Articles | Volume 21, issue 9
Nat. Hazards Earth Syst. Sci., 21, 2773–2789, 2021
https://doi.org/10.5194/nhess-21-2773-2021
Nat. Hazards Earth Syst. Sci., 21, 2773–2789, 2021
https://doi.org/10.5194/nhess-21-2773-2021
Research article
10 Sep 2021
Research article | 10 Sep 2021

Evaluating methods for debris-flow prediction based on rainfall in an Alpine catchment

Jacob Hirschberg et al.

Related authors

Brief Communication: An Autonomous UAV for Catchment-Wide Monitoring of a Debris Flow Torrent
Fabian Walter, Elias Hodel, Erik Mannerfelt, Nicolas Ackermann, Kristen Cook, Michael Dietze, Livia Estermann, Daniel Farinotti, Martin Fengler, Lukas Hammerschmidt, Flavia Hänsli, Jacob Hirschberg, Brian McArdell, and Peter Molnar
EGUsphere, https://doi.org/10.5194/egusphere-2022-156,https://doi.org/10.5194/egusphere-2022-156, 2022
Short summary
Signal response of the Swiss plate geophone monitoring system impacted by bedload particles with different transport modes
Zheng Chen, Siming He, Tobias Nicollier, Lorenz Ammann, Alexandre Badoux, and Dieter Rickenmann
Earth Surf. Dynam., 10, 279–300, https://doi.org/10.5194/esurf-10-279-2022,https://doi.org/10.5194/esurf-10-279-2022, 2022
Short summary
Unraveling the hydrology and sediment balance of an ungauged lake in the Sudano-Sahelian region of West Africa using remote sensing
Silvan Ragettli, Tabea Donauer, Peter Molnar, Ron Delnoije, and Tobias Siegfried
Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2021-99,https://doi.org/10.5194/esurf-2021-99, 2021
Preprint under review for ESurf
Short summary
Rainfall-induced shallow landslides and soil wetness: comparison of physically based and probabilistic predictions
Elena Leonarduzzi, Brian W. McArdell, and Peter Molnar
Hydrol. Earth Syst. Sci., 25, 5937–5950, https://doi.org/10.5194/hess-25-5937-2021,https://doi.org/10.5194/hess-25-5937-2021, 2021
Short summary
Inertial drag and lift forces for coarse grains on rough alluvial beds measured using in-grain accelerometers
Georgios Maniatis, Trevor Hoey, Rebecca Hodge, Dieter Rickenmann, and Alexandre Badoux
Earth Surf. Dynam., 8, 1067–1099, https://doi.org/10.5194/esurf-8-1067-2020,https://doi.org/10.5194/esurf-8-1067-2020, 2020
Short summary

Related subject area

Landslides and Debris Flows Hazards
Debris flow velocity and volume estimations based on seismic data
Andreas Schimmel, Velio Coviello, and Francesco Comiti
Nat. Hazards Earth Syst. Sci., 22, 1955–1968, https://doi.org/10.5194/nhess-22-1955-2022,https://doi.org/10.5194/nhess-22-1955-2022, 2022
Short summary
Integration of observed and model-derived groundwater levels in landslide threshold models in Rwanda
Judith Uwihirwe, Markus Hrachowitz, and Thom Bogaard
Nat. Hazards Earth Syst. Sci., 22, 1723–1742, https://doi.org/10.5194/nhess-22-1723-2022,https://doi.org/10.5194/nhess-22-1723-2022, 2022
Short summary
Landslides caught on seismic networks and satellite radars
Andrea Manconi, Alessandro C. Mondini, and the AlpArray working group
Nat. Hazards Earth Syst. Sci., 22, 1655–1664, https://doi.org/10.5194/nhess-22-1655-2022,https://doi.org/10.5194/nhess-22-1655-2022, 2022
Short summary
Variable hydrograph inputs for a numerical debris-flow runout model
Andrew Mitchell, Sophia Zubrycky, Scott McDougall, Jordan Aaron, Mylène Jacquemart, Johannes Hübl, Roland Kaitna, and Christoph Graf
Nat. Hazards Earth Syst. Sci., 22, 1627–1654, https://doi.org/10.5194/nhess-22-1627-2022,https://doi.org/10.5194/nhess-22-1627-2022, 2022
Short summary
Assessing the importance of conditioning factor selection in landslide susceptibility for the province of Belluno (region of Veneto, northeastern Italy)
Sansar Raj Meena, Silvia Puliero, Kushanav Bhuyan, Mario Floris, and Filippo Catani
Nat. Hazards Earth Syst. Sci., 22, 1395–1417, https://doi.org/10.5194/nhess-22-1395-2022,https://doi.org/10.5194/nhess-22-1395-2022, 2022
Short summary

Cited articles

Abancó, C., Hürlimann, M., Moya, J., and Berenguer, M.: Critical rainfall conditions for the initiation of torrential flows. Results from the Rebaixader catchment (Central Pyrenees), J. Hydrol., 541, 218–229, https://doi.org/10.1016/j.jhydrol.2016.01.019, 2016. a, b, c
Badoux, A., Graf, C., Rhyner, J., Kuntner, R., and McArdell, B. W.: A debris-flow alarm system for the Alpine Illgraben catchment: Design and performance, Nat. Hazards, 49, 517–539, https://doi.org/10.1007/s11069-008-9303-x, 2009. a, b, c, d
Badoux, A., Turowski, J. M., Mao, L., Mathys, N., and Rickenmann, D.: Rainfall intensity–duration thresholds for bedload transport initiation in small Alpine watersheds, Nat. Hazards Earth Syst. Sci., 12, 3091–3108, https://doi.org/10.5194/nhess-12-3091-2012, 2012. a, b
Badoux, A., Andres, N., Techel, F., and Hegg, C.: Natural hazard fatalities in Switzerland from 1946 to 2015, Nat. Hazards Earth Syst. Sci., 16, 2747–2768, https://doi.org/10.5194/nhess-16-2747-2016, 2016. a
Bel, C., Liébault, F., Navratil, O., Eckert, N., Bellot, H., Fontaine, F., and Laigle, D.: Rainfall control of debris- flow triggering in the Réal Torrent, Southern French Prealps, Geomorphology, 291, 17–32, https://doi.org/10.1016/j.geomorph.2016.04.004, 2017. a, b, c, d, e, f, g, h, i, j
Download
Short summary
Debris-flow prediction is often based on rainfall thresholds, but uncertainty assessments are rare. We established rainfall thresholds using two approaches and find that 25 debris flows are needed for uncertainties to converge in an Alpine basin and that the suitable method differs for regional compared to local thresholds. Finally, we demonstrate the potential of a statistical learning algorithm to improve threshold performance. These findings are helpful for early warning system development.
Altmetrics
Final-revised paper
Preprint