2), the algorithm SD of curvature failed to distinguish
between windthrow areas and high forest. With some of the
combinations, three of the algorithms (area ratio, SD of resid-
ual topography and vector dispersion) did not distinguish be-
tween shrub forest and windthrow, due to the similar height
and structure of these categories. If an extensive evaluation
of different resolutions and moving windows is not realis-
tic in an investigation, we suggest using the roughness algo-
rithm vector ruggedness measure because it showed the best
performance overall in distinguishing between the roughness
categories, in particular with the 1 m resolution DSM and a
moving-window area of 49 m2.

The most common difficulties were in distinguishing be-
tween rocky and smooth or very smooth terrain. The algo-
rithm area ratio failed in all combinations for the spatial res-
olutions of 0.1 and 0.5 m, with overlapping distributions for
rocky and smooth terrains and for rocky and very smooth ter-
rain in all three combinations of 0.5 m resolution. The algo-
rithm terrain ruggedness index also failed in distinguishing
between rocky and very smooth or smooth terrain in all com-
binations of 0.5 m resolution. Both of these algorithms as-
signed higher roughness values to the categories very smooth

and smooth compared with the other algorithms. Grohmann
et al. (2011) also found that area ratio showed higher values
for the smooth slope of a scarp, highlighting a major disad-
vantage of this algorithm in that smooth steep slopes can be
classified as rough. The algorithms vector dispersion, SD of
residual topography, terrain ruggedness index and area ra-
tio could not detect the avalanche barriers in the study site
Braema. This might be due to small width (less than 1 m)
of these objects together in combination with the relatively
large moving-window area (49 m2). Such issues might play
an important role for choosing the right algorithm in natural
hazard mapping.

After finding the best-performing algorithm (vector
ruggedness measure), we calculated thresholds for distin-
guishing between the roughness categories, which may be
further used in roughness classifications of other areas. These
categories are a novelty in the literature, and they can be con-
sidered a preliminary proposal. However, these values must
be applied carefully, as they were assigned using the vector
ruggedness algorithm based on the 1 m resolution DSM and
moving-window area of 49 m2. One should also be as well
cautious when defining the roughness categories since, for
example, the surface of snow can be highly variable (Büh-
ler et al., 2016). In our study, the snow surface consisted of
remaining snow patches in summer and was very smooth,
as shown with the lowest distribution of roughness values
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(Fig. 4). We therefore propose further validation of such val-
ues over larger areas and different landscapes.

4.2 Surface roughness in natural hazard modelling

The assessment of surface roughness can lead to better es-
timation of potential avalanche release areas (Bühler et al.,
2018), as well as improving avalanche simulations by in-
cluding areas with high roughness values (such as RAMMS
additional friction areas). In Bühler et al. (2018) the model
input for large-scale avalanche release area delineation is a
DTM, from which vegetation and other features are removed.
Forests are handled as a binary layer so that potential release
areas covered with dense forests are excluded (Bühler et al.,
2018). This approach may, however, underestimate the pro-
tection function of sparse and young forests that are not of-
ficially classified as forest but influence the natural hazard
dynamics for modelling purposes. In the case of avalanches,
fallen logs after a windthrow event may support the snow and
contribute to the stabilisation of the whole snowpack, simi-
lar to the function of shrub forests or young forests (Bebi
et al., 2009; McClung and Schaerer, 2006; Schneebeli and
Bebi, 2004; Teich et al., 2012a; Wohlgemuth et al., 2017).
However, in the case of avalanches or debris flows releas-
ing above the forest, fallen trees may be entrained rather
than slowing or stopping the avalanche/debris flow, as in the
case for young forests (Ishikawa et al., 2000; Michelini et al.,
2017; Teich et al., 2013). In debris flow simulations, surface
roughness is an important input parameter in extreme sce-
narios, in which the flow may spread outside the main chan-
nel, flooding different terrains such as roads, rocky areas, and
young and old forests (May, 2002). In this case appropriate
models have to be selected with friction parameters that can
be spatially distributed to include the influence of roughness
(Hungr and McDougall, 2009; Mergili et al., 2017). Addi-
tionally, roughness classification can quantify surfaces af-
fected by a land-use change (e.g. wind-thrown forest or shal-
low landslides), identifying new potential sediment source
areas such as shallow landslides (Huebl and Fiebiger, 2007).
Terrain roughness and its classification can increase both the
accuracy of natural hazard simulations and the preliminary
identification of potentially dangerous areas that require ac-
curate evaluation.

4.3 Directional roughness

In order to further improve the applicability of roughness cat-
egories, we implemented a directional surface roughness ap-
proach. This approach helped us to better represent the sur-
face roughness along the mass flow direction, with results
that were substantially different from values assigned from
a topographical point of view. Normally, gullies are consid-
ered rough using a non-directional algorithm, but they can
be smoother in the direction of the dominant natural hazard
flow. The directional surface roughness approach, which was

available for all the tested algorithms using standard devia-
tion, yielded lower values for roughness along the flow di-
rection. In our study area Braema, this resulted in a more
realistic assignment of channelised gully roughness, which
would be categorised as very rough in a standard roughness
map. Implementing directional roughness thus seems to re-
sult in more realistic results. A further improvement for sur-
face roughness within gullies would be an automatic identi-
fication of gullies and an application of the directional algo-
rithm automatically for a buffer area along the gullies, there-
fore improving the roughness maps.

4.4 Applications for natural hazard assessment

In our study we classified relevant land-cover types of moun-
tain forests and treeline ecotones of the southern and cen-
tral Alps. The classes represent land cover characterised by
features that influence mass flow propagation in different
ways. The derived roughness maps or classes could be di-
rectly used in order to improve the reliability of simulation
models. Since we analysed two alpine areas, our results are
also relevant for similar ecosystems characterised by conifer-
ous forests. However, comparable analysis and a verification
of the classification would be necessary in order to further
generalise our results. Similarly, this would be required for
the classification of other disturbed forest stands (e.g. after
a bark beetle outbreak or wildfires), since different distur-
bances with different intensities create particular structures
that most likely have unique patterns of surface roughness
(Franklin et al., 2002; Hansen et al., 2016; Waldron et al.,
2013).

Moreover, the surface roughness classification and the se-
lected roughness algorithm included the identification and
analysis of a forest damaged by a wind storm: the Franza case
study. The forest protection function is altered when a forest
is disturbed. Therefore, there is a need for practitioners to
assess the protection capacity of the remaining structures on
the ground for natural hazard mapping. In the case of snow
avalanches, the very small number of avalanches observed
after these disturbances indicates that fallen logs contribute
to increased terrain roughness and thus to the conservation
of a considerable protective function against avalanches, at
least for the first 2 decades after a disturbance event such
as windthrow (Wohlgemuth et al., 2017). In the same way,
early successional stages of post-disturbance development
can provide effective protection in avalanche release zones.
However, these structures are usually not classified as forest
stands, since in most of cases they do not match the minimum
criteria defined by the authorities (i.e. density, mean height:
Brändli and Speich, 2007; FAO, 2015; INFC, 2005), so these
structures might not be included in the definition of potential
avalanche release areas. Fallen deadwood can also provide a
residual protective function for rockfall. Thanks to the higher
impact probability compared with standing trees, the flexi-
bility of the logs on the ground in disturbed forest areas can
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reduce the rock velocity and absorb kinetic energy (Bourrier
et al., 2012; Ringenbach et al., 2021). This is especially the
case in the first phase after a disturbance, when the decaying
processes have not yet reduced the wood strength (Amman,
2006). Therefore, in this study we included in the surface
roughness analysis and classification these land cover types
(disturbed forests, young forests and shrubs) that are usually
not adequately evaluated for natural hazard modelling.

The analysis of surface roughness could therefore serve
as a good proxy to evaluate some of the temporal hazard
evolution in disturbed forests, but it has some limitations as
well. By analysing surface roughness over time, one could
additionally observe landscape transformations and changes
in vegetation (natural or anthropogenic) that affect surface
roughness and consequently natural hazard processes. In par-
ticular, by calculating surface roughness for different vegeta-
tion types, snow gliding could be easily modelled and pre-
dicted for different land-use scenarios. This could improve
the identification of areas exposed to natural hazards and
aid in the implementation of protection measures (Leitinger
et al., 2008). In the case of old disturbed forest, a rough-
ness time-series analysis might not distinguish between the
roughness of old fallen logs, lower vegetation and tree re-
generation. After years of decomposition, the fallen logs be-
come less supportive, decrease in height, are moved and even
decompose completely (Bebi et al., 2015; Wohlgemuth et
al., 2017). A comprehensive overview of the decay process
over a longer period after a disturbance (more than 20 years)
would be helpful to understand the function of time and
the remaining protection capacity after a disturbance such
as windthrow. However, considerable variability across dif-
ferent environmental gradients may occur, and every area
should therefore be handled individually, especially if ele-
ments of risk exist. Thus, a combination of calculated surface
roughness and field investigations may be necessary in such
areas (e.g. wind-thrown forest or large landslides), where an
accurate evaluation of the ground features cannot be per-
formed by a DEM survey alone.

Surface roughness further influences the estimation of
avalanche release areas and avalanche propagation. Even
small-scale topographic roughness can have an influence on
the runout distance of ground-releasing processes, as in the
case of wet snow avalanches (Sovilla et al., 2012). This is
also important for small avalanches with small release depths
and a shallower snowpack (McClung, 2001), since very large
snow depths can bury the surface roughness and therefore
smoothen the surface (Veitinger et al., 2014). Using DSMs
could improve the surface roughness estimation, as demon-
strated with the vector ruggedness measure algorithm in our
study. It had no pairs of overlapping distributions for all
the roughness categories, and it accurately assigned high
roughness values to higher vegetation, avalanche barriers
and other land-cover categories. In comparison, the DTM-
based approach generally underestimated the surface rough-
ness (Brožová et al., 2020). The case study, applying nu-

merical avalanche modelling to a DSM and a DTM, showed
that surface roughness plays a decisive role in the avalanche
runout distance and the flow path. However, in the case of
high and dense forests, the surface roughness classification
based on DSM is limited. The surface roughness values cal-
culated from the DSM represent the tree crowns, which are
classified as rough. But the crowns usually do not interact
with an avalanche flow (except powder snow avalanches).
Therefore, DTMs should be applied to calculate the surface
roughness within dense forests, and DSMs should only be ap-
plied for open areas, where roughness may still interact with
the hazard process but is not included in the forest classifi-
cation. In this way, areas with increased roughness outside
of defined forest areas could be detected and included within
the hazard modelling. In the case of avalanches, the RAMMS
simulation tool (Christen et al., 2010) offers a possibility to
add an area with increased friction parameters. A smart com-
bination of DSM and DTM data may result in better estima-
tion of the surface roughness faced by the gravitational mass
movement.

5 Conclusions

Our study shows that DEMs with a spatial resolution of 1 m,
which are becoming increasing available, are well suited for
use with roughness algorithms for natural hazard terrain clas-
sification and that higher spatial resolutions (0.1–0.5 m) do
not necessarily improve the terrain surface roughness classi-
fication.

From our tested algorithms, vector ruggedness measure
showed the best performance in distinguishing between dif-
ferent roughness categories. However, depending on the
study area and relevant land-cover types, it is also possible to
use other algorithms, with careful choice of spatial resolution
and moving-window area. In order to avoid overestimation
of terrain roughness for natural hazard applications in study
areas where mass flow is continuously confined, we suggest
applying the directional roughness approach. This improve-
ment is available for any of the algorithms using a standard
deviation, e.g. SD of residual topography.

Considering terrain roughness with an appropriate algo-
rithm and in a specific spatial context may improve the gen-
eration of forest layers applied for large-scale hazard indica-
tion mapping. In particular, smaller protection forest stands,
which are currently underrated and poorly investigated, could
be better represented.

Finally, using DTMs in combination with DSMs may fur-
ther improve the modelling of natural hazards. In fact, based
on very descriptive surface roughness maps, practitioners
could identify and successively analyse areas where the im-
plementation of protection measures is necessary to mitigate
potential hazard consequences for people and infrastructure.
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Appendix A

Figure A1. Distribution of roughness values according to different roughness categories (1 – snow, 2 – very smooth, 3 – smooth, 4 – shrub
forest, 5 – high forest, 6 – rocky, 7 – windthrow) for seven algorithms (area ratio, vector ruggedness measure, SD of profile curvature, SD of
residual topography, SD of slope, terrain ruggedness index and vector dispersion) for the spatial resolution of 0.1 m. Red and yellow arrows
show the overlapping distribution for a pair of categories that the given algorithm fails to distinguish.
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Figure A2. Distribution of roughness values according to different roughness categories (1 – snow, 2 – very smooth, 3 – smooth, 4 – shrub
forest, 5 – high forest, 6 – rocky, 7 – windthrow) for seven algorithms (area ratio, vector ruggedness measure, SD of profile curvature, SD of
residual topography, SD of slope, terrain ruggedness index and vector dispersion) for the spatial resolution of 0.5 m. Red and yellow arrows
show the overlapping distribution for a pair of categories that the given algorithm fails to distinguish.
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Figure A3. Calculated surface roughness in the study area Franza using the seven investigated algorithms: area ratio (1), vector ruggedness
measure (2), SD of profile curvature (3), SD of residual topography (4), SD of slope (5), terrain ruggedness index (6) and vector dispersion
(7). The same area is presented as an orthophoto (8) (drone flight, 2019) and in DSM hillshade (9) (lidar data provided by the region
Veneto). All algorithms were calculated based on the overall best performing combination of spatial resolution (1 m) and neighbourhood
(moving window 7× 7 m). To improve the visualisation and compare the roughness maps, we normalised them with the 25th percentile as
the minimum value and the 75th percentile as the maximum one.
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Figure A4. Calculated surface roughness in the two study areas Braema and Franza, using DSM and DTM (© swisstopo for Braema, region
Veneto for Franza) and the vector ruggedness measure algorithm.

Figure A5. Avalanche simulation output (maximum flow height) in the Franza study area. The avalanche runout distance was 20 m longer
when the DTM was used as the input model for the simulation than when the DSM was used (lidar data provided by the region Veneto). The
maximum flow height was 0.2 m greater when the DSM was used, as a result of the interaction with the roughness features.
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Code and data availability. The code for computing the terrain
roughness is available at the following link: https://github.com/
TommBagg/terrain_roughness_GRASS.git (last access: 11 Novem-
ber 2021) (DOI: https://doi.org/10.5281/zenodo.5675833, Baggio,
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